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Abstract

Asthma and rhino-conjunctivitis are common chronic diseases in childhood. In this cross-sectional study, we performed a
gene association analysis with current asthma and rhino-conjunctivitis in a cohort of Sicilian children aged 10–15 years.
Overall, our findings reveal the importance of different genetic variants at 4p14, 16p12.1, 17q12, 6p12.2 and
17q21.1, identifying possible candidate genes responsible for susceptibility to asthma and rhino-conjunctivitis.
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To the Editor,
Asthma and rhino-conjunctivitis (RC) are common

diseases worldwide that are frequently associated. Observed
differences in prevalence of asthma and RC may be ex-
plained by genetic susceptibility, though environmental
factors play a relevant role [1]. In order to increase genomic
information on Sicilian children, this research has explored
some genetic variants to discover possible association with
asthma and RC.
A representative sample of 1050 children within the

“Palermo Junior High School” (PJHS II) [2] study were
investigated through questionnaires, spirometry, and skin
prick test (SPT) to quantify the prevalence of asthma and
RC, in association with allergic sensitization and respiratory
function, and to evaluate the role of environmental and
host risk factors for allergic respiratory diseases. The study
was approved by the local Institutional Ethical Committee.
All parents of the enrolled children signed a written
informed consent.
Two different phenotypes were identified: Current

Asthma (CA) defined as asthma ever plus at least a
wheeze episode in the last 12 months, RC defined as
sneezing, or runny, or blocked nose apart from common

cold or flu in the last 12 months and nose problem ac-
companied by itching and/or watering eyes. The con-
comitant presence of CA and RC was merged into the
CA group; children without CA and RC (nAnRC) were
used as controls.
A total of 52 Single Nucleotide Polymorphisms (SNPs),

involved in the innate immune system pathways were
selected for genotyping by Matrix-Assisted Laser Desorp-
tion/Ionization (MALDI-TOF-MS). Out of the 52 initially
selected SNPs, 7 were complete drop-outs and the
remaining SNPs were successfully genotyped. The indi-
viduals were genotyped with the Illumina Bead-Chip
(Illumina Inc., San Diego, CA, USA); the PLINK v1.07
software was used to perform standard quality control.
SNPs were excluded if they had low call rates (proportion
of genotyped called < 90%), were not in Hardy-Weinberg
equilibrium (HWE, p < 0.001) on the nAnRC subjects, or
had a low minor allele frequency (MAF < 1%). A total of
22 SNPs were used for further analyses.
Mean values were compared among children with CA,

RC and nAnRC using the analysis of variance (ANOVA).
Differences of categorical variables were evaluated using
Chi-squared test. Associations between single SNPs and
CA and RC were analysed by applying the case/control
model of the SNPassoc R package, adjusting for sex, age,
body mass index (BMI), SPT+ (at least one positive),
exposure to current environmental tobacco smoke and
traffic.
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The demographic and lung function characteristics of
the 1050 subjects are shown in Table 1. The study sample
was composed by 523 (49.8%) Female and 527 (50.2%)
Male, aged 12.07 ± 0.74 years on average. Subjects were
categorized into CA (n = 61), RC (n = 184) and nAnRC
(n = 805). Subjects with CA and RC more frequently
had SPT+; subjects with CA were younger than nAnRC
and RC subjects.
Chromosome, gene, SNP name, quality control tag, al-

leles coding (Major/minor), minor allele frequency (MAF),
test for Hardy-Weinberg Equilibrium, percentage of miss-
ing values (%) and genotyping distribution are reported in
Table 2.
By applying the case/control model, no SNP reached the

Bonferroni corrected significance threshold (P value <
0.002, i.e., 0.05/#tests), and only one SNP reached the
Bonferroni corrected suggested significance threshold
(P value < 0.005, i.e., 0.10/#tests). However, we also in-
cluded those SNPs reaching the nominal significance
threshold (P value < 0.05) just to highlight modest associa-
tions with the two studied phenotypes. CA was strongly
associated only with rs4252665 and modestly with
rs1801275 and rs17616434; RC was modestly associated
with rs7741835, rs8079416, rs3859192, rs3894194 and
rs7212938. Table 3 shows the genotypic frequencies of

the associated SNPs in CA/RC and nAnRC groups, and
the adjusted OR and 95% CI from the logistic regres-
sion model for the only SNP strongly associated. The
SNP rs4252665 showed significantly different genotypic
frequencies between the two groups, i.e., the CA sub-
jects had a high frequency of CT heterozygote genotype
compared with nAnRC, which were mostly homozy-
gous. Indeed, using the overdominant genetic model, in
which the baseline is the homozygous genotype (CC/
TT), the CT genotype of rs4252665 showed a large in-
creased risk of CA (ORC/T = 5.75; 95% CI = 2.03–16.29).
The SNPs modestly associated with CA showed a high
frequency of the major allele homozygote genotype com-
pared with nAnRC, in which the genotypes were mostly
characterized by the presence of the minor allele. Further-
more, with respect to nAnRC, SNPs modestly associated
with RC showed small variations in the genotypic fre-
quencies. In particular, the SNPs rs8079416, rs7741835
and rs3894194 showed high frequencies of heterozy-
gote genotypes compared with nAnRC, which are fre-
quently homozygous, whilst the SNPs rs7212938 and
rs3859192 had high frequencies of the minor allele
homozygote genotypes compared with nAnRC, in
which genotypes are characterized by the presence of
the major allele.

Table 1 Baseline demographic and clinical characteristics of study population

nAnRC
n = 805 (76.7%)

CA
n = 61 (5.8%)

RC
n = 184 (17.5%)

p-value

Female, n (%) 390 (48.45) 29 (47.54) 104 (56.52) 0.133

Age, mean (SD) 12.06 (0.74) 11.90 (0.62) 12.18 (0.74) 0.025

Height, mean (SD) 152.58 (7.87) 151.52 (7.81) 153.51 (7.41) 0.168

Weight, mean (SD) 49.05 (12.07) 50.11 (12.65) 50.28 (13.52) 0.417

BMI (kg/m2), mean (SD) 20.92 (4.28) 21.62 (4.15) 21.16 (4.78) 0.426

Skin Prick Test +, n (%) (#) 274 (34.16) 43 (70.49) 76 (41.30) < 0.001

Environmental exposure current

Tobacco smoke, n (%) 440 (54.93) 27 (44.26) 107 (58.15) 0.167

Traffic in the zone of residence, n (%) 627 (77.99) 41 (67.21) 134 (72.83) 0.071

Mould/dampness, n (%) 108 (13.47) 7 (11.67) 31 (17.03) 0.396

Spirometric values*

FEV1%predicted, mean (SD) 100.39 (11.80) 96.96 (12.68) 98.82 (11.34) 0.035

FEV1 Z, mean (SD) 0.04 (1.02) −0.26 (1.09) −0.09 (0.98) 0.037

FVC %predicted, mean (SD) 97.10 (13.29) 97.60 (13.63) 95.51 (12.44) 0.304

FVC Z, mean (SD) −0.27 (1.14) −0.22 (1.17) − 0.40 (1.07) 0.314

FEV1/FVC % predicted, mean (SD) 103.28 (7.57) 99.17 (8.11) 103.33 (7.89) < 0.001

FEV1/FVC Z, mean (SD) 0.60 (1.21) −0.04 (1.20) 0.60 (1.25) < 0.001

FEF25–75%predicted, mean (SD) 102.10 (22.19) 89.17 (21.67) 101.76 (23.98) < 0.001

FEF25–75 Z, mean (SD) 0.05 (0.98) −0.55 (1.02) 0.02 (1.05) < 0.001

CA current asthma, RC rhino-conjunctivitis, nAnRC not asthma and not rhino-connjunctivitis
# according to Allergy diagnostic testing: an updated practice parameter (2008); allergic sensitization was defined as at least one positive skin prick test (SPT)
*according to ATS/ERS guidelines and normalized in accordance with the Global Lungs Initiative 2012
p-values come from Pearson’s test for categorical variable or ANOVA test for mean comparison; bold values indicate significance (p-values < 0.05)
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Table 2 Characteristics of the 52 Single Nucleotide Polymorphisms (SNPs)

Chr Gene SNP name QC Alleles (M/m) MAF HWE p values Missing (%) GENO (AA/Aa/aa)

1 SELE rs5361 – T/G 9.9 0.005 5.4 814/161/18

2 ORMDL1 rs5742940 – G/A 1.8 0.028 1.0 1004/33/2

3 CACNA2D2 rs12488468 LCR G/T 48.2 0.014 25.9 187/432/159

3 DOCK3 rs76699816 HWEd G/A 11.6 < 0.001 8.7 779/138/42

4 TLR1 rs17616434 – T/C 47.1 0.020 5.6 295/459/237

4 TLR1 rs2101521 HWEd/LCR G/A 34.4 < 0.001 15.6 444/274/168

4 TLR1 rs4833095 HWEd T/C 48.4 < 0.001 7.1 292/422/261

4 TLR1 rs5743595 HWEd A/G 30.5 < 0.001 5.8 506/363/120

4 TLR10 rs10004195 HWEd/LCR T/A 46.2 < 0.001 11.0 309/387/238

4 TLR10 rs4274855 LCR C/T 29.4 1.000 22.5 408/334/72

4 TLR2 rs11736691 GF – – – 100.0 –

4 TLR6 rs1039560 – T/C 33.4 0.126 3.3 455/442/118

4 TLR6 rs5743789 HWEd/LCR A/T 29.5 < 0.001 19.8 460/268/114

5 IL13 rs1800925 – C/T 18.4 0.721 4.6 668/300/34

5 IL13 rs1881457 – A/C 18.4 0.720 2.8 681/305/35

5 IL13 rs20541 HWEd G/A 14.5 < 0.001 7.1 734/200/41

6 IL17 rs7741835 – C/T 19.4 0.371 5.0 659/291/48

9 DMRT1 rs3812523 – A/G 15.6 0.074 3.4 733/245/36

9 IL33 rs1342326 – A/C 21.8 0.174 3.5 627/331/55

9 IL33 rs928413 – A/G 30.8 0.397 4.3 486/418/101

11 ANO9 rs7482596 HWEd G/T 13.3 < 0.001 4.2 770/205/31

11 ANO9 rs7484182 HWEd T/C 14.1 < 0.001 4.1 758/215/34

11 DHCR7 rs1044482 GF – – – 100.0 –

11 GST-P1 rs1695 HWEd A/G 29.9 < 0.001 6.2 521/338/126

11 NADSYN1 rs2186777 – A/C 26.7 0.014 4.5 553/365/85

11 SIGIRR rs4074794 HWEd G/A 19.5 < 0.001 6.3 659/266/59

12 IRAK3 rs1152918 – C/T 6.9 0.295 2.1 893/128/7

12 IRAK3 rs2701652 – G/C 22.0 0.256 4.1 620/330/57

12 ORMDL2 rs7954619 GF – – – 100.0 –

16 IL4R rs1801275 – A/G 16.0 0.001 4.7 722/237/42

16 IL4R rs1805012 HWEd T/C 5.8 < 0.001 2.6 916/96/11

16 IL4R rs3024548 HWEd/LCR C/G 46.4 < 0.001 13.0 314/351/249

17 ERBB2 rs1058808 – G/C 30.6 0.009 6.8 495/369/115

17 ERBB2 rs1136201 HWEd A/G 13.8 < 0.001 4.1 767/203/37

17 ERBB2 rs2934971 GF – – – 100.0 –

17 ERBB2 rs2952155 GF – – – 100.0 –

17 ERBB2 rs4252665 – C/T 1.7 0.137 1.6 999/33/1

17 GSDMA rs3859192 – C/T 37.9 0.028 6.5 398/423/161

17 GSDMA rs3894194 – G/A 41.6 0.005 5.3 359/442/193

17 GSDMA rs7212938 – T/G 44.2 0.039 4.8 326/463/211

17 GSDMB rs2305479 – C/T 42.0 0.166 1.9 355/485/190

17 GSDMB rs2305480 – G/A 40.2 0.088 3.8 371/466/173

17 GSDMB rs7216389 HWEd T/C 42.2 < 0.001 6.6 359/416/206

17 LRRC3C rs8065126 HWEd/LCR C/T 38.3 < 0.001 12.5 386/362/171
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The detected association signals for CA were located
within the Toll-like receptor (TLR1) on chromosome 4, the
interleukin 4 receptor (IL4R) on chromosome 16 and the
Erb-b2 receptor tyrosine kinase 2 (ERBB2) on chromosome
17. It is known that Toll-like receptors (TLRs) represent a
major group of receptors for the specific recognition of
pathogen-associated molecular patterns of microbes cap-
able of activating innate and adaptive immunity that reduce
the risk for asthma [3]. The IL4R gene is known to encode
a protein that regulates IgE production and it has been
shown that allelic variations in this gene are associated with
atopy, allergic rhinitis and asthma [4]. Recently, some loci
of ERBB2, which belong to the encoding region 17q12, have
been reported to be in linkage disequilibrium with loci in
the region 17q21 encoding gasdermin A (GSDMA) gene,
previously associated with childhood asthma [5–7].

With regard to the RC, the modestly associated genes
were interleukin 17 (IL17) on chromosome 6, leucine
rich repeat containing 3C (LRRC3C), and GSDMA on
chromosome 17. IL17 is a pro-inflammatory cytokine
that targets epithelial cells48 and its expression in the
nasal mucosa has been associated with allergic rhinitis
and its degree of severity [8, 9]. To our knowledge, no
functional studies have been published on LRRC3C, al-
though, within the human genome, the gene LRRC32
has been associated with eczema and allergic rhinitis
[10], and probably some similarities between the two
proteins encoded by LRRC3C and LRRC32 exist. Fi-
nally, GSDMA gene has been associated with childhood
asthma and allergic disease in many populations. In
particular, region 17q21 has been originally identified in
the first GWAS on childhood asthma [6], and GSDMA

Table 2 Characteristics of the 52 Single Nucleotide Polymorphisms (SNPs) (Continued)

Chr Gene SNP name QC Alleles (M/m) MAF HWE p values Missing (%) GENO (AA/Aa/aa)

17 LRRC3C rs8079416 – T/C 45.2 0.013 4.5 315/469/219

17 MAP2K3 rs10468608 HWEd/LCR C/T 30.2 < 0.001 19.8 462/251/129

17 MAP2K3 rs2363226 GF – – – 100.0 –

17 MAP2K4 rs3760201 HWEd/LCR A/G 32.9 < 0.001 34.6 343/236/108

17 ORMDL3 rs8076131 HWEd/LCR A/G 40.7 < 0.001 15.9 333/382/168

17 PGAP3 rs1495102 HWEd/LCR C/T 14.0 < 0.001 17.7 697/92/75

17 ZPBP2 rs11557467 GF – – – 100.0 –

X IRAK1 rs1059703 HWEd A/G 25.5 < 0.001 4.2 679/140/187

Chr chromosome, MAF minor allele frequency, GF genotyping failing, LCR low call rate, HWEd deviation from the Hardy-Weinberg equilibrium; A: major allele; a:
minor allele; bold values indicate significance (p-values < 0.001)

Table 3 Genotypic frequencies of the associated SNPs in CA/RC and nAnRC groups

Gene Region SNP name Alleles Group AA (%) Aa (%) aa (%) OR (95% CI)

TLR1 4p14 rs17616434 T/C nAnRC 29.4 45.6 25.0 –

CA 42.4 44.1 13.5

IL4R 16p12.1 rs1801275 A/G nAnRC 71.0 24.5 4.5 –

CA 80.0 20.0 0.0

ERBB2 17q12 rs4252665 C/T nAnRC 97.4 2.5 0.1 5.75 (2.03–16.29)

CA 90.2 9.8 0.0

IL17 6p12.2 rs7741835 C/T nAnRC 64.3 31.2 4.5 –

RC 69.1 25.5 5.4

LRRC3C 17q21.1 rs8079416 T/C nAnRC 32.8 45.0 22.2 –

RC 33.9 42.4 23.7

GSDMA 17q21.1 rs7212938 T/G nAnRC 34.1 45.4 20.5 –

RC 32.8 41.4 25.8

GSDMA 17q21.1 rs3859192 C/T nAnRC 42.2 42.6 15.2 –

RC 40.7 40.7 18.6

GSDMA 17q21.1 rs3894194 G/A nAnRC 37.9 43.3 18.8 –

RC 39.0 37.3 23.7

A: major allele; a: minor allele
Adjusted odds ratios (OR) and 95% confidence interval (CI) of the logistic regression models
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variants were suggested to be strong risk factors for
asthma and airway inflammation [7].
Overall, our findings reveal the importance of different

genetic variants at 4p14, 16p12.1 17q12, 6p12.2 and
17q21.1, identifying possible candidate genes responsible
for CA and RC in the Sicilian child population. These
results are a preliminary step in understanding the
pathophysiology of asthma and rhino-conjunctivitis in a
paediatric population in the Mediterranean area and
need to be verified by further studies using more ad-
vanced technologies. Furthermore, novel methodologies
combining genome-wide association study (GWAS; [11])
and expression quantitative trait locus (eQTL [12]) such
as summary-data based Mendelian randomization (SMR;
[13]), PrediXcan [14], MetaXcan [15], would be useful in
discovering new genetic variants linked to these allergic
respiratory diseases in this geographic area. Unlike trad-
itional single-variant tests, these innovative approaches
based on SNP-gene linkage will provide valuable insights
on disease causality. Noteworthy, the integrative analysis
of GWAS and eQTL studies, by identifying gene-trait-as-
sociated changes in the expression, would mitigate some
tasks associated with a GWAS approach, allowing the dis-
cover of genetic variants which can affect gene expression
[16]. Moreover, since some gene functions are often pleio-
tropic, this combined approach would allow a better com-
prehension of the pathways through which pleiotropy can
affect clinical phenotypes.
In conclusion, the present study could facilitate the ap-

plication of novel therapeutics and preventive strategies
arising from the genomics era of precision medicine.
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