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Purpose: To develop a method for predicting postoperative anterior chamber depth
(ACD) in cataract surgery patients based on preoperative biometry, demographics, and
intraocular lens (IOL) power.

Methods: Patients who underwent cataract surgery and had both preoperative and
postoperative biometry measurements were included. Patient demographics and IOL
power were collected from the Sight Outcomes Research Collaborative (SOURCE)
database. A gradient-boosting decision tree model was developed to predict the
postoperative ACD. The mean absolute error (MAE) andmedian absolute error (MedAE)
were used as evaluation metrics. The performance of the proposed method was
compared with five existing formulas.

Results: In total, 847 patients were assigned randomly in a 4:1 ratio to a train-
ing/validation set (678 patients) and a testing set (169 patients). Using preoperative
biometry and patient sex as predictors, the presented method achieved an MAE of
0.106± 0.098 (SD) on the testing set, and aMedAE of 0.082. MAEwas significantly lower
than that of the five existing methods (P < 0.01). When keratometry was excluded, our
method attained an MAE of 0.123 ± 0.109, and a MedAE of 0.093. When IOL power was
used as an additional predictor, our method achieved an MAE of 0.105 ± 0.091 and a
MedAE of 0.080.

Conclusions: The presented machine learning method achieved greater accuracy than
previously reported methods for the prediction of postoperative ACD.

Translational Relevance: Increasing accuracy of postoperative ACD prediction with
the presented algorithm has the potential to improve refractive outcomes in cataract
surgery.

Introduction

Estimates of postoperative intraocular lens (IOL)
position after cataract surgery have been included in
IOL calculations as far back as first-generation IOL
formulas. Initially, postoperative IOL axial position in
the eye was modeled as a constant (4 mm) in anterior
chamber intraocular lens (ACIOL) power calculations.
In second-generation formulas, Binkhorst introduced
axial length as a predictor, whereas third-generation

formulas involved both corneal power and axial
length as predictors of postoperative IOL position.
By 1995, Olsen et al.1 introduced two additional
variables, preoperative anterior chamber depth (ACD)
and preoperative crystalline lens thickness as predictors
for postoperative IOL position.

The importance of postoperative IOL position in
IOL power calculations is due to the reliance of optical
models of the eye on the distances between the optical
components of the eye (the cornea and IOL) and
the photoreceptors within the retina. Whether using
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Gaussian optics or ray-tracing, optical models used in
IOL power calculation require accurate estimates of
postoperative IOL position to achieve useful results.
Indeed, Norrby2 estimated in 2008 that estimates of
IOL position were responsible for 36% of the error in
IOL power predictions.

Whereas effective lens position (ELP) refers to the
distance between the anterior surface of the cornea
and the principal plane of the IOL resulting in the
observed refraction in a given optical model, it is
important to distinguish this entity from the postop-
erative ACD. The postoperative ACD is a measur-
able quantity, representing the distance between the
anterior corneal surface and the anterior IOL surface
along the visual axis in the postoperative eye. The
relationship between ELP for a given optical model and
postoperative ACDdepends on the optical model itself,
meaning that whereas postoperative ACD is a measur-
able quantity, ELP is only a computable quantity.

As Kriechbaum et al.3 pointed out in 2003, exact
postoperative ACD prediction based on preoperative
biometry data is, in principle, impossible because of
the effect of several uncertain parameters including the
shrinkage of the capsular bag. There have, however,
been reports of various preoperative features that may
be predictive of postoperative ACD. For example, Plat
et al.4 in 2017 reported correlation between measure-
ments of axial length (AL), horizontal white-to-white
distance (WTW), and preoperative ACD with postop-
erative ACD. Other approaches have added corneal
power to improve postoperative ACD prediction.5

Methods utilizing measures from anterior segment
optical coherence tomography (AS-OCT) have
achieved high accuracy in postoperative ACD predic-
tion.6,7 However, these approaches rely on angle-to-
angle measurements that are not typically obtained
in a standard cataract surgery preoperative workup.
Furthermore, these measurements involve manual
caliper-based measurements, introducing subjectivity
and variability into the measurements while slowing
the workflow of the cataract surgeon.

An ideal method for postoperative ACD estimation
would utilize only data obtained from optical biome-
try. It would achieve high accuracy, yet have minimal
loss of accuracy in the absence of reliable keratome-
try data. Such a method would be able to integrate into
existing workflows. It could also be used for patients
who had previously undergone refractive surgery, and
would lend itself well to integration into existing and
novel methods for IOL power calculation.

Because it is not particularly common to obtain
biometry both before and after surgery, building a
dataset large enough to accurately predict postoper-
ative ACD can be a challenge. Here, leveraging the

Sight Outcomes Research Collaborative (SOURCE)
database, we describe the creation of a dataset includ-
ing more than 800 patients with both preoperative and
postoperative biometry. Furthermore, we present here
the development and testing of a machine learning
approach to postoperative ACD prediction.

Methods

Data Collection

Biometry records (including preoperative and
postoperative biometry) between August 25, 2015,
and June 27, 2019, were retrieved from Lenstar LS900
optical biometers (Haag-Streit USA Inc, EyeSuite
software version i9.1.0.0) at University of Michi-
gan’s Kellogg Eye Center. Institutional review board
approval was obtained for the study, and it was deter-
mined that informed consent was not required because
of its retrospective nature and the anonymized data
used in this study. The study was carried out in accor-
dance with the tenets of the Declaration of Helsinki.
Patient demographics and cataract surgery informa-
tion (including date of surgery and implanted IOL
power) were obtained via the SOURCE Ophthalmol-
ogy Data Repository, which captures electronic health
record (EHR) data of all patients receiving any eye
care at academic medical centers participating in this
research collaborative. SOURCE captures information
on patient demographics, diagnoses identified on the
basis of International Classification of Diseases codes,
procedures based on Current Procedural Terminology
(CPT) codes, and structured and unstructured (free-
text) data from all clinical encounters (clinic visits,
operative reports, etc.). For this study, we focused
on a subset of the SOURCE patients receiving care
at the University of Michigan. Spherical equivalent
manifest refractions from the postoperative month
one visit were identified from the clinical record for
all patients who underwent cataract surgery (CPT =
66984 or 66982) from the dataset. The power and
model of the implanted intraocular lens for each
surgery was collected as well. Only those surgeries
involving the implantation of an Alcon SN60WF
single-piece acrylic monofocal lens (Alcon, Geneva,
Switzerland) were included in the study. Patients who
had prior refractive surgeries were excluded from the
dataset. Patients who had an additional surgery (e.g.,
endothelial keratoplasty) at the time of their cataract
surgery were also excluded. Postoperative biometry
records with outliers in IOL thickness were excluded to
address the possibility of lens tilt affecting the assess-
ment of ACD. The outliers were defined as records
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Figure 1. Method pipeline. In themiddle panel, n records refers to the total number of records or samples in the whole dataset; n patients
refers to the total number of distinct patients; and n eyes refers to the total number of distinct eyes. In the right panel, 3251 in the train-
ing/validation set is the total number of samples before selecting one sample per patient in the validation set.

where the postoperative lens thickness fell greater than
1.96 SD away from the mean thickness for a given IOL
power.

Model Development

After data collection, the raw data were reformat-
ted so that each sample in the dataset consisted of
a set of predictors and a target value that could
be used by the machine learning model. Among the
biometry records, it was possible for individual eyes
to have multiple preoperative and postoperative sets
of biometry measurements. To take advantage of
these records, preoperative and postoperative biome-
try records of the same eye were matched in a way that
accounted for all possible combinations. An eye with
x preoperative records and y postoperative records had
xy possible combinations. The inclusion of all possi-
ble preoperative and postoperative biometry record
combinations represents a form of data augmentation,
with the intention of increasing robustness to measure-
ment variations while recognizing that the same eye can
have varying lens thickness and preoperative anterior
chamber depth due to natural cataract progression. At
the end of data preprocessing (Fig. 1, middle panel),
a dataset of 4137 samples that involved 847 distinct
patients was generated and used for the development

of the machine learning model. Each sample consisted
of (1) preoperative biometry: AL, central corneal thick-
ness (CCT), ACD, crystalline lens thickness (LT), flat
keratometry K1, steep keratometry K2, Km = K1+K2

2 ,
and horizontal white-to-white (WTW), (2) patient sex,
(3) IOL power, and (4) postoperative ACD, where (1)
to (3) were the predictors and (4) was the target variable
in the machine learning model.

Corneal power is one of themost important features
in both postoperative ACD prediction and postopera-
tive refraction prediction in cataract surgery. However,
corneal power measurement is unreliable in patients
with prior corneal refractive surgery. To evaluate appli-
cability of our method to patients with prior corneal
refractive surgery, we examined how well our method
performed when corneal power was not available.

We also studied the effect of IOL power in postop-
erative ACD prediction, because even though IOL
power is directly associated with IOL thickness, which
could in turn affect postoperative ACD, IOL power,
to our knowledge, has not been considered in existing
formulas.

In summary, we examined the performance of three
classes of models where different subsets of variables
were used as predictors: (1) Base, which used AL, CCT,
ACD, LT, K1, K2, Km, WTW, and patient sex as
predictors, (2) Base + IOL, which added IOL power
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to “base” as an additional feature, and (3) Base −
K, which removed K1, K2, and Km from “Base”,
using AL, CCT, ACD, LT, WTW, and patient sex as
predictors.

LightGBM (2.2.3), which is a widely used frame-
work for implementing the gradient boosted decision
tree algorithm, was used to construct the machine
learning model. During the training process, the train-
ing data were augmented through two methods (Fig. 1,
right panel) (1) IOL power augmentation and (2)
data interpolation. The purpose of using IOL power
augmentation was to improve the prediction perfor-
mance by incorporating the relationship between IOL
power and IOL thickness into the training data.During
IOL power augmentation, the implanted IOL power
(IOLold) was replaced by nIOL randomly selected IOL
powers, and the ground truth postoperative ACD
was adjusted based on the selected IOL powers (see
Supplementary Fig. S1). Specifically, for each distinct
patient, nIOL synthetic IOL powers (IOLnew,1, IOLnew,2,
…) between [IOLmin, IOLmax] were selected, and the
adjusted (new) postoperative ACD corresponding to
each new IOL power was calculated as

ACDnew = ACDold − m (IOLnew − IOLold ) ,

where m ∈ [0, 1] is a constant, IOLmin ≥ 6, IOLmax
≤ 30. The value of IOLmin, IOLmax, m, and nIOL were
optimized through cross-validation. In data interpola-
tion, k samples were randomly picked, and the center
of those k samples was calculated by averaging each
dimension of the predictor vector X and the target
value y. Categorical variables were treated as continu-
ous variables. The number of samples, k, used to create
each synthetic sample and the number of samples
generated, n, were optimized through cross-validation.

Model Evaluation

Five repetitions of fivefold cross-validation were
used to perform a grid-search for the parameters in
data augmentation (IOLmin, IOLmax, m, nIOL, n, and
k) and the hyperparameters in the machine learn-
ing model (the learning rate, number of estimators,
maximum tree depth, and number of leaves). Cross-
validation was also used to evaluate the performance
of different subsets of features. Mean absolute error
(MAE) in postoperative ACD prediction was used as
the primary evaluation metric in cross-validation. The
optimal models for three scenarios: (1) Base (2) Base
+ IOL (3) Base − K were selected on the basis of the
mean of the MAEs in the cross-validation results.

We then tested the performance of our model on
a hold-out testing dataset and compared the perfor-
mance of our methods with five existing formulas:

Haigis, Hoffer Q,Holladay I, Olsen, and SRK/T. These
five existing formulas were implemented in Python 3
based on their publications.1,8–13 The lens constants
were optimized for each formula to eliminate system-
atic errors in refraction prediction using previously
described methods.1,14,15 The optimized constants
were: 1.655 for Haigis, 5.844 for Hoffer Q, 1.990 for
Holladay I, −0.225 for Olsen, and 119.303 for SRK/T.
The corresponding mean errors in refraction are listed
in Supplementary Table S1. We further compared
our methods to two baseline prediction methods: (1)
average postoperative ACD, which used the average
postoperative ACD in the training/validation dataset
as the predicted ACD for the testing set and (2) linear
regression, which used AL, CCT, ACD, LT, K1, K2,
Km, andWTW as predictors. Data augmentation (i.e.,
interpolation and IOL augmentation) was not applied
to the linear regression model.

Apart from the testing set described above, we also
gathered a separate testing set consisting of 78 cataract
patients (78 eyes) who had a history of prior refractive
surgery. We tested the Base − Kmodel on this separate
postrefractive testing set to compare the prediction
performance of our method for patients with and
without prior refractive surgery.

To investigate the degree to which dataset size
affected prediction performance, the performance of
our method and linear regression were compared as
random subsets of the training dataset of varying size
(20%, 40%, 60%, 80%, and 100%) were used. The
subsampling of the training dataset was applied before
data interpolation to better simulate the reduction in
available raw data.

During the testing and validation process, one
testing/validation sample was randomly selected for
each patient to ensure that performance evaluation
was not biased as a result of the varying number of
records available per patient. In addition to the MAE,
the median absolute error and Pearson correlation
coefficient (r) were also calculated for the performance
comparison in the testing set. To gain insights into the
relative importance of predictors in the machine learn-
ing model, we calculated the total gain (total reduction
in training loss) across splits in decision trees for each
predictor in the model.

Statistical Analysis

Statistical testing was performed to investigate
relationships between variables in the dataset. A χ2

test was performed to evaluate the difference in the
proportion of males and females among all patients.
A two-tailed Student t-test was performed to evalu-
ate for differences in the means of biometry values
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Table 1. Patient Demographics

Characteristic Training/Validation Set (Mean ± SD) Testing Set (Mean ± SD)

Gender
Male 283 (41.7%) 65 (38.5%)
Female 395 (58.3%) 104 (61.5%)

Age at surgery (years) 71.08 ± 10.50 71.02 ± 8.96
Preoperative Km (D) 43.78 ± 1.65 43.94 ± 1.70
Preoperative AL (mm) 23.98 ± 1.09 23.79 ± 1.09
Preoperative LT (mm) 4.52 ± 0.45 4.53 ± 0.44
Preoperative ACD (mm) 3.25 ± 0.41 3.24 ± 0.42
Postoperative ACD (mm) 4.66 ± 0.30 4.64 ± 0.30

Since patients in our dataset had varied numbers of biometry exam records, we randomly selected one record/patient from
the training/validation set and the testing set to calculate the summary statistics.

between males and females. The Pearson correlation
coefficients and the P values testing the significance
of correlation were calculated between the postoper-
ative ACD and the preoperative biometry measure-
ments. To assess the difference in cross-validation
results of different methods, a Wilcoxon sign-rank test
was performed. The testing set results of different
methods were compared on the basis of the Friedman
test followed by a post hoc paired Wilcoxon signed-
rank test with a Bonferroni correction. Performance
of the keratometry-independent Base − K model was
compared between the testing sets of patients with and
without prior refractive surgery through an unpaired
two-sample Wilcoxon signed-rank test (i.e., the Mann-
Whitney U test). Statistical significance for all above
tests was defined asP value< 0.05. All statistical analy-
sis and machine learning model construction scripts
were written in Python 3.

Results

Dataset Characteristics

In total, our dataset included the preoperative and
postoperative biometry measurements and surgical
records of 1205 eyes from 847 patients (Fig. 1). These
patients were split into training/validation and testing
sets. The distributions of the biometry measurements
were similar in the two sets (Table 1). There were signif-
icantly more females than males (χ2 test, P < 0.01).
The postoperative ACD was positively correlated with
preoperative AL, ACD, WTW, and CCT (P < 0.01 for
each) and negatively correlated with preoperative LT
and WTW (P < 0.01 for each). Postoperative ACD
was not significantly correlated with preoperative Km
(P = 0.74) (Fig. 2A). Figure 2B shows the distribution

of the power of the implanted IOL and the postopera-
tive lens thickness (r = 0.75, P < 0.01). The scatter plot
indicates a linear relationship between the IOL power
and postoperative IOL thickness. The distributions of
biometry measurements in male and female patients
are shown in Figure 2C. The preoperative AL, preop-
erative ACD, and postoperative ACD in male patients
were longer than those in female patients (P < 0.01 for
each). Km in females was greater than that in males
(P < 0.01).

Model Performance

As stated above, different subsets of features were
tested to examine the performance of our machine
learning model when (1) corneal power was not avail-
able and (2) IOL power was considered. Supplemen-
tary Figure S2 shows the cross-validation results of
the alternative models with optimized parameters. The
cross-validation results (i.e., the average MAE) of each
alternative model were as follows: 0.121 mm for Base
= biometry + patient sex, 0.120 mm for Base + IOL,
0.131 mm for Base − K. The addition of IOL power
improved prediction performance, whereas IOL-based
augmentation, which simulated the linear relationship
between an IOL’s power and its thickness further
improved prediction performance, beyond the addition
of IOL power alone. Base − K performed significantly
worse compared with Base and Base+ IOL (P< 0.01),
as expected. For comparison purposes, we recalculated
the cross-validation results usingmedian absolute error
as the evaluation metric. The results were as follows:
0.100 mm for Base, 0.097 mm for Base + IOL, and
0.108 mm for Base − K. The prediction performance
was consistent with the results obtained with MAE.

The performance of the three models on the unseen
testing dataset is presented in Table 2 and Table 3.
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Figure 2. Baseline dataset characteristics. (A) Bar graph plotting the Pearson correlation coefficient r between postoperative anterior
chamber depth and preoperative biometry in the training/validation dataset. (B) Scatter plot of IOL power against the postoperative lens
thickness. Thedots are 50% transparent. (C) Thedistributionof preoperative axial length, corneal power, anterior chamberdepth andpostop-
erative anterior chamber depth in male (M) and female (F) patients. One record per patient in the training/validation set was randomly
selected to generate the figures (i.e., the same set of records as the “Training/Validation Set” column in Table 1).



Machine Learning for Postoperative ACD Prediction TVST | December 2020 | Vol. 9 | No. 13 | Article 38 | 7

Table 2. Prediction Performance on the Testing Set

Index Method MAE in mm ± SD MedAE in mm (Interquartile Range) R2

1 Base = biometry + patient sex 0.106 ± 0.098 0.082 (0.119) 0.777
2 Base + IOL 0.105 ± 0.091 0.080 (0.114) 0.781
3 Haigis 0.680 ± 0.172 0.681 (0.206) 0.681
4 Hoffer Q 1.228 ± 0.251 1.219 (0.318) 0.407
5 Holladay I 0.743 ± 0.283 0.744 (0.403) 0.405
6 Olsen 1.200 ± 0.172 1.199 (0.206) 0.681
7 SRK/T 1.205 ± 0.328 1.183 (0.256) 0.317
8 Average postoperative ACD 0.231 ± 0.195 0.192 (0.000) /
9 Linear regression 0.116 ± 0.099 0.089 (0.120) 0.746

MedAE, median absolute error.

Table 3. Prediction Performance on the Testing Set Without Using the Corneal Power as an Input

Index Method
Number
of Patients

MAE in
mm ± SD

MedAE in mm
(Interquartile Range) R2

1 Base − K without prior refractive surgery 169 0.123 ± 0.109 0.093 (0.124) 0.711
2 Base − K with prior refractive surgery 78 0.129 ± 0.096 0.110 (0.145) 0.743

The testing set used for “Base−Kwithout prior refractive surgery”was the same as the that in Table 2. And a separate testing
set was used for “Base − K with prior refractive surgery” (see details in Methods). MedAE, median absolute error.

The Friedman test for difference in MAE among the
methods in Table 2 was significant (P< 0.01). The Base
predictors, which included preoperative biometry and
patient sex, achieved an MAE of 0.106 mm. Adding
the IOL improved the prediction performance in the
test set (MAE = 0.105 mm). Base and Base + IOL
significantly outperformed Haigis, Hoffer Q, Holladay
I, Olsen, SRK/T, and mean postoperative ACD, based
on the post hocWilcoxon signed rank test with Bonfer-
roni correction (P< 0.01).When the corneal power was
not included (Base − K), which simulates the scenario
when the measured corneal power is not reliable,
our method maintained good performance, with an
MAE = 0.123 mm. The performance of Base − K
still significantly outperformed the existing five formu-
las (P < 0.01). When we tested the Base − K model
on patients with prior refractive surgery (Table 3), the
MAE was 0.129 mm, and this result was not signif-
icantly different compared with the performance of
Base − K for patients with no history of refractive
surgery (P = 0.13).

The performance of our methods and the linear
regression method on training datasets of varying size
is shown in Figure 3. The result demonstrates that
the performance attained by our Base method on
the testing set continued to improve as the dataset
grew to 100% of the available data. On the contrary,
the improvement of the linear regression method
plateaued at around 60% of the available data. The

Figure 3. Testing set performance (MAE of postoperative ACD
prediction in mm) of the linear regression method (dashed line) and
our Base method (Base = Biometry + Patient sex) (solid line).

above result indicates that the large set of paired preop-
erative and postoperative biometry provided a signifi-
cant benefit to our machine learning model and that
its performance may continue to improve as more data
become available.

Feature importance in the Base model and Base
model with IOL power is shown in Figure 4. ACD, LT,
and WTW ranked highly in both models. IOL power
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Figure 4. Feature importance in the Base model and Base + IOL model, measured by the percentage of total gain.

achieved a high importance score when it was added
into the model (Fig. 4B).

Discussion

We have presented here a machine learning
approach to predicting postoperative ACD in cataract
surgery using standard preoperative optical biometry
measurements. To develop this method, we built, to our
knowledge, the largest optical biometry dataset involv-
ing both preoperative and postoperative measurements
reported to date. We found, through sampling of
subsets of this dataset of varying size, that the perfor-
mance of our machine learning method for predicting
postoperative ACD improved substantially as the
dataset size grew, while the performance of linear
regression plateaued at 60% of the available data.
This finding underscores the potential of our machine
learning method to continue to improve as the dataset,
derived from the SOURCE data repository, continues
to grow.

We found that even a linear regression approach
to modeling postoperative ACD achieved perfor-
mance better than that of previously reported methods
(including Haigis, Hoffer Q, Holladay I, Olsen, and
SRK/T) both in terms of the mean absolute error
and the Pearson correlation (r). The performance of

linear regression on our biometry dataset also exceeded
that of previously reported AS-OCT methods by R2

value.6 Because lens constants were optimized individ-
ually before the predictions of each of the aforemen-
tioned formulas were computed, the high performance
of linear regression relative to existing methods was
likely due to the size of the dataset of available, as
well as the use of optical biometry to directly measure
postoperative IOL position, as opposed to ultrasound
biometry or ELP calculations. The existing formulas
considered here use a thin lens assumption, wherein
the intermediate value referred to as the ACD does not
represent the position of either surface of the IOL, but
rather the location of the principal plane.5 Therefore
the estimated ACD terms in these formulas can more
accurately be described as providing information about
the ELP within the optical models employed by those
IOL power calculation formulas. As such, they are not
ideal for prediction of the true postoperative anatomy
of the eye of a cataract surgery patient.

By using a gradient boosting machine learning
algorithm, we were able to significantly improve
ACD prediction performance beyond that of linear
regression and existing ACD prediction formulas.
Our method also outperformed methods using more
involved measurement techniques such as AS-OCT.7,16
Evaluation of feature importance demonstrated that
preoperative ACD was the most important input
parameter, followed by crystalline LT, AL, and
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horizontal WTW, respectively. Inclusion of patient sex,
which is not typically used in methods of postoperative
ACD prediction, in the model was found to improve
performance (Supplementary Figure S2). This finding
was consistent with prior studies of patient biome-
try reporting consistent differences in ocular shape
between male and female patients, with female corneal
powers measuring greater and axial lengths measuring
shorter than those of males on average.17,18

To enhance performance of our gradient boost-
ing machine learning approach, we included biome-
try measurements for the same eye taken at multiple
preoperative and postoperative time points. The varia-
tions in the biometry measurements among different
records reflect the margin of error of optical biometry
measurements, as well as the natural increase in lens
thickness and concomitant reduction in preoperative
anterior chamber depth over time.

One of the data augmentation methods used
involved modeling IOL thickness based on IOL
power to account for potential variations in postop-
erative ACD because of the thickness of the IOL
used. This augmentation method used the linear
relationship between the IOL power and the IOL
thickness shown in Figure 2B. Variations in lens
thickness measurements for a given IOL power are
also depicted in Figure 2B, and could be caused by:
(1) tilt and decentration of the IOL, (2) variations
in the production of the lens, and (3) trace resid-
ual or proliferative lens material, which could affect
the detection of the surfaces of the IOL. Despite
these variations, the data augmentation method
presented here resulted in improvements in cross-
validation performance (Supplementary Fig. S2).
The performance enhancement seen with the IOL
thickness adjustment method indicates that IOL
thickness is indeed relevant to postoperative ACD.
It further indicates that customized IOL thickness
modeling should be included in methods for postop-
erative ACD prediction depending on the model of
IOL intended for use in the patient’s preoperative
plan.

Because of challenges in accurately assess-
ing corneal power in postrefractive surgery
patients, we investigated a keratometry-independent
(K-independent) approach to the prediction of postop-
erative ACD as well. Our method outperformed a
previously reported method for K-independent predic-
tion of ACD19 and may be applicable in new methods
for IOL power calculation in patients with prior
refractive surgery. Performance of this K-independent
model was not significantly different for patients
with or without prior refractive surgery, indicating its
applicability to the postrefractive surgery population.

The limitations of our study include the use of a
retrospective, rather than prospective, dataset. It was
not possible to compare our method for ACD predic-
tion to those of the Barrett Universal II or Holladay
2 formulas, as the ACD predictions of these formulas
are not publicly available. An additional limitation of
our study is that although a hold-out testing set was
used, it was composed of data obtained at the same
institution. Building a separate testing set external to
our institution would provide additional validation of
our method and will be a future direction of this work.
The presented models were developed using the Alcon
SN60WF lens because of the high frequency of its
use at our institution, however, the extension of our
approach to other IOLs will be a future direction of
this work through the expansion of the SOURCE data
repository.

The method presented here for the prediction of
postoperative ACD has the potential to be integrated
into methods for IOL power calculation. Both geomet-
rical optics and ray-tracing methods for IOL power
calculation rely on some form of prediction of postop-
erative IOL position, and could benefit from the
accuracy of the approach presented here. Because
feature engineering is an important part of optimiz-
ing machine learning methods, and postoperative
ACD is known to be a useful predictor in tradi-
tional methods of IOL power calculation, it is possi-
ble that postoperative ACDmay be a useful feature for
machine learning approaches to IOL power calculation
as well.

In summary, the machine learning method
presented here for predicting postoperative ACD
in cataract surgery has the potential for integration
into novel methods for IOL power calculation, both in
standard and postrefractive surgery cases.
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