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In the thymus, the α-β T cell receptor repertoire 
is subjected to selection events regulated by dis-
tinct thymic stromal cells (1). After positive selec-
tion by cortical epithelial cells (cTECs), thymocytes 
up-regulate CCR7, migrate to the medulla, and 
are subjected to negative selection (2). In the 
medulla, thymocytes interact with a specialized 
subset of medullary epithelium (medullary thymic 
epithelial cells [mTECs]) (3) expressing costimu-
latory molecules and self-tissue–restricted anti-
gens (TRA), the latter regulated in part by Aire, a 
transcription factor defective in the autoimmune 
disease autoimmune polyendocrinopathy candi-
diasis extrodermal dystrophy (4). In Aire−/− 
mice, loss of TRAs correlates with the onset of 
multiorgan autoimmunity (4), and loss of a single 
TRA, interphotoreceptor-binding protein, trig-
gers eye-specifi c autoimmunity (5). Importantly, 
this phenotype maps to a thymic epithelial cell 
(TEC) defect (4), underlining the importance of 
Aire+ mTECs in maintaining self-tolerance. De-
spite their key role and the recent identifi cation 

of bipotent progenitors for cTECs and mTECs 
(6), the developmental pathways and mecha-
nisms regulating development of Aire+ mTECs 
from this progenitor pool remain unclear. Here, 
we show that CD80+Aire+ mTECs derive from 
CD80−Aire− progenitors as a result of RANK-
mediated signals from a previously unreported 
intrathymic CD4+3−RANKL+ lymphoid tissue 
inducer (LTi) population, and that RANK de-
fi ciency in TECs promotes the onset of autoim-
munity. Collectively, our data defi ne a novel role 
in thymus for CD4+3− inducer cells that to date 
have been associated with the development and 
function of secondary lymphoid tissue, and for 
the fi rst time identify RANK as a key regulator 
of central tolerance.

RESULTS AND DISCUSSION

Haemopoietic cells regulate mTEC development

Ly51−EpCAM1+ mTECs (7) can be subdivided 
into CD80− and CD80+ subsets (Fig. 1 A), and 
quantitative PCR (qPCR) (8) analysis of purifi ed 
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CD80+ and CD80− mTECs shows Aire is associated with 
CD80+ mTECs (Fig. 1 A and reference 7), as are the Aire-
dependent TRAs (4) salivary protein (SP)1 and SP2 (not 
depicted). Whether CD80−Aire− and CD80+Aire+ cells 
represent distinct mTEC lineages, or maturational states within 
a single mTEC lineage, is unclear (1, 9). To determine their 
developmental relationship, we examined their appearance in 
ontogeny. Early in development, mTECs are largely CD80−, 
with CD80+ mTECs appearing later (Fig. 1 B), consistent 
with a precursor–product relationship. To address this directly, 
purifi ed Ly51−EpCAM1+CD80− mTECs (Fig. 1 B) from 
7-d H-2b fetal thymus organ culture (FTOC) were mixed 
with disaggregated fetal thymus suspensions from MHC-
 mismatched H-2d embryos at a 1:5 ratio. Chimeric reaggregate 
thymus organ cultures (RTOCs) were cultured for 2 d, dis-

aggregated, and analyzed by fl ow cytometry. Fig. 1 C shows 
the introduced IAb+ donor-derived cells persist over this 
period, and in contrast to the outset of culture when intro-
duced mTECs were CD80− (Fig. 1 B), a proportion of IAb 
donor-derived mTECs are CD80+. These fi ndings identify a 
pre cursor–product relationship within mTECs, consistent with 
the notion that Aire+CD80+ mTECs are generated from 
CD80− progenitors.

To study the mechanisms regulating maturation of 
CD80− mTEC progenitors into Aire+ mTECs, and as stud-
ies have implicated haemopoietic cell crosstalk in mTEC 
development (10), we compared mTECs in FTOC and 
2-deoxyguanosine (dGuo) FTOCs, the latter to selectively 
eliminate haemopoietic cells (11). Although CD80− mTECs 
are detectable in both untreated and dGuo FTOC, the latter 
lack CD80+ mTECs (Fig. 1 D). Furthermore, dGuo FTOC 
lack expression of Aire and Aire-dependent TRAs SP1 
and SP2 (Fig. 1 E), consistent with the absence of CD80+ 
mTECs. Together with lineage analysis (Fig. 1 C), this 
suggests that a dGuo-sensitive cell regulates Aire+CD80+ 
mTEC maturation.

CD4+3- LTi cells regulate mTEC development

We next devised experiments to identify the haemopoietic 
cell regulating mTEC development. In agreement with ear-
lier studies, mTECs from Rag1−/− mice express mRNA for 
Aire and Aire-dependent TRA (3, 12, 13, and unpublished 
data), suggesting that T cell development beyond the DN3 
stage is not required for mTEC development. In secondary 
lymphoid tissues, CD4+3− LTi cells have been shown to be 
key regulators of stromal cells, and we recently identifi ed 
their role in maintaining CCL21 expression (14) by interact-
ing with podoplanin+ T-zone stroma (15). In line with a re-
cent review by Derbinski and Kyewski (13), we wondered if 
a similar situation might operate in thymus, as CCR7 ligands 
regulate thymocyte migration to the medulla (2) where podo-
planin+ stromal cells exist (16). Analysis of fetal and adult 
Rag1−/− mice revealed that CD4+3− LTi identical to those 
found in peripheral lymphoid organs were present in thymus, 
and confocal analysis demonstrated their close association 
with Aire+ mTECs (Fig. 2 A). Moreover, FTOCs initiated 
from E14 and E16 thymus contained CD4+3− LTi that lack 
CD8, B220, and CD11c (Fig. 2 B), showing that LTi cells are 
present in thymus at a time that correlates with the appear-
ance of Aire+CD80+ mTECs (Fig. 1 B) and induction of 
Aire expression (12). Analysis of LTi cells in adult thymus 
(Fig. 2 C) showed expression of the TNF ligands OX40L and 
CD30L (17), RANKL, and IL7Rα, as seen by adult splenic 
LTi (Fig. 2 D). PCR analysis showed thymic LTi lack expres-
sion of Rag-1, but express RORγt (unpublished data), a gene 
expressed by LTi cells in developing secondary lymphoid 
tissue (18). Collectively, these observations identify LTi cells 
in fetal and adult thymus which possess key hallmarks of LTi 
cells in secondary lymphoid tissue (17–20).

The close association of LTi cells with mTECs raised the 
possibility that they play a role in regulating maturation of 

Figure 1. Haemopoietic cells regulate mTEC development. 

EpCAM1+Ly51− mTECs in 7 d FTOCs (A) can be subdivided into CD80− 

and CD80+ subsets. qPCR anaysis shows mRNA for Aire is abundant in CD80+ 

mTECs (black bar) compared with CD80− mTECs (white bar). The left graph 

in B shows percentages of CD80− mTECs (■) and CD80+ (▲) mTEC subsets 

within the total mTEC population, calculated after fl ow cytometric analysis 

of digested thymuses of the indicated ages. H-2b CD80− mTECs, shown by 

FACS (B) to lack surface CD80 expression and by PCR to lack CD80 mRNA 

(black bars, CD80+ mTEC; white bars, CD80− mTECs), were used to make 

RTOCs with H-2d thymus suspensions. RTOCs were analyzed for I-Ab (C, left), 

Ly51, EpCAM1, and CD80 expression after 2 d. Gating on I-Ab+ mTECs (C, right) 

shows CD80− mTECs have generated CD80+ mTECs. Analysis of mTECs in 

FTOCs or dGuo-treated FTOCs (D) shows absence of the CD80+ mTEC subset 

in dGuo FTOCs. qPCR analysis (E) shows Aire, SP1, and SP2 expression in 

mTECs from FTOCs (black bars) but not dGuo-treated FTOCs (white bars).
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Aire+ mTECs. Although previous analysis of Rag−/− mice 
suggested that CD4−8− thymocytes play a role in induction 
of Aire (12), the presence of LTi cells in the Rag−/− thymus 
(Fig. 2 A) highlights these cells as candidates in regulating 
mTEC development. To test this, LTi cells were isolated 
from E15 fetal spleen (14, 19) to avoid potential contamination 
by thymic stroma and were used to make RTOCs by mixing 
with dGuo-treated thymic stroma lacking Aire+CD80+ 
mTECs (Fig. 1, D and E). Importantly, apart from macro-
phages, dGuo treatment removes all haemopoietic cells, includ-
ing LTi cells (11 and unpublished data). After 5 d, RTOCs 
were harvested and analyzed by qPCR. Fig. 2 E shows that 
unlike RTOCs made from dGuo-treated stroma alone, 
RTOCs of dGuo-treated stroma and LTi cells contained 
readily detectable levels of Aire, SP1, SP2, and CD80 mRNA 
(Fig. 2 E). In contrast, RTOCs initiated from dGuo stroma 
and CD4+8+ thymocytes (that give rise to mature thymo-
cytes [11]) lacked Aire, SP1, and SP2 expression and showed 

little induction of CD80 expression (Fig. 2 E), indicating the 
specifi city of the eff ect of LTi cells. Thus, CD4+3− LTi cells 
are found within the thymic medulla associated with Aire+ 
mTECs and are suffi  cient to induce Aire and CD80 expression 
and expression of Aire-dependent TRA.

RANK–RANKL signals from LTi cells regulate 

mTEC development

We next analyzed the molecular mechanism by which LTi 
cells induce development of Aire+ mTECs. As Aire is fi rst 
expressed in fetal thymus (12) when LTi cells lack OX40L 
and CD30L (19), it seems unlikely these molecules would be 
required for initial development of Aire+ mTECs. Both fetal 
and adult LTi cells express lymphotoxin α (LTα) (18–20), 
and other studies have implicated LTα in Aire+ mTEC 
 development (21). However, our analysis shows CD80+ 
mTECs are present in both LTα−/− (22) and WT mice (Fig. 3, 
A and B). Moreover, analysis using an anti-Aire antibody that 
does not stain Aire−/− tissue (23) shows that Aire+ mTECs 
are present at a similar frequency in WT and LTα−/− mice 
(Fig. 3, C–E). In addition, similar levels of Aire-dependent 
TRAs, SP1 and SP2 mRNA, were found in both WT and 
LTα−/− mice (unpublished data). Although the reason for 
this discrepancy is unclear, it is interesting that while Boehm 
et al. (24) showed a reduction in CD80+ mTEC frequency 
in LTβR−/− mice, they reported normal Aire expression, 
which correlates well with the normal frequency of Aire+ 

Figure 2. CD4+3− LTi cells regulate mTEC development. Thymic 

sections of 4-wk-old Rag1−/− mice (A, left) were stained with antibodies 

to mTECs (ERTR5, red), CD4 (green), CD3 (white), and CD11c (blue). In the 

right panel of A, sections were stained for Aire (red), CD4 (green), and 

keratin5+ mTECs (blue). In both cases, CD4+3− cells appear green. Bars, 

5 μm. Flow cytometry of cells harvested from FTOCs from E14 and E16 

WT embryos (B) shows CD4+3− cells that lack expression of CD8, CD11c, 

and B220, whereas CD4+3− cells from adult thymus (C) express OX40L, 

CD30L, IL-7Rα, and RANKL in a manner comparable to splenic CD4+3− 

cells (D). Shaded histograms are staining controls. E shows qPCR analysis 

of mTECs in RTOCs initiated from either dGuo-treated stroma alone 

(vertical bars), or with added CD4+3− LTi cells (E, black bars) or CD4+8+ 

thymocytes (E, hatched bars). Expression levels in unmanipulated FTOCs 

are shown for comparison (E, white bars.)

Figure 3. Aire+ mTECs are present in LT𝛂−/− mice. Stroma-enriched 

adult thymus digests from WT (A) and LTα−/− mice (B) were stained with 

antibodies to CD45, EpCAM1, Ly51, and CD80. Data are gated on 

CD45−Ly51− cells. Sections of WT (C) and LTα−/− (D) adult thymus were 

stained for keratin 5 (green) and Aire (red). The bottom two panels show 

higher power magnifi cation. Bars: (C and D, top) 20 μm; (C and D, bot-

tom) 5 μm. E shows quantitation of Aire+ mTECs in sections of WT and 

LTα−/− mice. Student’s t test was run to determine the p-value, which 

was not signifi cant.



1270 CD4+3− CELLS AND THE THYMIC MEDULLA | Rossi et al. 

mTECs in LTα−/− mice shown here. Thus, although LTα-
LTβR signaling may infl uence some aspects of mTEC devel-
opment, such interactions are not essential for Aire+ mTEC 
development.

Studies on LTi cells in lymph node development show 
that interactions between the cell surface receptor RANK 
and its ligand RANKL (also known as TRANCE) are im-
portant (25, 26). RANKL is expressed by both thymic 
(Fig. 2) and splenic LTi cells (20), but not by thymocytes 
(Fig. 4 B). Mice lacking TRAF6, a downstream mediator 
of RANK signaling, lack Aire+ mTECs (27), yet the TNF-R 
responsible for their absence was not identifi ed. Analysis of 
cTECs and mTECs shows that the latter express higher 
levels of RANK mRNA (Fig. 4 A), indicating mTECs may 
be responsive to RANKL. To obtain direct evidence that 
RANK–RANKL interactions regulate development of 
Aire+CD80+ mTECs, dGuo FTOCs that lack this popula-
tion (Fig. 1, D and E) were cultured for 2 d with either 
RANKL or an agonistic antibody to RANK, disaggregated, 
and analyzed for the presence of CD80+ mTECs and Aire 

expression. Importantly, treatment of dGuo FTOC with 
either anti-RANK or RANKL induced the appearance of 
CD80+ mTECs (Fig. 4 C), mRNA for Aire, and to a lesser 
extent, SP1 and SP2 (Fig. 4 D), the latter perhaps refl ecting 
the short-term (2 d) period of stimulation and the require-
ment for initial Aire-dependent transcription of these TRAs. 
Collectively, these fi ndings provide direct evidence that 
RANK signaling can induce the appearance of Aire+CD80+ 
mTECs and Aire-dependent TRAs. To provide defi nitive 
evidence for a role for RANK in development of Aire+ 
mTECs in vivo, we analyzed the thymic microenvironment 
of RANK−/− mice, previously reported to support normal 
T cell development (26). In contrast to littermate controls, 
CD80+ mTECs were absent from RANK−/− mice (Fig. 5, 
A and B). Moreover, confocal analysis demonstrated that al-
though keratin5+ medullary areas were present in RANK−/− 
mice, there was a marked absence of Aire+ mTECs (Fig. 5, 
C–E), correlating with an absence of Aire-dependent TRAs 
(Fig. 5 F).

Figure 4. RANK–RANKL interactions promote Aire+ mTEC devel-

opment. qPCR analysis of RANK expression (A) in EpCAM1+Ly51− mTECs 

(black bar) and EpCAM1+Ly51+ cTEC (white bar). B shows analysis of 

RANKL expression in thymic CD4+3− LTi cells and thymocyte subsets. 

Shaded histograms are staining controls. C shows analysis of 

EpCAM1+Ly51−CD80+ mTEC in FTOCs and dGuo-treated FTOCs cultured 

in the absence or presence of anti-RANK or recombinant RANKL for 2 d. 

Quadrant gates are set using staining levels obtained using isotype-

matched control antibodies. (D) qPCR analysis of Aire, SP1, and SP2 ex-

pression was performed in untreated FTOCs (white bars) dGuo FTOC 

(vertical bars), and in dGuo FTOCs treated with either anti-RANK (black 

bars) or recombinant RANKL (hatched bars). 

Figure 5. Lack of Aire+CD80+ mTECs in RANK−/− mice promotes 

autoimmunity. Stroma-enriched adult thymus digests from WT (A) and 

RANK−/− mice (B) were stained for CD45, EpCAM1, Ly51, and CD80. 

Data are gated on CD45−Ly51− cells. In C and D, tissue sections of WT 

and RANK−/− adult thymus were stained for keratin 5 (green) and Aire 

(red). Higher power magnifi cation is shown in the bottom panels. Bars: 

(C and D, top) 20 μm; (C and D, bottom) 5 μm. E shows quantitation 

of Aire+ mTECs in sections of RANK+/− and RANK−/− thymus. F is qPCR 

highlighting absence of TRA expression in RANK−/− thymus (white bars) 

compared with WT thymus (black bars). Histological analysis of leuko-

cytic infi ltrates in the liver of nude mice (arrow) transplanted with 

RANK−/− dGuo-treated, but not WT thymus, is in G. (H) Immunohisto-

chemical analysis of Rag−/− tissues using serum obtained from 

RANK−/− and WT transplanted nude mice. Red, autoantibody staining; 

blue, DAPI staining. Bars: G, 100 μm; H, 20 μm.
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Transplantation of RANK−/− thymic stroma leads 

to autoimmunity

As the RANK−/− thymus lacks Aire expression and trans-
plantation of Aire−/− thymus into nude mice promotes T 
cell–mediated autoimmunity (4), we predicted that similar 
symptoms would be seen after transplant of RANK−/− thy-
mic tissue. Relevant to this, the absence of a reported auto-
immune phenotype in RANK−/− mice could be caused by the 
severity of the RANK−/− phenotype outside the immune 
system, which leads to abnormal tooth and skeletal develop-
ment and premature death (26). To address the importance of 
RANK in relation to thymic tolerance, dGuo-treated E15 
RANK−/− and littermate thymuses were transplanted under 
the kidney capsule of nude mice (4). After 4 wk, in contrast 
to mice receiving control thymus lobes, mice receiving 
RANK−/− thymus lobes showed signs of a wasting disease, 
including weight loss and diarrhea. After being killed, recov-
ery of control and RANK−/− thymus grafts showed the pres-
ence of CD4+8+, CD4+8−, and CD4−8+ thymocytes in 
both cases (unpublished data). However, unlike control-
grafted mice, mice grafted with RANK−/− thymus displayed 
infl ammatory infi ltrates in liver (Fig. 5 G), and immunostain-
ing of Rag−/− tissue sections (4) with serum obtained from 
RANK−/− thymus transplanted mice revealed autoantibod-
ies to several tissues (Fig. 5 H). Thus, RANK defi ciency in 
thymic stroma is suffi  cient to induce symptoms of autoim-
munity similar to those observed after transplantation of 
Aire−/− thymic stroma (4).

In conclusion, we have identifi ed RANK signals from 
LTi cells as being key in the regulation of central tolerance 
by promoting Aire+ mTEC development. As mentioned 
earlier, these events have also been linked with LTα–LTβR 
interactions (13, 21, 24), which suggests that although 
induction of Aire+ mTEC development can occur in the 
absence of LTα, some aspects of mTEC development and 
organization may involve both RANK and LTβR signal-
ing. Of signifi cance is that LTi cells express both LTα and 
RANKL (20), underlining their importance in regulating 
both signaling pathways. We have also provided evidence 
that CD80+Aire+ mTECs are derived from CD80−Aire− 
mTECs, and this fi nding together with a recent study (28) 
helps to clarify previously poorly defi ned stages of mTEC 
development. Two further crucial points emerge from our 
studies. First, the role of RANK in regulating mTEC matu-
ration parallels its role in mammary epithelial development 
(29), highlighting this pathway in epithelial cell diff erentia-
tion in two distinct settings. Second, the fact that LTi cells 
regulate Aire+ mTEC development suggests they also play 
a role in determining central tolerance to self. As the TNF 
ligands linked with T cell survival are missing from LTi cells 
in the neonate (17, 19), these cells may also aid to purge T 
cells activated on peripheral self-antigens by failing to pro-
vide the signals for T cell survival in secondary lymphoid 
tissues (17), a process that leads to tolerance rather than 
immunity. Thus, manipulation of LTi cells and the TNF 
ligands they express may be benefi cial in therapeutic strategies 

such as transplantation, where manipulating the balance of 
tolerance and immunity is desirable.

MATERIALS AND METHODS
Mice. Mice were bred at the University of Birmingham, and all experiments 

were performed in accordance with UK Home Offi  ce regulations. Mice 

with a fl oxed RANK allele were generated at the Institute of Molecular 

Biotechnology of the Austrian Academy of Sciences, Institute of Molecular 

Biology. These mice were crossed onto actin-Cre mice to generate RANK-

defi cient mice. Day of vaginal plug detection was designated day zero, and 

adult mice were used at 4–6 wk.

Antibodies. The following antibodies were used for fl ow cytometry (11): 

anti-CD80 (16-10A1) FITC, anti-Ly51 (BP-1) PE, anti-CD45 biotin (clone 

30F11), streptavidin PECy7 (all eBioscience), anti-EpCAM1 APC, (G8.8), 

anti–I-Ab PE (AF6120.1; BD Biosciences), anti-CD3 (145-2C11), anti-CD8 

(53–6.7), anti-CD11c (HL3), and anti-B220 (RA36B2) conjugated with 

FITC or PE (BD Biosciences), anti-CD4 APC (GK1.5; eBioscience), and 

biotinylated anti-OX40L (RM134L), anti-CD30L (RM153) (BD Biosci-

ences), TRANCE (R&D Systems), streptavidin cychrome, and anti–IL-7Rα 

PE (A7R34; eBioscience).

Cell isolation. CD4+3− cells for use in RTOCs were prepared as de-

s cribed (14). CD4+8+ thymocytes, CD45−EpCAM1+Ly51+ cTECs, and 

CD45−EpCAM1+Ly51− mTECs (3, 7) were prepared by MoFlo (Dako

Cytomation) to a purity >99% (unpublished data). CD45−EpCAM1+Ly51− 

mTECs were also subdivided into CD80− and CD80+ subsets by MoFlo. 

TECs from adult mice were prepared as described (3).

FTOCs and RTOCs. FTOCs were prepared as described (11). RTOCs 

were made from mixtures of dGuo thymic stroma and either CD4+8+ thy-

mocytes or CD4+3− LTi cells at a 1:1 ratio (11). In some experiments, 

dGuo-treated FTOCs were cultured with 10 μg/ml anti-RANK or 2.5 μg/

ml RANK ligand (R&D Systems) for 2 d.

Precursor–product relationships in mTECs. 7-d H-2b FTOCs were 

digested, and EpCAM1+Ly51−CD80− cells were sorted by MoFlo. Prepara-

tions were mixed with freshly disaggregated H-2d thymus lobes (E15) at a 

ratio of 1:5, cultured as RTOCs for 2 d (11), and analyzed for EpCAM1, 

Ly51, CD80, and I-Ab expression.

Confocal microscopy. Sections were analyzed (17) and stained with 

the following: rat anti-Aire (B1/02-5H12-2), ERTR5, goat anti–rat IgG 

Alexa594 or Alexa350 (Molecular Probes), anti–keratin 5 (Covance), anti-

CD4 (GK1.5, purifi ed or FITC; eBioscience), anti-CD3, anti-CD11c, anti–

hamster Cy5 (Jackson ImmunoResearch Laboratories), and Streptavidin 

Alexa488 or Alexa594 (Molecular Probes). To calculate the number of Aire+ 

cells, fi ve diff erent K5+ medullary areas were studied, the area being auto-

matically calculated by the LSM10 Carl Zeiss MicroImaging, Inc. confocal 

software. Aire+ cells were counted and divided by the number of areas to give 

the mean and SD.

qPCR. mRNA was isolated using the μMacs One-step cDNA kit (Miltenyi 

Biotec). qPCR was performed using SYBR green with primers for β-actin, 

Aire, SP1, and SP2. PCR reactions were performed in reaction buff er con-

taining ABsolute QPCR SYBR Green mix (ABgene) and 200–300 nM 

primers. The fl uorescent signal produced from the amplicon was acquired at 

the end of each polymerization step, and a melt curve profi le was obtained. 

Reaction amplifi cation effi  ciency and the Ct values were obtained from 

Rotor Gene 6.0 software (Corbett Research) using standard curves generated 

from FTOC cDNA. Relative expression values for samples normalized to 

β-actin were obtained (8).

Primer sequences are as follows, and GenBank accession numbers are 

given: β-actin (X03672) forward, 5′-A T C T A C G A G G G C T A T G C T C T-

C C -3′ and reverse, 5′-C T T T G A T G T C A C G C A C G A T T T C C -3′ (148 bp); 
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AIRE (NM_009646) forward, 5′-T G C A T A G C A T C C T G G A C G G C T T  C C -3′ 
and reverse, 5′-C C T G G G C T G G A G A C G C T C T T T G A G -3′ (187 bp); 

SP1 (NM_009267) forward, 5′-C T G G T G A A A A T A C T G G C T C T G A A -3′ 
and reverse, 5′-A G C A G T G T T G G T A T C A T C A G T G -3′ (116 bp); SP2 

(NM_009268) forward, 5′- T C A G A C C A A A G T G G G T G A C A -3′ and reverse, 

5′-C C T C  T T G T T T C T C A T T G G A G G T -3′ (122 bp); and CD80 (AY278186) 

forward, 5′-G C T G C T G A T T C G T C T T T C A C A A -3′ and reverse, 5′-G G G-

C C A C A C A C T T T T A G T T T C C C -3′ (190 bp).

Thymus grafting and analysis of autoimmunity. E15 RANK−/− and 

littermate control embryos were used as thymus tissue for transplantation. 

Thymus lobes were cultured for 5 d in the presence of dGuo before trans-

plantation under the kidney capsule of adult nude recipients (4). Analysis of 

lymphocyte infi ltrates was performed on paraffi  n-embedded haemotoxylin 

and eosin–stained sections, and autoantibodies were detected by incubating 

frozen sections from Rag−/− mice with serum from grafted mice (4).
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