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Macroautophagy (MA) regulates cellular quality control and
energy balance. For example, loss of MA in aP2-positive
adipocytes converts white adipose tissue (WAT) into brown
adipose tissue (BAT)-like, enhancing BAT function and thereby
insulin sensitivity. However, whether MA regulates early BAT
development is unknown. We report that deleting Atg7 in
myogenic Myf5þ progenitors inhibits MA in Myf5-cell-derived
BAT and muscle. Knock out (KO) mice have defective BAT
differentiation and function. Surprisingly, their body temperature
is higher due to WAT lipolysis-driven increases in fatty acid
oxidation in ‘Beige’ cells in inguinal WAT, BAT and muscle. KO
mice also present impaired muscle differentiation, reduced
muscle mass and glucose intolerance. Our studies show that
ATG7 in Myf5þ progenitors is required to maintain energy and
glucose homeostasis through effects on BAT and muscle devel-
opment. Decreased MA in myogenic progenitors with age and/or
overnutrition might contribute to the metabolic defects and
sarcopenia observed in these conditions.
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INTRODUCTION
The metabolic syndrome is a major health issue affecting B25%
of the US population [1]. While disturbances in energy balance
contribute to the metabolic syndrome, the mechanisms leading to
energy imbalance are unclear. Adipose tissues and skeletal muscle
(SKM) have pivotal roles in regulating energy and glucose
homeostasis [2]. Excess energy is stored as lipid in white
adipose tissue (WAT), whereas brown adipose tissue (BAT)
expends energy by generating heat [3]. SKM [2] and BAT [4]
maintain glucose homeostasis via glucose uptake in response to
insulin, and intriguingly, both tissues originate from myogenic
factor 5-positive (Myf5þ) progenitors [3]. It is thus conceivable
that factors affecting Myf5þ progenitors will dysregulate energy
balance through effects on BAT and SKM differentiation.

Macroautophagy (MA) entails formation of LC3-II-positive
autophagosomes that sequester and target cytoplasmic cargo for
lysosomal degradation [5]. In addition to quality control, MA
regulates lipid metabolism by degrading lipid droplets (LD) via
lipophagy [6]. Overnutrition and aging decrease MA in liver [6] and
hypothalamic neurons [7], respectively, suggesting that metabolic
defects in these conditions occur, in part, from reduced MA. MA
also controls energy balance by regulating WAT differentiation [8].
Loss of a key MA gene, Atg7, in aP2þ adipocytes decreases WAT
differentiation [8], and remarkably, Atg7� /� WAT acquires BAT-
like features [8]. As MA modulates WAT development, we asked
whether MA in Myf5þ progenitors controls BAT development. Here
we show that mice lacking Atg7 in Myf5þ progenitors (Knock out,
KO) show loss of MA in Myf5-derived tissues, BAT and SKM. Loss of
Atg7 disrupts BAT differentiation, and surprisingly, promotes ‘Beige’
(brown adipocyte-like) cell [9] development in inguinal (ing) WAT
that contributes to increased energy expenditure and raised body
temperature. KO mice show reduced SKM differentiation and mass
and are glucose intolerant, thus revealing a key role for MA in
Myf5þ progenitors in regulating energy and glucose homeostasis
through effects on BAT and SKM development.
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RESULTS AND DISCUSSION
Loss of Atg7 in Myf5þ cells disrupts MA in BAT/SKM
To determine the effect of loss of MA during BAT development, we
knocked out Atg7 in Myf5þ progenitors by crossing Atg7Flox/Flox [10]
with Myf5-Cre mice [11]. KO mice displayed absence of
ATG7, decreased pre-autophagosome-associated ATG5-ATG12
levels, LC3-I accumulation and loss of autophagosome-bound
LC3-II in BAT and SKM (EDL, extensor digitorum longus; Fig 1A)
without modifying those in epididymal (e) WAT or heart
(Fig 1B,C). Atg7 deletion in BAT and SKM was verified by qPCR
analyses for diminished Atg7 expression (Fig 1D), while those in
eWAT (Fig 1D) or heart (supplementary Fig S1A online) remained
unaffected. Atg5 expression was comparable in tissues from
control (Con) and KO mice (Fig 1D). Moreover, ATG5-ATG12 and
LC3-II levels remained equivalent in spleen, liver, lung, kidney,
mediobasal hypothalamus (MBH) and perinephric fat from Con

and KO mice (Fig 1E). As small subsets of progenitors in ingWAT
and eWAT express myf5 [12], we failed to detect Atg7 deletion in
WAT from KO mice (Fig 1B). In fact, compensatory increases
in ATG7 levels were detected in eWAT from KO mice
(supplementary Fig S1B online), although increases in ATG7 did
not enhance MA flux (not shown). Despite increased Atg7
expression in ingWAT (supplementary Fig S1C online), ATG7
levels remained comparable in ingWAT from Con and KO mice
(supplementary Fig S1B online).

The loss of MA in Myf5þ progenitors did not increase mortality
or promote skeletal or neurological deficits indicated by absence
of the hind-limb clasping reflex, although a mild resting tremor
was observed in a subset of KO mice. KO mice on chow diet (RD)
displayed decreased body weights as early as 6 weeks of age
(Fig 1F) that associated with reduced (B5%) nose-rump length.
Both male (Fig 1F) and female KO mice (supplementary Fig S1D
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Fig 1 | Deleting Atg7 in Myf5þ progenitors disrupts macroautophagy (MA) in brown adipose tissue (BAT) and skeletal muscle (SKM). (A–C)

Immunoblots for indicated proteins in BAT, extensor digitorum longus (EDL), epididymal white adipose tissue (eWAT) and heart from 10- to 12-

month (mo)-old control (Con) and knock out (KO) mice. Arrows depict LC3-I and II. (D) ATG5 and ATG7 mRNA levels in indicated tissues (n¼ 4),

and (E) immunoblots for indicated proteins in spleen, liver, lung, kidney, mediobasal hypothalamus (MBH), inguinal white adipose tissue (ingWAT)

and perinephric fat (pnWAT) from 10- to 12-mo-old Con and KO mice. (F) Body weights (wt) of chow diet (RD)-fed (n¼ 6–29), and (G) high-fat diet

(HFD)-fed Con and KO mice at indicated ages (n¼ 4–17). (H) Total body fat and lean mass of 4–7 mo RD-fed Con and KO mice (n¼ 8–12). (I) BAT

wt (n¼ 4–7), (J) gastrocnemius (GA) wt (n¼ 5–7), (K) soleus wt (n¼ 4–7), (L) eWAT wt (n¼ 5–7) and (M) visceral (Visc) and subcutaneous (Subc)

body fat distribution in 10-mo-old Con and KO mice (n¼ 4). Values are mean±s.e., *Po0.05, **Po0.01, ***Po0.001.
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online) maintained lower body weights, although high-fat diet
(HFD)-fed male Con and KO mice acquired comparable weights
(Fig 1G). Decreased body weights in KO mice were largely from
reduced lean mass as determined by quantitative NMR (qNMR;
Fig 1H), although analyses of organ weights revealed decreased
BAT (Fig 1I) and SKM weights (Figs 1J,K), and a trend towards
smaller eWAT pads (Fig 1L). HFD-fed KO mice also displayed
reduced lean mass when compared with Con (supplementary
Fig S1E online). Furthermore, RD- (Fig 1M) or HFD-fed mice
(supplementary Fig S1E online) did not redistribute fat between
their visceral and subcutaneous depots.

KO mice display impaired BAT differentiation
To determine the effect of loss of MA in Myf5þ progenitors on
BAT, we subjected BAT from Con and KO mice to qPCR analysis
for BAT- and adipose-selective genes. KO BAT displayed
decreased expression of BAT genes, ucp1, cidea, elovl3, prdm16
and zic1, and adipose genes, c/ebpa, c/ebpb, pparg and ap2
without modifying pgc1a, a transcriptional coactivator of BAT
genes (Fig 2A). KO BAT also displayed B40% reduction in
adrenergic b3 receptor (adb3) expression (Fig 2A), suggesting an
attenuated ability to respond to catecholamines. In contrast to
effects of loss of MA in aP2þ adipocytes, that is, acquisition of
BAT-like features by eWAT and augmented BAT mass [8], loss
of MA in Myf5þ progenitors suppressed BAT differentiation.
Surprisingly, KO BAT displayed increased expression of
additional UCP family members, ucp2 and ucp3 (Fig 2B). As
heat production is UCP1 dependent [13], the significance of
increased ucp2/ucp3 expression remains unclear. Loss of ATG7
in Myf5þ progenitors did not modify eWAT differentiation
indicated by comparable c/ebpa, pparg and ap2 expression in
Con and KO mice (Fig 2C).

We verified that changes in mRNA expression in KO BAT
correlated with protein levels. Indeed, KO BAT showed decreased
levels of C/EPBa, C/EBPb, PPARg, fatty acid synthase (FAS), UCP1
and the mitochondrial marker cytochrome oxidase (COX)
compared with Con BAT (Fig 2D). In contrast, C/EPBa, PPARg,
perilipin (PLIN)1, PLIN3, FAS, stearoyl CoA desaturase 1 (SCD1),
aP2 and GLUT4 levels remained intact in eWAT from KO mice
(Fig 2E), demonstrating selective impairment in BAT differentia-
tion. Electron microscopic analyses of KO BAT verified decreased
mitochondrial number and size with regions of mitochondrial
destruction between areas of preserved mitochondria (Fig 2F and
supplementary Fig S2A online).

As Myf5þ progenitors give rise to BAT and SKM, we asked
whether loss of MA in Myf5þ progenitors skewed the differentia-
tion of these cells towards SKM. To test this, Con and KO BAT
were analyzed for factors regulating muscle differentiation, that is,
pax7 and pax3 that control the population of proliferative
myogenic myf5þ cells, myf5, myod (myoblast determination
protein) and myog (myogenin), which regulates conversion of
myoblasts into myocytes [14]. Con and KO BAT had comparable
pax7, myf5, myod and myog expression (Fig 2G), while pax3
remained undetectable (not shown). To analyze the fate
of BAT derived from Atg7� /� Myf5þ cells, Con and KO
BAT were subjected to hematoxylin and eosin (H&E) staining,
which revealed intense eosinophilic cytoplasm, increased LD and
adipocyte size, and decreased LD number/cell in KO BAT
indicating a departure from the typical features of BAT (Fig 2H).

In fact, Sirius red (Fig 2I; supplementary Fig S2B online) and
Trichrome blue staining (supplementary Fig S2C online) revealed
interspersed fibrotic areas in KO BAT, particularly at tissue
septa. Although, comparable collagen gene (col1a1 or col3a1)
expression was detected in Con and KO BAT, increased col6a1
expression confirmed fibrotic changes in KO BAT (supplementary
Fig S2D online).

Loss of MA in Myf5þ progenitors also impacted cold-induced
BAT gene expression. BAT from cold-exposed (B4 1C for 75 min)
KO mice failed to upregulate ucp1, cox4, cidea, elovl3 and adb3
genes to levels achieved by Con (Fig 2J). KO mice were also
deficient in their ability to reduce LD content in BAT indicating
impaired lipid utilization (supplementary Fig S2E online).

Atg7 in Myf5þ cells in early BAT development
To determine the time frame when MA is required for precursor
cells to differentiate into BAT, we examined the effect of loss of MA
on BAT differentiation in E16.5 embryos, post-natal day 6 pups and
adults. H&E stains revealed slightly smaller brown adipocyte
precursors in KO embryos (supplementary Fig S3A online), and
comparable, albeit low, UCP1 levels (supplementary Fig S3B
online) and LD content (supplementary Fig S3A online) in
precursors from Con and KO embryos. In contrast, post-natal
Atg7� /� BAT displayed reduced UCP1-positivity (supplementary
Fig S3C online) and increased ucp2 and ucp3 expression
(supplementary Fig S3D online), as observed in adult KO mice
(Fig 2B). Furthermore, day 6 Atg7� /� BAT showed altered
mitochondrial morphology, that is, dilated intra-mitochondrial
space and distorted mitochondrial cristae (supplementary Fig S3E
online), decreased b-oxidation rates (supplementary Fig S3F online),
and increased LD content (supplementary Fig S3G online),
suggesting that MA is required in the early steps of BAT
development, that is, after the E16.5 stage.

To determine whether acutely inhibiting MA impacts BAT
differentiation in adult mice, we injected BAT of Atg7Flox/Flox mice
with Cre-expressing adenoviruses (Cre AdV) or an empty vector,
and mice were killed after 5 days following an acute cold stress.
Cre AdV injections decreased BAT Atg7 mRNA by B30%
(supplementary Fig S3H online) possibly from reduced accessi-
bility of viruses into the entire BAT pad. This acute reduction
of Atg7 expression decreased ucp1 and elovl3 expression
(supplementary Fig S3I online) without modifying ucp2 or ucp3
expression (supplementary Fig S3J online). Bodipy stains from
cold-exposed Cre AdV-injected mice revealed increased LD
content (supplementary Fig S3K online) as observed in KO mice
(supplementary Fig S2E online), suggesting that in addition to its
role in early BAT development, MA controls BAT differentiation
and lipid metabolism during adulthood. It is thus likely that post-
developmental changes in MA, such as with age [7], will alter BAT
differentiation and lipid metabolism.

KO mice exhibit increased body temperature
To test the physiological outcome of impaired BAT differentiation,
Con and KO mice were subjected to core body temperature
analyses. Surprisingly, despite abnormalities in the molecular
signature of BAT, KO mice maintained higher body temperature at
basal conditions and during cold exposure (Fig 3A). To explore
the mechanism for increased body temperature, we asked
whether constitutive increases in energy expenditure raised body
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temperature in KO mice. Indeed, RD-fed KO mice displayed a
trend towards increased oxygen (O2) consumption (Fig 3B;
supplementary Fig S4A online), increased carbon dioxide
(CO2) production (Fig 3C; supplementary Fig S4B online)
and elevated energy expenditure (Fig 3D). RD-fed KO mice
modestly decreased their respiratory exchange ratio (RER)
during early dark cycle (supplementary Fig S4C online),
suggesting a preference for fat oxidation to support early dark
cycle activity. In contrast, HFD-fed KO mice displayed signifi-

cantly increased rates of O2 consumption (Fig 3E; supplementary
Fig S4D online), CO2 production (Fig 3F; supplementary Fig S4E
online), and energy expenditure (Fig 3G) and persistently
decreased RER (supplementary Fig S4F online) indicating
sustained fat oxidation during both cycles. Higher energy
expenditure did not occur from increased locomotor activity
(Fig 3H), in fact, HFD-fed KO mice displayed decreased dark
cycle z axis movements compared with Con mice (supplementary
Fig S4G online).
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As KO mice exhibited smaller eWAT pads and reduced RER, we
asked whether constitutive increases in WAT lipolysis provided
the lipid fuel to sustain higher energy expenditure rates in KO
mice. Indeed, KO mice displayed smaller white adipocytes (Fig 3I)
and B2.5-fold increase in adb3 expression (Fig 3J) in a
compensatory response to maintain adrenergic signaling. Cold-
exposed KO mice also increased their adb3 expression in ingWAT
by B30% (Fig 3K). Although Con and KO mice showed
equivalent basal serum-free fatty acid (FFA) and glycerol levels
(Fig 3L), KO mice exhibited modest increases in circulating FFA
and glycerols in response to intraperitoneal (i.p.) isoproterenol
(Fig 3L), and significantly elevated serum FFA following cold
exposure (Fig 3M). These results allow us to speculate that WAT
lipolysis-driven increases in FFA availability/oxidation probably
contribute to raised body temperature in KO mice.

‘Beige’ cells/BAT increase energy expenditure in KO mice
To identify the tissues that oxidized WAT-derived FFA in KO mice,
we asked whether defective MA in BAT triggered ‘Beige’ cell [9]
development in WAT. Acute depletion of ATG7 in BAT (via Cre
AdV) did not modify basal or cold-induced expression of ‘Beige’
genes, tmem26 or tbx1, in eWAT (Fig 4A,B). In contrast, ATG7
depletion led to B1.5-fold increase in basal tbx1 expression in
ingWAT (Fig 4C) and an approximately two- to threefold increase
in tmem26 and tbx1 expression following cold exposure (Fig 4D).
H&E stains of ingWAT from Cre AdV-injected mice confirmed
presence of multi-loculated brown adipocyte-like cells (Fig 4E) that
increased with cold exposure (Fig 4F; supplementary Fig S5A online).

To determine whether KO mice displayed ‘Beige’ cell devel-
opment, we subjected WAT from Con and KO mice to qPCR
analyses for ‘Beige’ genes [9]. As expected, we observed
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significantly increased expression of tmem26 and tbx1 in ingWAT
(Fig 4G) but not eWAT (not shown) from 4-month (mo)-old cold-
exposed KO mice. In fact, eWAT from 10-mo-old KO mice
displayed decreased basal tmem26 and tbx1 expression
(Fig 4H), while those of brown adipocyte genes, hspb7, fbxo31,
eva1 and ebf3 [9], remained intact (Fig 4I). Given that small

subsets of adipocyte progenitors in WAT express myf5 [12], we
speculate that loss of Atg7 in a pool of eWAT-resident Myf5þ cells
impacted ‘Beige’ cell development in eWAT, while ‘Beige’ cells in
iWAT possibly originate from redundant lineages and thus
remained intact. In consistency with ‘Beige’ cell development,
ingWAT but not eWAT, from KO mice displayed approximately
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twofold increase in b-oxidation rates (Fig 4J and model
summarized in supplementary Fig S7 online).

As SKM participates in thermogenesis [15], we asked whether
FFA oxidation in SKM contributed to increased energy
expenditure in KO mice. Despite comparable COX levels in
various SKM groups from Con and KO mice (not shown), soleus
from KO mice displayed higher COX levels (supplementary
Fig S5B online). Soleus (Fig 4K), and not gastrocnemius (GA;
supplementary Fig S5C online), from cold-exposed KO mice
displayed increased cox4, nd1 (subunit of NADH dehydrogenase)
and pgc1a expression, while cpt1b and cpt2 (fatty acid translo-
case) or ucp2 and ucp3 (supplementary Fig S5D online) remained
comparable to Con. Increased b-oxidation in soleal explants
verified their contribution to increased energy expenditure in
KO mice (Fig 4L).

Equivalent b-oxidation rates in liver (supplementary Fig S5E
online) from Con and KO mice excluded its role in increasing
energy expenditure. Surprisingly, BAT from KO mice displayed
increased b-oxidation compared with Con mice (Fig 4M).
Despite the apparent defect in utilizing intrinsic lipid stores
(supplementary Fig S2E online), Atg7� /� BAT from adult mice
maintained higher b-oxidation rates, in all likelihood, from WAT-
derived FFA (modeled in supplementary Fig S7 online). Indeed, in
contrast to reduced b-oxidation in KO BAT from pups
(supplementary Fig S3F online), Atg7� /� BAT from adult mice
displayed increased b-oxidation (Fig 4M) in a likely compensatory
mechanism to meet thermogenic requirements in adults.

Smaller myofibers and glucose intolerance in KO mice
Despite increases in energy expenditure, KO mice remained
hyperglycemic (Fig 5A), euinsulinemic (Fig 5B), and displayed
defective glucose clearance (Fig 5C,D) and insulin insensitivity
(Fig 5E). Since MA maintains SKM mass [16] and glucose
homeostasis [17], we asked whether loss of MA in Myf5þ
progenitors affected myofiber size and, in turn, glucose
homeostasis. In consistency with reduced MA in EDL (Fig 1B);
soleus, TA and GA from KO mice also displayed defects in MA
(Fig 5F). KO mice presented with reduced GA myofiber cross-
sectional area by B25% (Fig 5G), absent centralized myonuclei
(Fig 5G) and reduced expression of atrophy markers, MuRF-1 and
Atrogin-1 (Fig 5H), indicating absence of SKM degeneration [16].
Reduced myofiber size probably resulted from defective SKM
differentiation, indicated by decreased expression of differentiated
SKM marker, creatine kinase muscle and raised levels of myod
and myog (Fig 5I), while pax7, pax3 and myf5 remained intact.
Embryonic loss of Myf5þ cells fails to suppress myogenesis,
suggesting significant contributions to muscle development from
Myf5-independent lineages [18]. Indeed, Myf5þ cells contribute
to adult myonuclei by B50% [18], and consequently, loss of Atg7
in Myf5þ progenitors modestly affected myocyte size supporting
the previously described contribution to SKM development
from both Myf5þ and Myf5-independent lineages [18]. The
percentage and/or selectivity of myocytes that show defective
autophagy in each SKM group following loss of Atg7 in Myf5þ
progenitors remains to be seen.

To identify the tissues contributing to glucose intolerance, Con
and KO mice fed HFD for 2 weeks were subjected to i.p. insulin
(1 U per kg of body weight per 30 min), and SKM and fat
were analyzed for Akt phosphorylation (P-Akt). While BAT,

EDL and GA from KO mice displayed decreased P-Akt
(Fig 5J; supplementary Fig S6A online), soleus and ingWAT (Fig 5J;
supplementary Fig S6A online) presented with increased P-Akt.
Consequently, 2-deoxyglucose uptake assays revealed modest
increases in glucose uptake by soleus (supplementary Fig S6B
online). Intriguingly, loss of Atg7 in Myf5þ progenitors decreased
irs1 and irs2 expression in GA without modifying those in eWAT
(Fig 5K,L) or affecting insulin receptor expression in SKM or
eWAT (supplementary Fig S6C online). Changes in irs1 and irs2
expression probably impacted glucose clearance in KO mice,
although our findings cannot distinguish whether decreased irs1/irs2
expression occurred from defective SKM differentiation or from
loss of MA per se. It remains possible that persistently raised
mitochondrial oxidation introduced oxidative changes in SKM or
BAT, which disrupted insulin signaling.

Whether the overall phenotype of KO mice is an effect of
deficient MA or due to loss of a possible MA-independent function
of ATG7 remains to be elucidated. Furthermore, how ATG7 in
Myf5þ progenitors controls differentiation of progenitors into
adipocytes remains unknown. It is possible that MA promotes
differentiation of progenitors via its ability to modulate cellular
energetic needs or eliminate regulatory proteins and/or maintain
quality control. Alternatively, the established role for insulin in
driving adipogenesis, and the effect of loss of MA on insulin
signaling might explain why loss of Atg7 impacts adipose
differentiation. Aging associates with reduced ATG7 levels [7]
and it is likely that MA failure in Myf5þ progenitors with age
interferes with tissue differentiation, which contributes to metabolic
defects and sarcopenia. Maintaining MA activity in Myf5þ
progenitors might help prevent abnormalities in glucose
metabolism and/or sarcopenia observed with age.

METHODS
Chemicals and antibodies. Antibodies against ATG7, FAS,
GLUT4, IRS1, LC3, PPARg and SCD1 (Cell Signaling Technology,
Danvers, MA); aP2, C/EBPa and C/EBPb (Santa Cruz Biotechno-
logy, Santa Cruz, CA); COX (Mitosciences, Eugene, OR); PLIN1
(Progen, Heidelberg, Germany); PLIN3 (Prosci Inc, Poway, CA);
ATG5 (Novus Biologicals, Littleton, CO); and UCP1, Actin and
GAPDH (Abcam, Cambridge, MA) were used in this study.
Isoproterenol, glucose and insulin were purchased from
Sigma-Aldrich (St Louis, MO).
Animals and cells. Myf5-Cre mice were obtained from Jackson
Laboratories, Bar Harbor, ME [11], and Atg7Flox/Flox mouse was a
gift from Drs M Komatsu and K Tanaka (Tokyo Metropolitan
Institute of Medical Science, Tokyo, Japan) [10]. Studies were
performed in KO mice and their littermate controls that lacked
cre. Mice were fed regular chow (no. 5058; Lab Diet) or HFD
(60% kcal in fat; D12492; Research Diets, New Brunswick, NJ)
and maintained in 12 h light/dark cycles. Genotyping was
performed using established primers [10]. Mice were used
under a protocol approved by the Institutional Animal Care
and Use Committee.
Adenoviral infection. A total of 2� 107 particle-forming units of
control adenovirus or Cre-expressing adenovirus (Vector BioLabs)
was injected into BAT of Atg7Flox/Flox mice. At 5 days post
injection, mice were cold-challenged (4 1C/75 min) and killed.
Core body temperature measurements. Body temperature (1C)
was measured by inserting a rectal thermometer (BIOSEB, Pinellas
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Park, FL) 1 cm into the rectum and allowed to stabilize for 5 s and
values were recorded every 15 min. Rodents were killed if core
body temperature dropped below 25 1C.
b-Oxidation assay. Tissues from WT and KO mice were subjected
to 14C-oleic acid-labeled b-oxidation analysis as described [8].
General methods. Adipose and muscle proteins were harvested in
lysis buffer containing protease and phosphatase inhibitors and
subjected to western blot analysis, as described [8].
Statistics. Results are mean±s.e. and represent data from a
minimum of three independent experiments. Groups were
compared by two-tailed Student’s t-test. Statistical significance
was defined as Po0.05.

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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