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Abstract
Background: A gel-free proteomic approach was utilized to perform in-depth
tissue protein profiling of lung adenocarcinoma (ADC) and normal lung tissues
from early and advanced stages of the disease. The long-term goal of this study is
to generate a large-scale, label-free proteomics dataset from histologically well-
classified lung ADC that can be used to increase further our understanding of
disease progression and aid in identifying novel biomarkers.
Methods and results: Cases of early-stage (I-II) and advanced-stage (III-IV)
lung ADCs were selected and paired with normal lung tissues from 22 patients.
The histologically and clinically stratified human primary lung ADCs were ana-
lyzed by liquid chromatography-tandem mass spectrometry. From the analysis
of ADC and normal specimens, 4863 protein groups were identified. To examine
the protein expression profile of ADC, a peak area-based quantitation method
was used. In early- and advanced-stage ADC, 365 and 366 proteins were differ-
entially expressed, respectively, between normal and tumor tissues (adjusted
P-value< .01, fold change≥ 4). A total of 155 proteins were dysregulated between
early- and advanced-stage ADCs and 18 were suggested as early-specific stage
ADC. In silico functional analysis of the upregulated proteins in both tumor
groups revealed that most of the enriched pathways are involved in mRNA
metabolism. Furthermore, the most overrepresented pathways in the proteins
that were unique to ADC are related to mRNA metabolic processes.
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Conclusions: Further analysis of these data may provide an insight into the
molecular pathways involved in disease etiology and may lead to the identifi-
cation of biomarker candidates and potential targets for therapy. Our study pro-
vides potential diagnostic biomarkers for lungADCandnovel stage-specific drug
targets for rational intervention.

KEYWORDS
clinical proteomics, lung adenocarcinomas, mass spectrometry, proteomics

1 INTRODUCTION

Lung cancer is today one of the leading causes of cancer
deaths worldwide. Despite a poor 5-year survival rate of
15%, no improvement in survival has occurred for decades.1
Nonsmall cell lung cancer (NSCLC) is subdivided into
three major histological types: squamous cell carcinoma,
large cell carcinoma, and adenocarcinoma (ADC). ADC of
the lung is the predominant histological type of lung can-
cer and accounts for 40% of all NSCLC cases. Although
lung ADC is associated with smoking, it is the most fre-
quent lung malignancy in individuals who have never
smoked.2
Traditionally, therapeutic strategies for NSCLC are

based on tumor histology and stage. At the early stage,
surgical resection is the most effective treatment. The
standard first-line therapy for patients with inoperable,
advancedNSCLC has been to employ different chemother-
apy modalities. Although specific molecular-targeted
therapies for the treatment of distinct subtypes of NSCLC
have been developed, treatment options for the majority of
patients remain unsatisfactory. Therefore, new treatment
strategieswith greater efficacy and lower toxicity are essen-
tial. Additionally, both diagnostic and prognostic biomark-
ers are urgently required to increase patient survival.
Recent advancements in high-throughput molecular

biology technologies have deepened our understanding of
the pathology underlying NSCLC and highlighted the sig-
nificant heterogeneity of NSCLC.3 Sequencing of entire
cancer genomes has resulted in the identification of driver
mutations and frequently altered signaling pathways. This
approach has led to the definition of new molecular sub-
types of NSCLC (EGFR, ALK, TP53, KRAS, and ROS1) and
new treatment options.4-7
The prognosis for lung cancer patients is strongly related

to the stage of the disease at the time of diagnosis. Patients
with localized disease have a 5-year survival rate of 52%,
meanwhile, patients diagnosedwith the distal disease have
a dismal 5-year survival rate of 3.6%.2 Only one third of lung
cancer cases, however, are diagnosed at an early stage.8
Therefore, early diagnosis plays a crucial role in reduc-

ing lung cancer mortality. The current screening meth-
ods mainly include the histopathological examination of
biopsies, lung imaging, and biochemical screens for sev-
eral specific biomarkers. Several potential biomarkers have
already been identified. These include the genes CEA,
CYFRA21-1, KRAS, and TP539; however, the majority of
these biomarkers fail to show a strong specificity and sen-
sitivity for early-stage lung cancer.
Proteins are implicated in all biological processes; thus,

these play an essential role in disease progression. There-
fore, large-scale and systematic analyses of proteins have
become an important tool for tumor characterization. Pro-
teomic methods based on mass spectrometry (MS) have
emerged as powerful tools to discover diagnostic, prog-
nostic, and therapeutic protein biomarkers.10 Various MS-
based approaches have been used to identify differentially
expressed proteins (DEPs) in lung ADC cells, tissues, and
biological fluids.11 Due to the low cost, minimal sam-
ple handling and manipulation, and high throughput, the
application of label-free proteomics to investigate differen-
tial protein expression of clinical samples has gained con-
siderable attention.
Fresh tissue is difficult to collect for clinical proteomic

studies; therefore, FFPE (formalin-fixed and paraffin-
embedded) tissues are the most frequently used and
are easily preserved for subsequent clinical diagnoses.
FFPE tissues are routinely collected for clinical diagno-
sis; however, due to the presence of formalin-induced pro-
tein crosslinks and modifications,12 protein recovery from
FFPE tissues is difficult. Proteomic analysis of fresh frozen
tissues may reflect more accurately the in vivo tissue pro-
teome. Therefore, surgically resected fresh frozen tissues
were used in this study.
Label-free, gel-free proteomics has been widely used

to describe large-scale biological systems.13 Label-free
MS-based proteomic methods provide relative protein
abundance in normal and cancer tissues that may aid in
obtaining a deeper insight into molecular interactions,
signaling pathways, and biomarker identification. In the
current study, a proteomic analysis was conducted using
a label-free liquid chromatography (LC)-MS approach to
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systematically assess the stage-specific signaling pathways
and potential markers. This enabled high-throughput,
semiquantitative assessment of protein abundances in a
complex mixture. These results provide a deeper insight
into the proteomes of early- and advanced-stage lungADC.

2 MATERIALS ANDMETHODS

2.1 Sample selection

We collected malignant and adjacent nonmalignant lung
tissue samples from 22 patients between 46 and 74 years
old (median: 60 years) with ADC histology. Out of 22, 11
patients were in the early-stage of ADC (pathological stage
I and II disease) and 11 had advanced-stageADC (patholog-
ical stage III and IV disease) (Table 1). Malignant and adja-
cent nonmalignant lung tissue samples were harvested in
the operating theater from patients undergoing resection
or lobectomy for NSCLC. The matched control lung tis-
sue was excised from regions that were distant (8-10 cm)
from the tumor. All procedures were approved by institu-
tional IRB (2521-0/2010-1018EKU) protocolswith informed
patient consent. Tissue samples were promptly frozen in
liquid nitrogen and stored at –80◦C. Specimenswere anno-
tated with age, gender, race, diagnosis (including stage),
smoking status, and the number of pack years. Criteria
for patient selection were as follows: current or former
smokers; diagnosis of NSCLC ADC; early stage (I-II) or
advanced stage (III-IV) (Table 1). Detailed information of
each patient and Hematoxylin and Eosin (H&E) images
can be accessed in Supplementary File F1.

2.2 Sample preparation

Preparation of tissues followed by protein extraction using
buffer exchange was performed as previously described.14
In brief, frozen tissue samples from each tumor were
sliced into 10 × 10 μm sections using a cryotome. Tissue
sections were then homogenized in lysis buffer (50 mM
ammonium bicarbonate, 6 M urea) and incubated for
30 min on ice. Samples were sonicated, clarified by
centrifugation for 10 min (10 000 × g, 4◦C), and the
supernatant transferred to a clean microcentrifuge tube.
Total protein concentration was determined using the
BCA protein assay kit (Pierce, Thermo Fischer Scientific).
Proteins were reduced with 10 mM Dithiothreitol (DTT)
(1 h at 37◦C) and alkylated using 40 mM iodoacetamide
(30 min, in the dark at room temperature) followed
by buffer exchange with 50 mM ammonium bicarbon-
ate buffer (pH 7.6). A total of 50 μg total protein was
digested overnight at 37◦C with trypsin at an enzyme to

Graphical Headlights

1. Mass spectrometry analysis revealed changes at
the protein level between early- and advanced-
stage lung adenocarcinomas.

2. Most of the protein-enriched pathways overex-
pressed in tumor ADCs are involved in mRNA
metabolism.

3. The proteomics analysis identified 18 early-
specific proteins.

4. Potential diagnostic biomarkerswere identified
for lung ADC and novel stage-specific drug tar-
gets for rational intervention.

protein ration of 1:50 w/w. The digested peptides were
concentrated and desalted with C18 MicroSpin columns,
and lyophilized and resuspended in 0.1% formic acid
+5 fmol/μL PRTC (Pierce Peptide Retention Time Cali-
bration Mixture).

2.3 Proteomic analysis and database
searching

Samples (peptides produced by digestion) were analyzed
by triplicate in a randomized order using a Q-Exactive
Plus mass spectrometer connected to an Easy-nLC 1000
pump (Thermo Scientific, San José, CA) with a top 10 DDA
method (2 μL, 1 μg on the column). Peptides were loaded
onto an Acclaim PepMap 100 precolumn (75 μm × 2 cm,
Thermo Scientific), and separated on an easy-Spray col-
umn (25 cm× 75 μm ID, PepMap C18 2 μm, 100 Å) with the
flow rate set to 300 nL/min and the column temperature to
35◦C. A nonlinear 90 min gradient was applied, using sol-
vent A (0.1% formic acid) and solvent B (0.1% formic acid in
acetonitrile). Full MS scans were acquired with the Orbi-
trapmass analyzer overm/z 400-1600 range and the Target
AutomatedGainControl (AGC) valuewas set to 1× 106 and
maximum injection time of 100 ms. The 10 most intense
peaks with charge state≥2 were fragmented in theHigher-
energy Collisional Dissociation (HCD) collision cell with a
normalized collision energy of 26%. Tandem mass spectra
were acquired in the Orbitrapmass analyzer with a resolu-
tion of 17 500 (atm/z 200), target AGC value of 5 × 104 and
maximum injection time of 100ms. The underfill ratio was
set to 10% and dynamic exclusion was 45 s.
Raw files were analyzed with Proteome Discoverer

v2.1 (Thermo Scientific). Proteins were searched against
the UniProtKB human database using the SEQUEST HT
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TABLE 1 Patient characteristics

Characteristics n (%)
Total number of patients 22 (100%)
Sex
Female 13 (59.1%)
Male 9 (40.9%)

Age at the diagnosis, years
Median (range) 60 (46-74)
<60 9 (40.9%)
≥60 13 (59.1%)

Smoker
Current smoker 10 (45.5%)
Former smoker 11 (50 %)
Unknown 1 (4.5%)

T stage
T1 5 (22.7%)
T2 13 (59.1%)
T3 4 (18.2%)

N stage
N0 10 (45.5%)
N1 4 (18.2%)
N2 8 (36.3%)

Disease stage
Ia (early) 4 (18.2%)
I1a (early) 4 (18.2%)
I1b (early) 3 (13.6%)
IIIa (advanced) 9 (40.9%)
IV (advanced) 2 (9.1%)

search algorithm that is integrated into Proteome Discov-
erer. The search was performed with the following param-
eters: carbamidomethylation of cysteine residues and oxi-
dation of methionine residues as static and dynamicmodi-
fications, respectively; and mass tolerances of 10 ppm for
precursor ion and 0.02 Da for fragment ions. Up to two
missed cleavages for tryptic peptides were allowed. The
filters “high confidence” and “at least two unique pep-
tides per protein” were also applied (false discovery rate
[FDR] < .01).
Peptide and protein quantitation was assessed using

the converted mzxml files15 (MSconvert) and analyzed
by OpenMS v.2.0.0 and TOPP16 using X-tandem as
search engine against the UniProt human database
(Human, 9606; reviewed, 20 165). The search included car-
bamidomethylation of cysteine residues and oxidation of
methionine residues as static and dynamic modifications,
respectively. FDR was determined by searching a reversed
database and was set to < .01 for proteins and peptides
(at least two unique peptides/protein). Enzyme specificity
was “trypsin” and ‘two miscleavages’ were permitted with

a minimum of seven amino acids per identified peptide.
Peptide identification was based on a search with an initial
mass deviation for the precursor and fragment ions of up to
10 ppm and 0.02 Da, respectively. To match peptide iden-
tifications across different replicates and adjacent samples
by condition, a match-between-runs was performed.
For the quality control (QC) of the LC-MS analysis, four

of the most intense peaks observed in all LC-MS runs
of previous analyses performed in our laboratory with
lung tissues samples were selected as QC reference (see
Table F1-S1 of the File F2 in the Supporting Information).
In addition, mass error distribution for peptide groups and
the distribution of peptide by retention times across the
LC-MS is showed. See the results of the analysis in File F2
in the Supporting Information.

2.4 Bioinformatics

Statistical analyses and data visualization were performed
in Perseus17 (v1.6.0.2) and R.18,19 In order to obtain >70%
valid values per protein in at least one condition, data
were filtered based onmissing values. Missing values were
replaced using a “data imputation” algorithm to simulate
signals of low-abundance proteins under the assumption
that these are biased toward the detection limit of the
MS measurement. In Perseus, a width of 0.3 and a down-
shift of 1.8 were chosen to draw random numbers from
a normal distribution. The intensities were normalized
by applying a log2 transformation and then standardized
by subtracting the median. An overall picture of the
proteomics results was assessed by performing a principal
component analysis (PCA)20,21 based on the expression
of all proteins quantified in all samples. To determine
DEPs, an ANOVA test was initially performed to detect
changes across the four sample groups. To compare
normal and tumor tissues within the disease stages, a
paired Student t-test (two-tailed) was then performed;
and to compare tissues of early versus advanced stages,
an unpaired Student t-test (two-tailed) was applied. In
all cases, P-values were adjusted to obtain a FDR < 1%.
Proteins with q-values < .01 and fold change (FC) ≥ 4
were considered differentially expressed. To visualize the
behavior of DEPs across the time points, unsupervised
hierarchical clustering (distance: “euclidean"; linkage
method: “complete”) was performed. The Spearman rank
test was performed to analyze the coefficient of correlation
between selected DEPs. Correlations with an P-value <
.05 and r > .5 were considered significant. Gene ontology
(GO) and Reactome pathway enrichment analyses were
performed using the bioinformatics web tool PANTHER
(http://www.pantherdb.org/).22 This tool was also used
to perform overrepresentation test (P < .05) where all

http://www.pantherdb.org/
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F IGURE 1 A, Representative H&E staining of tumor and normal adjacent tissue samples. It illustrates the representative tumor (right)
and normal adjacent (left) tissue sections from early-stage ADC (A) and (C), and from advanced-stage ADC (B) and (D).B, Principal component
analysis (PCA) of protein expression patterns of the 44 samples. The greatest variance (PC1_24.1%) is given by the differences between normal
and tumor tissue and the second (PC2_ 9.5%) by differences between stages. C, Hierarchical clustering separated normal, early, and advanced
ADC proteomes. Heat map and hierarchical clustering based on 1579 differentially expressed proteins (DEPs) from the ANOVA test. Heat map
colors are based on the z-scored (log2) intensity values. Blue and red correspond to decreased and increased expression levels, respectively

identified proteins were used as the background list.
STRING database was used to assess functional protein
association networks (https://string-db.org/).

3 RESULTS

3.1 Lung ADC tissue proteomics

In this study, differences at the protein level between early-
stage and advanced-stage lung ADC tissues were assessed.
Malignant tumor samples and their nonmalignant adja-
cent tissue were also compared separately for early- and
advanced-stage ADC. As shown in Figure 1A, the histol-
ogy of the tissue samples was confirmed (Hematoxylin and
Eosin [H&E] stained sections of tumor and adjacent nor-
mal lung tissue samples can be found in File F1 in the Sup-
porting Information). Following enzymatic digestion, the
extracted protein samples were individually analyzed on a
Q-Exactive Plus Orbitrap coupled to peptide separation by
LC.
Proteomic profiling was performed on matched malig-

nant and normal tissues and a total of 4863 proteins were
identified across all 22 tissue pairs (44 samples) (see Table
S1). Using PCA, based on the protein expression of all pro-

teins quantified in all samples, a 2D scatterplot was gen-
erated to explore and distinguish all analyzed groups. In
Figure 1B, the first versus the second principal compo-
nent (PC) are represented. Importantly, the first PC (24.1%
of explained variances) clearly separated control (“nor-
mal”) tissues (left) from tumor tissues (right).When focus-
ing on the second PC (9.5% of explained variances), the
data showed early-stage ADC and matched control tissues
at the bottom of the plot, whereas advanced ADCs and
matched controls are shown at the top. To detect overall
changes across the four sample groups, anANOVA testwas
performed and 1579 proteins result differentially expressed
(FDR < 1%) (see Table S2A). Based on the intensity of
the DEPs, unsupervised hierarchical clustering of the 44
datasets confirmed that the normal, early, and advanced
ADC proteomes were sufficiently distinct to be resolved
from one another (Figure 1C) independently of other clini-
cal characteristics of the patients (e.g., gender, age at inclu-
sion, smoking status).
Our primary goal was to determine the differences in

protein expression profiles between tumor and tissueswith
normal histology. Of the 4863 proteins, 2810 proteins (58%)
were observed across all groups, whereas 703 proteins
(14.5 %) were shared among the advanced- and the early-
stage ADC groups. A total of 300 and 172 proteins were

https://string-db.org/
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F IGURE 2 A,Venn diagrams showing the distribution of the identified protein groups across the sample classifications. T refers to tumor
samples. N refers to adjacent normal tissue sample. B, Gene ontology (GO) annotation of identified proteins by cellular component

specific to early- and advanced-stage tumors, respectively
(Figure 2A). When the number of proteins identified in
the ADC tissues was compared to the matched control tis-
sues, an increase in the complexity of the proteome in the
tumor tissue was revealed. This observation is similar to
the results obtained byTenzer et al23 (average protein num-
ber in normal tissue: 3322; average protein number inADC:
4380). To obtain an overview of the cellular distribution of
the identified proteins, these were classified according to
the cellular component category of GO. Concerning cellu-
lar component, the majority of the proteins were assigned
to the cytoplasm (40.5%), whereas 36.1% and 10% mapped
to extracellular exosome and space, respectively. A total
of 1677 (35%) proteins mapped to the cytosol, 2657 (55,2%)
to nucleus and nucleoplasm, whereas 1070 (22.3%) to the
membrane (Figure 2B). Overall, the distribution of the pro-
teins was not biased toward a specific cell compartment.

3.2 Differential protein expression
between normal and tumor samples: Early
stage

Comparison of the DEPs (–2 ≥ log2 FC ≥ 2; q-value < .01)
between normal and tumor tissues showed that in early-
stage tumor, 86 and 279 proteins were down- and upregu-
lated, respectively (see Table S2B). The proteins with the
greatest alteration in expression (–4 ≥ log2 FC ≥ 4) are
depicted in Figure 3B as a heat map. The within-patient
comparison between tumor and normal tissue is shown in
Figure S1A for each patient with early-stage ADC.
The pathway analysis revealed that the upregulated pro-

teins in tumor were associated with translation initiation
and regulation of translation, such as nonsense-mediated
decay andmRNA splicing (Table S3). Specifically, 12, 9, and

6 proteins were identified as ribosomal proteins, mRNA-
splicing factors, and translation factors, respectively
(Table S4).
A total of 224 proteins were exclusively quantified in

the early-stage tumor tissues (in more than 70% of the
samples), but not in the matched normal samples. Among
these, 67 were identified in all the early-stage tumor sam-
ples (Table S5).
To assess potential pathways associated with early-stage

ADC, these 236 proteins were further analyzed using the
bioinformatics tool PANTHER. The GO-Slim biological
process analysis revealed that these proteins are involved
in mRNA splicing, DNA replication, and regulation of cell
cycle (Table S6).

3.3 Differential protein expression
between normal and tumor samples:
Advanced stage

Comparative analysis of the advanced-stage tumor tissues
showed that 92 and 274 proteins were down- and upreg-
ulated, respectively, relative to the normal paired samples
(–2 ≥ log2 FC ≥2; q-value < .01) (see Table S2C). Figure 4
shows a heat map performed with proteins that had the
highest expression level alterations (–4≥ log2 FC≥ 4). The
within-patient comparison between tumor and normal tis-
sue is shown in Figure S1B for each patient with advanced-
stage ADC.
Pathway enrichment analysis of the 274 upregulated

proteins revealed that a variety of cellular processes are
overrepresented in advanced-stage lung ADC (Table S7).
The upregulated proteins and enriched pathways are asso-
ciated with mRNA splicing, translation, and regulation
of translation. Specifically, seven proteins belong to the
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F IGURE 3 Differentially expressed proteins in early-stage ADC.A,Volcano plot of log2-fold change (FC) versus P-value t-test. Points alter
in size according to the magnitude of the fold change. B, Heat map generated by hierarchical clustering of the most altered proteins. The heat
map shows a clear separation of adjacent normal and tumor tissues (–4 ≥ log2 FC ≥ 4, adj. P < .01). Blue and red correspond to decreased and
increased expression levels, respectively

F IGURE 4 Comparison between normal and tumor tissue in advanced-stage ADC. A, Volcano plot of log2-fold change (FC) versus P-
value t-test. Points alter in size according to the magnitude of the fold change. B, Heat map generated by hierarchical clustering of the most
altered proteins. The heat map shows a clear separation of adjacent normal and tumor tissues (–4 ≥ log2 FC ≥ 4, adj. P < .01). Blue and red
correspond to decreased and increased expression levels, respectively
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F IGURE 5 Comparison of early- and advanced-stages in tumor tissue.A,Volcano plot of log2-fold change (FC) versus P-value t-test. Points
alter in size according to the magnitude of the fold change. B, Heat map generated by hierarchical clustering of the most altered proteins. The
heat map shows a clear separation of adjacent normal and tumor tissues (–4 ≥ log2 FC ≥ 4, adj. P < .01). Blue and red correspond to decreased
and increased expression levels, respectively

family of mRNA splicing factors, seven ribosomal pro-
teins were identified, and seven proteins are aminoacyl-
tRNA synthetases (ARS) (Table S8). ARSs are impor-
tant housekeeping proteins that play an essential role in
protein synthesis. Accumulating evidence indicates that
ARSs play an important role in cancer and it has been
demonstrated that some ARSs show cancer-associated
overexpression.24-26

3.4 Proteins differentially-expressed
between early- and advanced-stage ADC

To characterize early- and advanced-stage ADC, the pro-
teins that were differentially expressed between the early
and advanced tumor samples were determined. In total,
84 and 71 proteins were down- and upregulated, respec-
tively, in advanced tumor tissue compared to early tumor
tissue (–2≥ log2 FC≥ 2; q-value< .01) (see Table S2D). The
proteins with the highest altered expression (–4 ≥ log2 FC
≥ 4) are given in Table S2C and displayed as a heat map in
Figure 5B.
Reactome pathway terms that are overrepresented in

the 71 upregulated proteins were EPH-ephrin signaling
(AP2A1, MYL9, and ACTB), signaling by Rho GTPases
(MYL9, ACTB, GMIP, NCF4, ARHGEF1, and PIN1), and
beta-catenin independent Wnt-signaling (AP2A1, PLCB2,

PSMD13, and PSMB5). All of which have been implicated
in tumorigenesis (Table S9).
Moreover, pathways that are associatedwith the upregu-

lated proteins are involved in tumorigenesis. These include
the VEGFA-VEGFR2 pathway, insulin receptor signaling
cascade, beta-catenin independent WNT signaling, signal-
ing by Rho GTPases, and the RAF/MAP kinase cascade.
Reactome pathways associated with the downregulated

proteins are involved in the extracellular matrix orga-
nization (ITGAX, FBN1, MMP2, ICAM3, COL6A2, and
FGA), integrin cell surface interactions (ITGAX, FBN1,
ICAM3, COL6A2, and FGA), degradation of the extracel-
lular matrix (FBN1, MMP2, and COL6A2), and ECM pro-
teoglycans (ITGAX and COL6A2) (Table S10).

3.5 Early-stage ADC-specific proteins

At the protein level, distinct changes occur during tumor
progression. Such changes range from altered expression
and differential protein modification to changes in protein
activity and altered localization. Detecting stage-specific
changes in cancer proteomes may assist in identifying
potential biomarkers that enable detection of the disease
at an earlier stage.27 Therefore, from the list of 67 proteins
(Table S5) thatwere exclusively quantified in all early-stage
ADC samples (but not in the matched normal samples),

http://ARHGEF1
http://PIN1
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F IGURE 6 Protein-protein interaction and correlation for the 18 early-stage ADC-specific proteins. A, Protein network from STRING.
Shown in red are the significant interactions (FDR < .05 with the highest confidence threshold). B, Spearman correlation. The color scale
represents the strength of the correlation (r) (white to red, positive correlation; white to blue, negative correlation). *P < .05; **P < .01

18 proteins were further assessed based on the differen-
tial expression between early- and advanced-stage ADC
(Table 2). Out of 18, seven proteins were quantified in
early but not in advanced ADC samples (ARAP1, ZFR,
EDC3, HMOX2, NT5C3A, PRPS2,and ICAM3; referred as
ON/OFF in Table 2) and 11 proteins were overexpressed
in early-stage ADC (MCM6, SNRNP70, CDC5L, RBM12,
RBM17, S100A14, THUMPD1, MX1, UBE2H, PXDN, and
SPR; adj. P-value < .01).
To analyze the associations among these 18 pro-

teins (quantified in all early-stage samples), the STRING
database was used to retrieve interacting genes/proteins.
Following the STRING network analysis, only three pro-
teins (all components of the spliceosome) showed a strong
associationwith one another (Figure 6A). SNRNP70 (small
nuclear ribonucleoprotein U1 subunit 70) associates with
U1 snRNA and is essential for the 5′ splice site selec-
tion. RBM17 (RNA-binding motif protein 17) is involved
in the regulation of alternative splicing and is frequently
overexpressed in various solid tumors.28 CDC5L (cell divi-
sion cycle 5 like) is a core component of the spliceo-
somal complex and essential for pre-mRNA splicing29
and involved in DNA damage repair.30 To date, sev-
eral alterations in mRNA metabolism have been reported
in lung cancer suggesting that mRNA metabolism-
related proteins are involved in the pathology of the
disease.31,32
To further examine the relationship between the pro-

teins, a Spearman correlation analysis was performed
using the 11 values from early tumor stage. Only nine

significant correlations were observed among the 18 pro-
teins. Positive correlations were apparent between RBM17
and NT5C3A; ARAP1 and UBE2H; CDC5L and EDC3;
and CDC5L and SPR. Negative correlations were observed
between RBM12 and PXDN; RBM17 and CDC5L; RBM17
and EDC3; THUMPD1 and ICAM3; and RBM17 and
THUMPD1 (Figure 6B; Table S11). Interestingly, there were
four significant correlations for the protein RBM17. Nev-
ertheless, no evidence from the literature was found sup-
porting an association between RBM17 and NT5C3A, and
EDC3 and THUMPD1. Taken together, the expression lev-
els of the 18 proteins did show the same dynamics between
the tumor stages, namely, upregulated in early-stage ADC
and downregulated in advanced ADC tissues. These pro-
teins, however, did not show any clear associationwith one
another, neither with published data nor with our values.
To enrich the number of related proteins, further research
with a larger patient cohort is a necessity.

4 DISCUSSION

In this study, the proteomes of early- and advanced-stage
lung ADC plus normal adjacent tissue were generated.
The identified proteins were described and the most DEPs
between normal and tumor samples and between early-
and advanced-stage tumor tissues were discussed. The
generated data were also compared to currently available
literature in the context of improving our understanding
of the molecular basis of lung ADC.
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TABLE 2 Top 18 potential early stage-specific proteins. These proteins were quantified in all tumor samples from early-stage ADC but
not in their matched normal samples. The log2-fold changes (FC) indicate that their intensities were higher in early ADC than in advanced
ADC. ON/OFF: proteins quantified in early but not in advanced stage ADC samples. All proteins presented an adj. P-value < .01 (T-test_Early
vs Advanced ADC)

Gene
symbol

Protein name
(UniProt accession)

Log2 FC
(Early/
Advanced
ADC) Known functions Relation to cancer

ARAP1 ArfGAP With RhoGAP
Domain, Ankyrin
Repeat, and PH Domain
1 (Q96P48)

ON/OFF Coordinates the membrane and
actin remodeling involved in
cell movement.

Prevents EGFR degradation.88,89

ZFR Zinc finger RNA-binding
protein (Q96KR1)

ON/OFF Regulates alternative pre-mRNA
splicing and plays an essential
role in cell growth.

Potential therapeutic target in
human pancreatic cancer.90

Involved in NSCLC tumor
growth and metastasis.91

EDC3 Enhancer Of MRNA
decapping 3 (Q96F86)

ON/OFF Component of mRNA decapping
complex and involved in
mRNA decay.93

–

HMOX2 Hem oxygenase 2 (P30519) ON/OFF Heme degradation to biliverdin,
iron, and carbon monoxide,
cytoprotective and
anti-inflammatory function.107

May be associated with the
prognosis of bladder cancer.92

NT5C3A 5′-Nucleotidase, cytosolic
IIIA (Q9H0P0)

ON/OFF Catalyzes the dephosphorylation
of pyrimidine 5′
monophosphates.

–

PRPS2 Phosphoribosyl
pyrophosphate
synthetase 2 (P11908)

ON/OFF Plays a central role in the
synthesis of pyrimidines and
purines.

Promoted increased nucleotide
biosynthesis in
Myc-transformed cells.48

ICAM3 Intracellular adhesion
molecule 3 (P32942)

ON/OFF Constitutively and abundantly
expressed by all leucocytes and
may be the most important
ligand for LFA-1 in the
initiation of the immune
response.

Promoted cancer cell migration
and invasion.106Induced cancer
cell proliferation in vitro in
lung cancer.44

Stimulated cancer cell
migration/invasion via
ICAM-3/Akt/CREB/MMP
pathway in NSCLC cells.45

MCM6 Minichromosome
maintenance complex
component 6 (Q14566)

1.29 Essential component for DNA
replication.

Overexpressed in
NSCLC.108Component of a
6-protein panel, which is a
potential biomarker for the
early detection of lung cancer
in bronchial brushings.109

SNRNP70 Small nuclear
ribonucleoprotein U1
subunit 70 (P08621)

1.60 Component of the spliceosome. Its gene was found upregulated
in lung ADC.110

CDC5L Cell division cycle 5 like
(Q99459)

1.66 DNA-binding protein involved in
cell cycle control, pre-mRNA
splicing, and DNA damage
response.

Implicated in colorectal cancer,111

prostate cancer,112 and
hepatocellular carcinoma.113

RBM12 RNA binding motif protein
12 (Q9NTZ6)

1.90 RNA-binding protein. Upregulated in meibomian cell
carcinoma.114

RBM17 RNA binding motif protein
17 (Q96I25)

1.99 Component of the spliceosome
complex.

Overexpressed in numerous
carcinomas, including lung.28

(Continues)
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TABLE 2 (Continued)

Gene
symbol

Protein name
(UniProt accession)

Log2 FC
(Early/
Advanced
ADC) Known functions Relation to cancer

S100A14 S100 calcium-binding
protein A14 (Q9HCY8)

2.01 Calcium-binding protein
involved in cell proliferation
and differentiation.

Implicated in tumorigenesis in
various cancer types.115-118

Overexpressed in lung ADC1;119

its expression correlated
with invasion of lung
ADC cells.120

THUMPD1 THUMP domain
containing 1 (Q9NXG2)

2.30 tRNA-binding adapter to mediate
NAT10-dependent tRNA
acetylation.121

Overexpressed in breast cancer
and promoted metastasis.122

MX1 MX dynamin like GTPase 1
(P20591)

2.31 Play a pivotal role in the type I
interferon-mediated response
against viral infections.

Potential bone metastasis
biomarker in lung cancer.123

UBE2H Ubiquitin conjugating
enzyme E2 H (P62256)

3.35 E2 ubiquitin-conjugating
enzyme.

Plays a role in HCC
development.124,125

MET-UBE2H fusion a novel
resistance gene arrangement to
EGFR-TKI in lung ADC.126

PXDN Peroxidasin (Q92626) 3.54 Heme-containing peroxidase
involved in the formation and
stabilization of extracellular
matrix.

Has been detected in several
cancer types.43 Its
overexpression is associated
with poor prognosis in ovarian
cancer.127

SPR Sepiapterin reductase
(P35270)

5.03 Catalyzes the last step of BH4
biosynthesis.

Over expression of SPR mRNA
correlated with poor prognosis
in neuroblastoma patients.41

Over the past decade, considerable efforts have been
made to discover potential protein biomarkers that can be
used to detect and monitor the progression of lung can-
cer. Despite these efforts, however, lung cancer remains
the leading cause of cancer-related mortality worldwide.33
Thus, it is critical to obtain more knowledge on the molec-
ular complexity of lung ADC.
MS-based proteomics enables the analysis of dynamic

and complex systems in biology. Label-free proteomic anal-
yses not only provide a list of identified proteins but
also enable the quantitation of relative changes in protein
expression levels between sets of samples. Both prognos-
tic and predictive biomarkers for lung cancer found in tis-
sue, cells, blood, or other body fluids have been discovered
using MS-based proteomics approaches (reviewed by Che-
ung and Juan9). The application of proteomic analyses of
paired tumor and control tissue can aid in the investiga-
tion of pathological processes in lung ADC. In this study, a
label-free proteomics workflow was applied. The protocol
required minimal sample manipulation and was versatile
and cost-effective.
During the analysis of the proteomic profiles of the

paired tumor and normal lung tissues, an observation

was made whereby the number of identified proteins was
higher in the cancer tissues compared to the matched con-
trols (average protein number in normal tissue: 3272; aver-
age protein number in ADC: 4336).

4.1 DEPs in early- and advanced-stage
ADC

Many of the DEPs between normal and tumor samples
(early stage) have been previously implicated in tumori-
genesis in the literature. The RNA-binding protein QKI
is a key regulator of alternative splicing in lung cancer
and has been frequently reported as downregulated in
lung cancer. Downregulation is associated with poor
prognosis.34 SAFB (scaffold attachment factor B) belongs
to the nuclear matrix family of proteins and low-protein
expression is significantly associated with worse overall
survival in breast cancer patients who did not receive
adjuvant therapy.35 A decreased level of the protein ANK1
(ankyrin 1) that is known to regulate cell shape and
membrane integrity has been observed in lung ADC.36 Ion
channels are involved in diverse biological functions and
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it is known that dysregulated expression of such proteins
contributes to tumor progression.37 Recently, the gene
expression profile of 37 ion channels was analyzed in lung
ADC. Several ion channels including CLIC3 (chloride
intracellular channel 3) were downregulated.38
BH4 (tetrahydrobiopterin) synthesis promotes both

endothelial cell proliferation, migration, and tube forma-
tion in vitro and angiogenesis in tumor xenografts.39 More-
over, BH4 induces A549 cell proliferation and migration
via the activation of Akt and p70S6K signaling.40 In tumori-
genesis, relatively little is known about the role of SPR
(sepiapterin reductase) that catalyzes the last step of BH4
biosynthesis. Recently, Lange et al41 reported an onco-
genic role for SPR in neuroblastoma and found that over-
expression of SPR mRNA correlates with poor progno-
sis in patients. DNM1L (dynamin 1-like protein) is essen-
tial for normal mitochondrial function and is upregulated
in several cancer types including lung cancer.42 PXDN
(peroxidasin) is involved in the formation and stabiliza-
tion of the ECM and has been detected in several types
of cancer.43 ICAM3 (intracellular adhesion molecule 3)
has been shown to induce cancer cell proliferation in
vitro in lung cancer44 and promote cancer cell migra-
tion and invasion.45 SRSF3 (serine arginine-rich splicing
factor 3) is a well-known RNA processing protein that
is overexpressed in several cancer types and involved in
tumor maintenance.46 CPS1 (carbamoyl-phosphate syn-
thase 1) is a multi-domain mitochondrial enzyme that
is involved in arginine and pyrimidine metabolism and
was shown to be statistically significantly associated with
poor overall survival in stage I lung ADC.47 Cancer cells
have the ability to alter cellular processes to sustain an
enhancedmetabolism for increased cell growth and prolif-
eration. Recently, it has been reported that PRPS2 (phos-
phoribosyl pyrophosphate synthetase 2), a protein that
plays a central role in the synthesis of pyrimidines and
purines, promoted increased nucleotide biosynthesis in
Myc-transformed cells.48 PAIP1 (poly(A)-binding protein-
interacting protein 1)was detected only in tumor tissue and
overexpression of PAIP1 in vitro stimulates translation.49
Among the dysregulated protein between normal and

tumor samples (advanced stage), INPPB4 (type II inosi-
tol 3,4-bisphosphate 4-phosphatase) has been previously
identified as a tumor suppressor and expression of this pro-
tein is reduced in several types of cancers including breast,
ovarian, and prostate.50-52 A recent report, however, indi-
cated that INPPB4 promotes an oncogenic signaling path-
way in breast cancer.53
QSOX1 (quiescin sulfhydryl oxidase 1) has an emerg-

ing role in cancer and was shown to be overexpressed
in several malignancies including breast, pancreas, and
prostate cancer.54,55 A general consensus is emerging that
QSOX1 overexpression is important during tumor cell inva-

sion, facilitating tumor cell migration at the tumor-stroma
interface.56 Recently, it was reported that LMAN2 (vesicu-
lar integral-membrane protein VIP36) is overexpressed in
gastric cancer.57

4.2 Early versus advance ADC

Some of the upregulated proteins in early-stage ADC were
ribosomal proteins, mRNA-splicing factors, and transla-
tion factors. Emerging evidence suggests that ribosomal
proteins not only play essential roles in protein synthe-
sis, but are also involved in cancer tumorigenesis.58-60
Recently, it was demonstrated that RPS15A (ribosomal
protein S15A) expression is increased in lung ADC tissue
and knockdown of RPS15A inhibited cancer cell growth
and induced apoptosis.61 It has been suggested that RPS6
(ribosomal protein 6) is overexpressed in NSCLC and
downregulation thereof inhibits cell growth.62 It is well
known that aberrant mRNA splicing contributes to cancer
progression and the expression of splicing factors are
altered in tumor tissues.63-66 Gout et al67 suggested that
global deregulation of pre-mRNA splicing factors occurs
during lung tumorigenesis. These researchers demon-
strated that SRSF1 and SRSF2 (serine and arginine-rich
splicing factor 1 and 2) and SRPK1 and SRPK2 SRSF
protein-specific kinases are upregulated in NSCLC. In our
study, SRSF7 and SRSF2 were statistically significantly
up- and downregulated in advanced ADC, respectively
(q-value < .01), but did not meet the established criteria
for FC (log2 FC = 1.126; log2 FC = –1.618, respectively).
On the other hand, a prognostic mRNA splicing signature
was identified by Gout et al67 in lung ADC and splicing
networks were revealed. Together, these could reveal
novel cancer drivers and provide new insight in lung ADC
etiology.68 Translational regulation is a critical process
for maintaining cellular homeostasis and allowing rapid
cell adaptation under stress. Therefore, it is not suprising
that dysregulated translation plays an important role
in tumorigenesis.69 Expressions of specific subunits of
EIF3 are altered in a variety of human tumors. Elevated
expression of EIF3A was observed in lung cancer70 and
overexpression of the eucaryotic translation inition factor
4E and 4H in lung cancer has also been reported.71,72
Moreover, phase II clinical trials of an EIF4E antisense
oligonucleotide (ASO) combined with carboplatin and
paclitaxel for NSCLC are ongoing (NCT01234038).
Several of the upregulated proteins in advanced ADC

samples have been previously reported in the literature
as involved in tumor progression. Serum levels of POTE
(POTE ankyrin domain family member I), a paralog of
POTEI (POTE ankyrin domain family member I), in
NSCLC patients are associated with TNM stage (tumor
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extension, nodal status, and metastatic spread incorpo-
rated into the staging system).73 ARF3 (ADP-ribosylation
factor 3) belongs to the human ADP-ribosylation factor
gene family and is involved in vesicular trafficking.
The actin-binding protein ANLN (actin-binding protein
anillin) is a ubiquitously expressed protein required
for cytokinesis. Upregulation of ANLN expression is
frequently observed during cancer development, growth,
and progression.74,75 Moreover, it has been reported that
nuclear ANLN protein expression in lung cancer tissue
is significantly correlated with poor survival.76 Aberrant
expression of SLC2A3 (solute carrier family 2, facilitated
glucose transporter member 3) has been reported in
gastric, testicular, ovarian, and NSCLC.77,78 Furthermore,
it has been shown that SLC2A3 induces tumor cell
proliferation in NSCLC.79
On the other hand, extracellular matrix organization

(ECM) was associated with proteins downregulated in
advanced ADC. It is well-known that cancer development
and progression is associated with ECM. The ECM is a
highly dynamic structure and a major component of the
microenvironment. Abnormal ECM dynamic leads to dys-
regulated cell proliferation and migration.80,81 Collagen is
the most abundant constituent of the ECM and increased
or decreased expression of collagen can contribute to
increased malignancy.82-84 CEACAM6 overexpression was
previously reported in various types of cancer including
NSCLC.85 Dysregulated overexpression of CEACAM6
is oncogenic and associated with an invasive tumor
phenotype.86
The most abundant protein observed in early-stage

tumor tissues was FKBP9 (peptidyl-prolyl cis-trans iso-
merase FKBP9) (upregulated in early-stage tumor tissues).
This protein belongs to the family of peptidyl-prolyl iso-
merases (PPIase) that catalyze peptidyl-prolyl cis-trans iso-
merization and function asmolecular chaperones that play
a crucial role in tumorigenesis. PPIasesmediate conforma-
tional modifications in proteins that modulate signaling
pathways and are overexpressed in a variety of tumors.87
Development of isoenzyme-specific inhibitors has been in
the focus of recent biomedical research.

4.3 Early-stage ADC-specific proteins

The detection of proteomic changes that occur during
tumor progression may aid in identifying potential
stage-specific markers for diagnosis. The prognosis for
lung cancer patients is strongly related to the stage of
the disease at the time of diagnosis. Seven of the 18 early
stage-specific proteins were identified only in the early
stage ADC samples (referred as ON/OFF in Table 2).
ARAP1 (ArfGAP with RhoGAP domain, ankyrin repeat,

and PH domain 1) prevents EGFR degradation88,89 and
thus may increase the oncogenic capabilities of the cells.
ZFR (zinc finger RNA-binding protein) is involved in the
regulation of alternative pre-mRNA splicing and plays an
essential role in cell growth and maybe a potent thera-
peutic target in human pancreatic cancer.90 In a recent
study, it was demonstrated that ZFR is involved in NSCLC
tumor growth and metastasis.91 Among the 18 selected
proteins, 11 were also observed in the advanced-stage
tumor samples (Table 2). These were downregulated in
advanced-stage ADC suggesting that expression thereof
may be early stage specific.
Several of the proteins quantified exclusively the early-

stage tumor tissues have been implicated in cancer.
HMOX2 (heme oxygenase 2) may be associated with the
prognosis of bladder cancer.92 ZFR has been reported to
play an important role in DNA binding and plays an essen-
tial role in cell growth and maybe a potent therapeutic tar-
get in human pancreatic cancer.90
Although several of the selected early-stage ADC-

specific proteins have been reported to play a role in
tumorigenesis in various cancer types (Table 2), EDC3
and NT5C3A have not been implicated in lung cancer.
EDC3 (enhancer of mRNA decapping 3) is a compo-
nent of the mRNA decapping complex and important
for mRNA stability and decay.93 Removal of the 5′ end
cap structure from mRNAs is a crucial control step in
the cytoplasmic degradation of mRNAs, and thus an
essential process in posttranscriptional regulation of gene
expression.94,95 Alterations in the protein expression level
of specific mRNA decapping factors may lead to a dereg-
ulated mRNA decay pathway and potentially contribute
to tumorigenesis.96,97 NT5C3A (5′-nucleotidase, cytoso-
lic IIIA) is a member of the 5′-nucleotidase family and
participates in nucleotide homeostasis by catalyzing the
dephosphorylation of pyrimidine monophosphates.98 It
has been demonstrated that NT5C3A plays a critical role
in the metabolism of, and resistance to, chemotherapeu-
tic nucleoside analogues such as gemcitabine and cytosine
arabinoside.99 Recently, it has been shown that NT5C3A
acts as a negative regulator of the inflammatory cytokine
response.100 Aberrations in the cytokine response path-
ways can alter gene expression subsequently leading to
tumor progression.101
These potential stage-specific proteins require further

additional investigation across a larger patient cohort.

4.4 Proteomics studies with lung ADC
samples

The survival rate of lung cancer patients strongly corre-
lates with tumor stage. Therefore, improving diagnostic
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strategies for early tumor detectionmay lead to an increase
in patient survival. An approach using iTRAQ labeling
recently identified 133 protein candidates from paired lung
ADCwith differing degrees of lymph node involvement.102
Six potential biomarkers that were overexpressed in ADC
tissue comparing to adjacent normal tissues were further
validated (ERO1L, NARS, PABPC4, RCC1, RPS25, and
TARS). In addition, ERO1L and NARS were positively
associated with lymph node metastasis.102 Employing a
gel-free proteomic approach, Kawamura et al identified 81
proteins that were associated with stage IA and IIIA lung
ADC from FFPE tissues. Napsin-A (NAPSA) and anterior
gradient protein 2 homolog (AGR2) were identified as
potential stage-specific candidates for stage IA and stage
IIIA lung ADC.103 In a recent study, zyxin (ZYX)—a novel
potential early diagnostic biomarker—was identified from
plasma by LC-SRM.104

5 CONCLUSIONS

We demonstrated that the proteomic workflow used
here enabled a clear distinction between lung ADC and
matched normal tissue samples and also between early-
and advanced-stage tumor specimens. Our large-scale,
label-free proteomic dataset of histologically well-
classified lung ADC may provide a deeper insight into the
molecular mechanisms underlying lung ADC progression.
As expected, the complexity of the proteome from the
tumorwas higher than the normal tissue proteome. Thirty-
three and 39 DEPs were identified in early- and advanced-
stage ADC, respectively (adj. P-value < .01, FC ≥ 4).
Although several of these proteins have been indicated in
tumorigenesis and progression, none had been previously
reported for lung ADC. Based on the biological functions
of these proteins, the results revealed that the most
enriched pathways are involved in mRNA metabolism.
Furthermore, 18 potential early stage-specific proteins
were identified that may be useful as predictive markers
for lungADC. To validate the findings of this study, a larger
sample size/patient cohort and/or orthogonal methods are
imperative.
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