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Abstract

One of the hallmarks of cancer is the extremely high mutability and genetic instability of

tumor cells. Inherent heterogeneity of intra-tumor populations manifests itself in high vari-

ability of clone instability rates. Analogously to fitness landscapes, the instability rates of

clonal populations form their mutability landscapes. Here, we present MULAN (MUtability

LANdscape inference), a maximum-likelihood computational framework for inference of

mutation rates of individual cancer subclones using single-cell sequencing data. It utilizes

the partial information about the orders of mutation events provided by cancer mutation

trees and extends it by inferring full evolutionary history and mutability landscape of a tumor.

Evaluation of mutation rates on the level of subclones rather than individual genes allows to

capture the effects of genomic interactions and epistasis. We estimate the accuracy of our

approach and demonstrate that it can be used to study the evolution of genetic instability

and infer tumor evolutionary history from experimental data. MULAN is available at https://

github.com/compbel/MULAN.

Author summary

Cancer is a dynamical evolutionary process that unfolds in populations of tumor cells.

Combinations of genomic alterations of these cells affect their replication and survival. In

particular, intra-tumor rates of mutation and genetic instability are often significantly

higher than the normal rate. The impact of combinations of gene alterations on the

genetic instability of cancer cells could be highly non-linear. In this paper, we present a

computational approach called MULAN, that allows for estimation of instability rates

inside heterogeneous intra-tumor populations shaped by such non-linear genetic interac-

tions. To achieve this, we make use of single-cell sequencing, that allows to capture exact

cancer clones rather than just individual mutations. We demonstrate the accuracy of our

approach and show how it could be applied to experimental tumor data to study the evo-

lution of genetic instability and infer evolutionary history. The proposed method can be

used to provide new insight into the evolutionary dynamics of cancer.
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This is a PLOS Computational Biology Methods paper.

1 Introduction

Cancer is a dynamical evolutionary process in the heterogeneous population of subclones [1–

3], with clonal heterogeneity playing the paramount role in disease progression and therapy

outcome [4–6]. Intra-tumor genomic heterogeneity originated from a variety of somatic events

(e.g. SNVs, gains/losses of chromosomes) provides an evolutionary environment that facili-

tates the emergence of phenotypic heterogeneity that manifests itself in the extremely high

diversity of phenotypic features within the tumor cell population [1, 2, 5, 7]. The genotype-

phenotype mapping is often highly non-linear. It means that the effect of a combination of

genes or SNVs is different from the joint effect of these genes or SNVs taken separately [8–10].

In cancer genomics, examples of such non-linear behaviour include synthetic lethality [8, 11],

epistasis [12, 13] or genetic interactions [14, 15]. When phenotypic effects are associated with

the reproductive success, they are often summarized within the concept of fitness landscape
[16–19]. Within this concept, each genotype is assigned a quantitative measure of its replica-

tive success (fitness or height of the landscape).
One of the hallmarks of cancer is the extremely high mutability and genetic instability of

tumor cells, with intra-tumor rates of mutation, gain/loss/translocation of chromosomal

regions and aneusomy (changes in numbers of chromosomes) often being several orders of

magnitude higher than the normal rate [20–23]. Instability rates of subclones are just as het-

erogeneous as other phenotypic features. They are also subject to epistatic effects or genetic

interactions [24]. As a result, it is reasonable to argue that the mutation or instability rates of a

clonal population form a mutability landscape, whose structure is shaped by selection and

genetic interactions.

Recent advances in sequencing technologies profoundly impacted cancer studies. Until

recent years the most prevalent sequencing technology has been bulk sequencing, which pro-

duces admixed populations of cells. However, the most promising recent technological break-

through was the advent of single-cell sequencing (scSeq). In the context of the current study,

one of the most important advantages of scSeq is its ability to reliably and accurately distin-

guish exact cancer clones rather than just SNVs. It allows to study composition and evolution

of intra-tumor clone populations at the finest possible resolution and take into account com-

plex topological properties of tumor fitness and mutability landscapes, including those associ-

ated with non-linear effects.

A rich arsenal of available phylogenetic models and tools has been applied to scSeq data for

solving the first important goal of reconstructing the phylogeny of cancer subclones assuming

first infinite site model and then exploring more realistic but challenging models allowing

recurrent or backward mutations [7, 25–28]. These advances give an opportunity to address

the next important challenge: use reconstructed phylogenies to infer quantitative evolutionary

parameters for cancer lineages, which can give cancer researchers a statistically and computa-

tionally sound evaluation of the effects of particular mutations or their combinations [19, 29,

30]. This problem is of paramount importance, especially for the design of efficient treatment

strategies in the context of personalized medicine [8, 29, 31–34]. However, in contrast to the

phylogenetic inference, very few computational tools for assessment of cancer evolutionary

parameters are currently available [19, 29, 30]. In particular, several studies recently addressed

the problem of inference of cancer fitness landscapes [18, 35]. In this paper, we expand the

cancer evolutionary analysis toolkit by proposing a computational method for inference of
mutability landscapes and quantification of genetic instability within clonal cancer populations.
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Standard strict molecular clock-based models [36], that assume constant mutation rates, do

not accurately reflect the inherent heterogeneity of cancer clone populations. Relaxation of

rate constancy in the form of so-called relaxed molecular clock [37, 38] or genomic universal

pacemaker [39, 40] was already introduced in other evolutionary settings such as evolution of

species [38, 39] or epigenetic aging [41]. However, intrinsic heterogeneity of tumor clonal pop-

ulations pose additional challenges for rate inference that should be addressed by the methods

specifically tailored to cancer settings. The major challenges could be summarized as follows.

First, many currently available methods assume that closely related organisms have similar

evolutionary rates [37, 42, 43] (autocorrelation property) or that rates of different genes are

synchronized (genomic universal pacemaker model). In contrast, the genomic stability of indi-

vidual cells is controlled by multiple molecular mechanisms for DNA damage surveillance,

detection, and repair. Disruption or dysregulation of any of these mechanisms could result in

different degrees of genomic instability [44]. Thus, it could be expected that mutability land-

scapes of intra-tumor populations are significantly more rugged than those of species or indi-

vidual organisms.

Second, reconstruction of mutation rate heterogeneity via phylogenetic inference is more

challenging for cancer populations than for species or organisms. Indeed, the estimation of

mutation rates requires estimation of times of mutation events. The standard model for such

timing is a binary phylogenetic tree, whose internal nodes represent these events and leafs cor-

respond to sampled subclones. The timing is complicated by polytomies (ambiguities in order

of bifurcations) that should be resolved for the inference. In cases when the expected number

of mutations between a parent and its offspring is comparatively large, polytomies are rela-

tively rare, and evolutionary distances between species provide prior information about the

order of bifurcations. For the cancer subclonal populations, multiple subclones are usually at

the same distance from their common parent (Fig 1), thus making polytomies extremely wide-

spread. In addition, most existing approaches for single-cell cancer phylogenetics [7, 25–28,

45–50] use character-based mutation trees rather than binary phylogenetic trees (Fig 1). The

internal nodes of a mutation tree represent mutations, leafs represent subclones, and each sub-

clone have mutations on its path to the root. For such trees, resolution of polytomies is equiva-

lent to finding the orders of sibling nodes, and it is crucial for the mutation rate estimation.

Finally, in established models, changes in genetic instability rates are usually associated

with individual mutations. In contrast, a more accurate model would associate them with

Fig 1. Algorithm for the maximum likelihood inference of mutability landscape. (a) Mutation tree T. (b) Two binary phylogenies B1(T) and

B2(T) corresponding to two different orders of events t0 < t1 < t3 < t2 < t4 < t5 <H and t0 < t2 < t1 < t4 < t3 < t5 <H. Each internal vertex is

labeled with its time stamp, thus resulting in the same mutation tree T. Each branch (ti, tj) is labeled by the leaf-subclone on the vertical line

through its endpoint tj. All leaves have the sampling time stamp t = H. (c) Maximum Likelihood phylogeny and mutability landscape. Mutation

rates along the branches corresponding to different subclones are highlighted in different colors.

https://doi.org/10.1371/journal.pcbi.1008454.g001
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subclones, which allow capturing the effects of epistasis, including pairwise synthetic lethality,

which explains cancer driver genes’ tissue specificity [8]. In general, a combined effect of sev-

eral mutations cannot be explained by a linear regression model, so it is necessary to take into

account the entire subclone for estimation of the mutation rate.

Here we propose MULAN (MUtability LANdscape inference)—a likelihood-based method

for inference of mutability landscapes of cancer subclonal populations from single-cell

sequencing data. It utilizes the partial information about the orders of mutation events pro-

vided by cancer mutation trees reconstructed from scSeq data and extends it by inferring full

evolutionary history and mutability landscape of a tumor. To the best of our knowledge, it is

one of the first methods specifically tailored to the cancer clone populations and scSeq data

and aimed at addressing the aforementioned challenges. In particular, previously published

tool SiFit [51] performs a phylogenetic inference, which includes an estimation of deletion and

loss of heterogeneity rates, but these rates are assumed to be the same for all subclones. It

should be noted that our method infers mutation rates of subclones rather than individual

genes, thus making it possible to use the obtained results to detect and quantify genomic inter-

actions and epistasis.

2 Materials and methods

2.1 Model

Time-aware phylogenetic model. scSeq data are usually represented as a 0-1 matrix in which

rows correspond to sequenced cells, and columns correspond to cancer mutations. The set of

ones of each row represents a mutation profile of a cell. Following most existing approaches for

cancer phylogenetics [7, 25–28, 45–50], our basic cancer cell evolutionary model will be a

mutation tree T = (VT, ET) with the vertex 0 2 VT being the root, the internal nodes of a muta-

tion tree representing mutations connected according to their order of appearance during the

tumor evolution, the leaves correspond to the sampled subclones and the mutation profile of

each cell being defined by the set of mutations on its path to the root (Fig 1A). In what follows,

we assume that the ith subclone is attached to the internal node i and does not consider the

leaves explicitly. The mutation tree T reconstructed using one of the existing methods from

scSeq data constitutes and input of our algorithm. Note that T does not have to be a perfect

phylogeny, and can contain both repeated mutations and mutation losses.

Next, we extend the phylogenetic model by accounting for times of mutation events. The

mutation tree T provides a partial information about these times, as it establishes the order of

mutation appearances along each path, but does not do it for sibling mutations. Therefore we

need to consider a binary phylogenetic tree B(T) corresponding to the mutation tree T. The

tree B(T) is defined as follows (see Fig 1):

(a) The root represents a subclone at the beginning of cancer lineage evolution.

(b) Each internal node is labeled by timestamp t = ti representing the birth event of the off-

spring subclone i,

(c) Each leaf i = 0, . . ., n represents the sampling event of the subclone i. The tree B(T) is

usually assumed to be ultrametric, i.e., all leaves are sampled simultaneously (although

the model is generalizable to the non-ultrametric case, as discussed below). H will further

denote the sampling time. Note that this value is relative, as the birth time of the root is

assumed to be 0.

(d) Each edge (ti, tj) is labeled by the parent subclone of the corresponding mutation event

(on Fig 1 it is the leaf k on the vertical through the endpoint tj).
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(e) The orders of birth events in B(T) and mutation events in T agree with each other

The topology of a binary phylogeny B(T) is uniquely determined by the orderings si ¼

ðsi;0; si;1; :::si;di
Þ of the offsprings of each node i = 0, 1, . . ., n in the mutation tree T, where di is

the degree of the i-th node in T. As a result, for a given mutation tree there are usually several

corresponding binary phylogenies. An example of a mutation tree T and the corresponding

binary phylogenies B1(T) and B2(T) is shown in Fig 1. The trees B1(T) and B2(T) correspond to

two different plausible orders of mutation events.

Mutability landscape likelihood model. Next, we bring in variable mutation rates and

introduce the likelihood function. We consider the mutability landscape evolutionary model

describing subclone evolution with the underlying time-aware model similar to the model

described in [52]. In this model, the appearance of mutations in each subclone is a Poisson pro-

cess and time intervals between consecutive events follow the Erlang distribution. Specifically,

(a) each subclone k has a mutation rate θk,

(b) the probability of each edge between internal nodes e = (ti, tj) labeled by k in the binary

evolutionary tree is calculated as pðeÞ ¼ y2

kðtj � tiÞe� ykðtj � tiÞ,

(c) the probability of each edge between an internal node and a leaf e = (ti, tj) labeled by k in

the binary evolutionary tree is exponential and is calculated as pðeÞ ¼ yke� ykðH� tiÞ.

The total probability of the tree B(T) equals p(B(T)|θ, t) = ∏e2E(B(T)) p(e).
The described model is used to find mutability landscapes jointly with the most likely

binary phylogeny B(T). We first consider the following optimization problem:

Given: A mutation tree T = (VT, ET) with mutations {0, . . ., n} 2 VT and vertex outdegrees

d0, . . ., dn.

Find: Mutation rates y ¼ ðyiÞ
n
i¼1

, times of occurrence t ¼ ðtiÞ
n
i¼1

of each mutation i = 1, . . .,

n and the sampling time H that maximize the probability p(T|θ, t, H, σ) of the tree T given the

model parameters.

As noted above, setting the phylogeny B(T) is equivalent to setting the family of offspring

orderings σ = (σ1, . . ., σn). For a given ordering family σ we have

pðTjy; t;H; sÞ ¼
Yn

i¼0

ð
Ydi

j¼1

y
2

i ðtsi;j � tsi;j� 1
Þe� yiðtsi;j � tsi;j� 1

Þ
Þyie

� yiðH� tsi;di
Þ

ð1Þ

After the straightforward simplifications, the log-likelihood L(T|θ, t, H, σ) can be written as

follows:

LðTjy; t;H; sÞ ¼
Xn

i¼0

yiti þ
Xn

i¼0

Xdi

j¼1

log ðtsi;j � tsi;j� 1
Þ � ð

Xn

i¼0

yiÞH þ
Xn

i¼0

ð2di þ 1Þ log ðyiÞ; ð2Þ

where t0 = 0, 0� ti�H, i = 1, . . ., n.

Our goal is to find an optimal ordering σ�, times t�, sampling time H�, and mutation rates

θ� by solving the following maximum likelihood problem:

ðy
�
; t�;H�; s�Þ ¼ argmax

ðy;t;h;sÞLðTjy; t;H; sÞ ð3Þ

Note that we usually assume that the rate θ0 is fixed (for example, to the value correspond-

ing to the normal tissue).

The likelihood function (2) is non-linear and all nodes effectively contribute to it. This

makes straightforward utilization of standard methods based on dynamic programming to
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solve the problem (3) is challenging. Indeed, the model implies that there exists a certain

dependency between birth times of sibling subclones since they belong to the same time

interval. Suppose that a subclone i mutated twice during the time between its birth and sam-

pling. Although the two acquired mutations are independent and distributed uniformly at

random between t = ti and t = H, the expected birth times of two corresponding offsprings are

ti + (H − ti)/3 and ti + 2(H − ti)/3 rather than ti + (H − ti)/2. The effect of such non-linear prop-

erties of the model could be illustrated using an example on Fig 1. Intuitively, clone 1 produced

two offsprings, while clone 2 produces zero offsprings. This imbalance can be explained in two

ways: either (i) the clone 2 has a higher mutation rate, or (ii) clone 1 was born early and had

time to accumulate mutations while clone 2 was born late and didn’t have time to accumulate

mutations. When assessing these two alternatives, other clones also come into play. For exam-

ple, the alternative (ii) means (a) the longer interval between the birth of clone 1 and birth of

clone 2—the likelihood of such interval depends on the mutation rate of the parent clone 0; (b)

the longer interval between the birth of clone 1 and the sampling—the likelihood of such inter-

val depends on the mutation rates of the descendants of 1. Maximum likelihood inference

allows us to choose between these alternatives.

In many real settings the realistic mutation rates are subject to constraints. We account for

these considerations by adding to the model a prior probability p(θ). In this case, we utilize

lasso regression-type approach, i.e. we solve the problem (3) under the constraint l(θ) = log(p
(θ))� l0. The simplest prior assumes that the rates are distributed uniformly on the segment

[θmin, θmax]. Assuming that genetic instability increase events are not frequent, we are also par-

ticularly interested in the models with the limited number of such events. In s-model, we

assume that the rate changes in at most s vertices of the mutation tree. When s> 0, we assume

that one of these rates is the normal rate and, therefore, is fixed.

Finally, we note that it is straightforward to generalize the model to the case when the

tumor cells are sampled at different time points. It can be done by allowing different model-

based sampling times Hi and setting the differences between them equal to the differences

between actual sampling times.

2.2 Algorithms

To describe the algorithms and derive the associated mathematical claims, we will use the

following notations: Tk is the subtree of T with the root k; dk is the degree of the node k
in T; nk = |V(Tk)|; θk is the collection of mutation rates of the vertices in Tk and Θk = ∑j2V(Tk)

θj.
A. The case without a prior p(θ). In this case, we propose to solve the problem using an

expectation-maximization approach described by Algorithm 1. This algorithm takes as an

input the mutation tree T, feasible rates segment [θmin, θmax] and initial mutation rates θ = θ0,

and produce as an output the mutation rates θ�, times t�, sampling time H� and orderings σ�

that are supposed to maximize L(T|θ, t, H, σ). The algorithm is described as follows:

Algorithm 1. EM algorithm for mutability landscape inference

Repeat the following steps until convergence:

M step: for given θ, find t, H and σ maximizing LT,θ = L(T|θ, t, H, σ) using Algorithm 2.

E step: for times t and H, find the expected rates:

yi ¼
di

H � ti
ð4Þ
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Next, we describe how M step is carried out. In what follows, we formulate several claims

forming the foundation of our approach, and provide their proofs in the Subsection 2.3. For

the fixed orderings σ and rates θ, (3) is a convex optimization problem with linear constraints,

and thus it can be efficiently solved using standard techniques [53]. However, orderings σ
introduce discontinuity to the objective and discretize the problem, thus making it computa-

tionally hard. The number of possible orderings σ is equal to
Qn

i¼0
di!, which makes an exhaus-

tive search over the space of all orderings infeasible. Therefore our goal is to optimize the

search. Specifically, we employ the following dynamic programming approach:

Algorithm 2. Algorithm to find optimal orderings and times, when rates θ are fixed

Input: mutation tree T with the root 0 and its children 1, . . ., d, mutation rates θ
Output: times t�, sampling time H� and orderings σ� maximizing LT, θ

1. Recursively find optimal orderings s�k for the subtrees Tk, k = 1, . . ., d.

2. Perform an exhaustive search over the set of permutations of (1, . . ., d). For each gener-

ated permutation σ0, we solve the problem (2) with the orderings s ¼ fs0g [
d
k¼1
s�k subject to

the constraints
di
ymax
� H � ti �

di
ymin

as a convex optimization problem, and update the current

best solution, if necessary. The constraints ensure that the rates calculated at each iteration of

EM belong to the feasible interval.

The worst-case running time of Algorithm 2 is Oð
Pn

i¼0
TðniÞ � di!Þ, where T(ni) is the run-

ning time of a numerical convex optimization algorithm with ni variables. It makes the algo-

rithm scalable for the majority of real cases when vertex degrees are not high. However, the

optimality of solutions produced by Algorithm 2 is not immediately clear, and its analysis

requires deeper understanding of the properties of the optimization problem (3). Such proper-

ties are established by Lemma 1 and Theorem 1. Consider the restricted version of the problem

(3) with the fixed rates θ and the sampling time H:

LT;yðHÞ ¼ max
s;t

LðTjy; t;H; sÞ: ð5Þ

Suppose that 1, . . ., d are the children of the root 0 of T. Then the following recurrent rela-

tion holds:

Lemma 1.

LT;yðHÞ � max
s0

max
t1 ;:::;td

H
Xd

k¼1

Yktk þ
Xd

k¼1

log ðtk � tk� 1Þ þ
Xd

k¼1

nk log ð1 � tkÞ þ
Xd

k¼1

LTk ;ykðð1 � tkÞHÞ

 !

�

� Y0H þ n log ðHÞ þ
Xn

i¼0

ð2di þ 1Þ log ðyiÞ;

ð6Þ

where the maximum is taken over permutations σ0 of 1, . . ., d and over t1; :::; td 2 R such that 0

� ti� 1.

The relation (6) can serve as a basis for dynamic programming algorithm. However, it is

not guaranteed yet that such algorithm will be efficient. Indeed, it is theoretically possible that

the values of the functions LTk,θk are achieved on different orderings for different arguments,

thus forcing the algorithm to store an exponential number of subproblem solutions. However,

the following Theorem 1 guarantees that Algorithm 2 is exact, when H is large enough.

Theorem 1. For all large enough H, the optimal ordering σ� that maximizes (5) is the same. It
has the form s� ¼ fs�

0
g [d

k¼1
s�k , where s

�
k are optimal orderings of subtrees Tk and s�

0
is the per-

mutation of 1, . . ., d that maximizes (6).

B. The case with a prior p(θ). The simplest prior assumes that the rates are distributed uni-

formly on the segment [θmin, θmax]. For this model, initial numerical experiments suggest that
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the selection of the initial solution in the feasible segment ensures convergence of the EM algo-

rithm to the feasible solution. For more complex priors, we utilize specially enhanced Markov

Chain Monte Carlo (MCMC) sampling from the rates distribution that will allow for more

efficient traversing of the solution space than the default approach. In particular, for s-model,

each feasible solution could be represented by the subset X� V(T) of s internal vertices corre-

sponding to rate change events together with the collection of s + 1 rates corresponding to the

connected components of T\X. Then MCMC draws the new rate from the normal distribution

centered on the current rate, while new subset X0 is drawn from the 1-flip neighborhood of the

current subset X [54] (i.e. X0 = (X \ {u}) [ {v} for some u 2 X, v 2 V(T) \ X).

2.3 Mathematical foundations of the algorithms

In this subsection we prove Lemma 1 and Theorem 1. Due to the space limit, we present the

general outline of the proofs and omit some particularly technical details. Let D[k] = V(Tk)

and D(k) = V(Tk) \ {k} be the closed set of descendants and set of descendants of k,

respectively.

Proof of Lemma 1. After variable substitution ti≔ ti/H, maximization of (2) is equivalent

to the maximization of

L0ðTjy; t;H; sÞ ¼ H
Xn

i¼0

yiti þ
Xn

i¼0

Xdi

j¼1

log ðtsi;j � tsi;j� 1
Þ � Y0H þ n log ðHÞ þ

Xn

i¼0

ð2di þ 1Þ log ðyiÞ; ð7Þ

subject to the constraints t1 = 0, 0� ti� 1, i = 2, . . ., m.

Suppose that the rates θ, the sampling time H and the family of orderings σ = (σ0, σ1, . . ., σd)
are fixed. Consider the partial likelihood MðTjy; t;H; sÞ ¼ H

Pn
i¼0
yiti þ

Pn
i¼0

Pdi
j¼1

log ðtsi;j �
tsi;j� 1
Þ; which constitutes the part of the total likelihood (7) that depends on t and σ. Using sim-

ple arithmetic transformations, we get

MðTjy; t;H; sÞ ¼ H
Xd

k¼1

Yktk þ
Xd

k¼1

log ðtk � tk� 1Þ þ
Xd

k¼1

nk log ð1 � tkÞþ

þ
Xd

k¼1

ð1 � tkÞH
X

i2DðkÞ

yi
ti � tk
1 � tk

þ
X

i2D½k�

Xdi

j¼1

log
tsi;j � tk
1 � tk

�
tsi;j� 1

� tk
1 � tk

� � ! ð8Þ

Change of variables ti :¼
ti � tk
1� tk

, i 2 D[k] yields

MT;sðHÞ � max
t1 ;:::;td

H
Xd

k¼1

Yktk þ
Xd

k¼1

log ðtk � tk� 1Þ þ
Xd

k¼1

nk log ð1 � tkÞ þ
Xd

k¼1

MTk;sk
ðð1 � tkÞHÞ

 !

ð9Þ

Thus, the relation (6) follows.

Now, let MT,σ(H) = maxt M(T|θ, t, H, σ) and MT(H) = maxσ MT,σ(H). Theorem 1 directly

follows from the following lemma:

Lemma 2. MT,σ(H)� aT H − bT log(H) + cT,σ, where aT and bT are constants depending only
on T, and cT,σ is a constant depending on both T and σ.

Proof. We will prove the lemma by induction. Suppose without loss of generality that d is

the outdegree of the root 0 of T, 1, . . ., d are its children and the ordering σ0 has the form σ0 =

(0, 1, . . ., d)).

a) Suppose that T is a star (i.e. it has 1 internal node and d leafs). Then we have σ = (σ0), nk ¼

aTk
¼ 0 and Θk = θk for all k = 1, . . ., d. For the objective we have
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MðTjy; t;H; sÞ ¼ H
Pd

k¼1
yktk þ

Pd
k¼1

log ðtk � tk� 1Þ, where t0 = 0. Karush-Kuhn-Tucker

(KKT) optimality conditions for t have the following form:

Hyk þ
1

tk � tk� 1

�
1

tkþ1 � tk
¼ 0; k ¼ 1; ::; d � 1;

Hyd þ
1

td � td� 1

� md ¼ 0; td ¼ 1;

ð10Þ

where μd is the dual variable corresponding to the constraint td� 1. After multiplying the

kth equation by tk and summing the obtained equations we get H
Pd

k¼1
yiti ¼ md � d. Fur-

thermore, (10) yield that tk � tk� 1 ¼ 1=ðmd � H
Pd

i¼k yiÞ. These identities imply the follow-

ing formula for MT,σ(H):

MT;sðHÞ ¼ md � d �
Xd

k¼1

log ðmd � H
Xd

i¼k

yiÞ; ð11Þ

where md � H
Pd

i¼1
yi and μd satisfies the equation

Pd
k¼1

1

md � H
Pd

i¼k
yi
¼ 1: We will seek for

the approximation of μd of the form md ¼ H
Pd

i¼1
yi þ ε, where ε> 0. Then from the equa-

tion for μd we have 1

εþ
Pd

k¼2
1

H
Pk� 1

i¼1
yiþε
¼ 1. For large H, we have 1

εþ oð1Þ ¼ 1, thus imply-

ing that the good approximation is achieved when ε = 1. By substitution the expression for

μd to (11) we get

MT;sðHÞ ¼ H
Xd

i¼1

yi þ 1 � d � d log ðHÞ �
Xd

k¼1

log ð
Xk� 1

i¼1

yi þ oð1ÞÞ � aTH � bT log ðHÞ þ cT; ð12Þ

where aT ¼
Pd

i¼1
yi, bT = d and cT ¼ �

Pd
k¼1

log ð
Pk� 1

i¼1
yiÞ � d þ 1. The only term

depending on the order σ here is the term
Pd

k¼1
log ð

Pk� 1

i¼1
yiÞ, which achieves the minimal

value (thus maximizing MT(H)), when θ1� θ2� . . .� θd. Thus, the base case for the induc-

tion is proved.

b) Now suppose that T is not a star. By the induction hypothesis, for every subtree Ti the same

ordering σk maximizes MTk
ðHÞ for all H. These ordering also define the corresponding opti-

mal binary phylogenies Bk. We claim that it is possible to approximately estimate the opti-

mal times t1, . . ., td and ordering σ0 recursively, if the solutions for the subtrees Tk are

known. The following arguments slightly differ technically for the cases when d is a leaf or

an internal vertex. We will demonstrate the scheme of the proof for the former case (the lat-

ter case could be handled similarly).

Consider the relation (6). After applying the induction hypothesis to MTk,σk we get the

expression

MT;sðHÞ � max
t1 ;:::;td

H
Xd

k¼1

Yktk þ
Xd

k¼1

log ðtk � tk� 1Þ þ
Xd

k¼1

nk log ð1 � tkÞþ

 

þ
Xd

k¼1

ðakHð1 � tkÞ � bk log ðHð1 � tkÞÞ þ ckÞ

!

;

ð13Þ

where ak ¼ aTk
, bk ¼ bTk

and ck ¼ cTk;sk . Using the approximation log(1 − tk)� −tk, we rewrite
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it as

MT;sðHÞ � max
t1 ;:::;td

Xd

k¼1

ðHðYk � akÞ þ bk � nkÞtk þ
Xd

k¼1

log ðtk � tk� 1Þ

 !

þ

þH
Xd

k¼1

ak

 !

� log ðHÞ
Xd

k¼1

bk

 !

þ
Xk

i¼1

ck;

ð14Þ

Let λk = H(Θk − ak) + bk − nk = H(Θk − ak) + o(H), k = 1, . . ., d. As in a), we will use KKT

optimality conditions for t1, . . ., td, which in this case have the following form:

lk þ
1

tk � tk� 1

�
1

tkþ1 � tk
¼ 0; k ¼ 1; ::; d � 1;

ld þ
1

td � td� 1

� md ¼ 0; td ¼ 1

ð15Þ

where μd is the dual variable corresponding to the constraint td� 1. Similarly to a), after multi-

plying the kth equation by tk and summing the obtained equations we get
Pd

k¼1
liti ¼ mdtd � d

and tk � tk� 1 ¼ 1=ðmd �
Pd

i¼k liÞ. These identities imply that

MT;sðHÞ � md � d �
Xd

k¼1

log ðmd �
Xd

i¼k

liÞ þ H
Xd

k¼1

ak

 !

� log ðHÞ
Xd

k¼1

bk

 !

þ
Xk

i¼1

ck: ð16Þ

As above, we can use the approximation md �
Pd

k¼1
lk þ 1. It implies that

MT;sðHÞ � H
Xd

k¼1

Yk

 !

� log ðHÞ d þ
Xd

k¼1

bk

 !

�
Xd

k¼2

log ð
Xk� 1

i¼1

ðYi � aiÞÞ þ
Xk

i¼1

ðck þ bk � nkÞ � d þ 1: ð17Þ

In this formula, only the constant term depends on the order of vertices. Theorem is

proved.

2.4 Quantification of rate estimation uncertainty

MULAN implements a maximum likelihood approach that uses the combination of discrete

optimization and continuous optimization techniques to infer the solution that explains the

observed data in the best possible way. In this, it follows the same paradigm as other recently

published scSeq analysis tools [45, 55, 56]. However, given the uncertainty of the mutation tree

estimation, it could be beneficial to provide errors or confidence intervals for the inferred

rates. One possible way to do it is to combine MULAN with any tree topology sampling

scheme by calculating mutation rates for the trees sampled from the particular posterior distri-

bution given the scSec data (after burn-in). This procedure generates the posterior distribution

of inferred mutation rates that can be used to calculate standard errors and/or confidence

intervals. Here, we implemented this approach by combining MULAN with the tree sampling

procedure utilized by SCITE [25].

3 Results

3.1 Simulated data

In this subsection, we report the results of validation of the proposed algorithm using simu-

lated datasets. We simulated test examples with the numbers of mutations ranging from

m = 70 to m = 150, which correspond to numbers of mutations for real single-cell sequencing
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data analyzed in previous studies [7, 25, 57]. For each test example, the simulation starts with

the single clone without mutations and with the random mutation rate θ0. At subsequent itera-

tions, existing clones i produce offspring at rates θi; at each such event an existing clone i gives

birth to a new clone j with the mutation rate θj uniformly sampled from the interval [θmin,

θmax] (by default θmin = 0.005, θmax = 0.01) by acquiring a random mutation from the set {1,

. . ., m}. The simulation ends when the desired number of clones is produced.

We validated the ability of MULAN to infer all three families of parameters of the model

(3), i.e., the transmission rates, the times of mutation events, and the binary tree topology (or,

equivalently, orderings of offspring of the mutation tree nodes). For the primary experiments,

Algorithm 1 was executed with the initial mutation rates y
0

i ¼
1

2
ðymin þ ymax Þ; i ¼ 1; :::;m.

The following accuracy measures were used:

• Rate and time inferences were quantified by the mean absolute percentage accuracy

MAPA = 1 −MAPE, where MAPE is the mean absolute percentage error.

• Ordering inference was quantified by the mean Kendall tau distance between true and

inferred offspring orders for the nodes with outdegrees di� 2.

The mutation rates of leafs were not considered, since they do not have offsprings required

for reliable rate estimation.

The results of MULAN evaluation on simulated trees are shown in Fig 2. The mean accura-

cies of rate, time and order inference were 0.86 (std = 0.02), 0.92 (std = 0.11) and 0.98

(std = 0.01), respectively. The ability of MULAN to accurately reconstruct tree topologies is

particularly important, as it validates the application of MULAN to the analysis of evolutionary

histories described in Subsection 3.2. The number of mutations does not have a great impact

on the algorithm accuracy, possibly because the algorithm is likely to produce the optimal

solution with respect to the objective (2) owing to the optimized search over the space of possi-

ble mutation orderings and the accuracy of the estimations suggested by Theorem 1. Indeed,

the crucial assumption of our approach is based on Theorem 1, which establishes the hierarchy

of mutation orderings that is valid for all sampling times. Although Theorem 1 operates with

approximations, the experimental validation suggests that this hierarchy is always valid (Fig 3,

right). Changing initial conditions to the random values uniformly sampled from the interval

[θmin, θmax] does not significantly affect the results, with the mean rate, time and order infer-

ence accuracy changing to 0.83, 0.92 and 0.96, respectively.

In another evaluation experiment, we compared MULAN with an MCMC-based method,

which samples from the space of tree edge lengths using the method proposed in [51], calcu-

lates birth times and orderings from these lengths and estimates mutation rates using (4). The

mean accuracies of rate, time and order inference of this method were 0.72 (std = 0.03), 0.40

Fig 2. Performance of MULAN on simulated data with n = 70, . . ., 150 mutations. Left: accuracy of rate estimation. Center:

accuracy of times estimation. Right: accuracy of orderings estimation.

https://doi.org/10.1371/journal.pcbi.1008454.g002
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(std = 0.11) and 0.18 (std = 0.16), respectively (Fig 3, left). We also verified MULAN’s robust-

ness to the sequencing noise and to the choice of the tumor phylogeny inference method. In

that case, random errors were introduced to clone mutation profiles with n = 70 mutations

and with 3 copies of each clone at false-negative rates α = 0.1 and the false positive rate β =

10−5, the mutation trees were reconstructed from these profiles using the state-of-the-art tool

SCITE [25] and the recently released tool PhISCS-BnB [45, 58]. The accuracy of rate inference

was affected insignificantly (Fig 3) indicating the robustness of MULAN results to the sequenc-

ing noise provided the properly selected phylogeny inference algorithm.

The algorithm scales polynomially with the problem size and produces the results within

minutes (Fig 4, left). In the overwhelming majority of cases, EM converges within 10

iterations.

Finally, Fig 4, center and right, demonstrates the posterior distributions and relative stan-

dard errors (i.e. the standard error divided by the mean) of inferred mutation rates for several

test datasets, as estimated using the method described in Subsection 2.4.

3.2 Experimental data

In this subsection, we used MULAN to analyze scSeq data from JAK2-negative myeloprolifera-

tive neoplasm [59] and from lymphoblastic leukemia [60]. The datasets contain 18, 20, 16, 10

mutations and 58, 111, 115 and 146 cells, respectively, and were analyzed as is without any

modifications.

Fig 3. Left: accuracies of rate, time and order estimation for MULAN (blue) and MCMC algorithm (red). Center: accuracy of rate

estimation (n = 70) for the clean data and the trees inferred by SCITE and PhISCS-BnB from noisy data. Right: likelihoods LT,σ(H)

for different orderings σ. The graph demonstrates the hierarchy of orderings based on the corresponding likelihoods that remain

the same for all sampling times H.

https://doi.org/10.1371/journal.pcbi.1008454.g003

Fig 4. Left: algorithms’ running time. Center: the posterior distributions of inferred mutation rates for 9 selected subclones in one of the test

datasets. Each small plot shows the rate distribution for the particular subclone together with the mean value m and the standard error σm. Right:

distributions of relative standard errors of rate distributions for five test datasets.

https://doi.org/10.1371/journal.pcbi.1008454.g004
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Analysis of evolutionary histories. Here we used the MULAN model to assess the likeli-

hoods of alternative tumor evolutionary histories. The datasets under consideration were used

in [61] to demonstrate the violation of the infinite site assumption. For a dataset with m muta-

tions, the authors of [61] used the tool infSCITE to infer the perfect phylogeny and m mutation

trees Ti with one of m mutations i having a recurrence (recurrence trees). According to the

error-based likelihood model used in [61], the recurrent trees have much higher likelihoods

than the perfect phylogeny (Fig 5), thus strongly pointing to the presence of recurrent muta-

tions. However, differences between the likelihoods of recurrence trees are of much smaller

magnitude than their difference with the perfect phylogeny. It suggests that without the infinite

site assumption, the number of possible alternative evolutionary histories accurately explaining

the observed ScSeq data increases, and it becomes challenging to choose between by taking

into account only sequencing errors. In what follows we demonstrate that evolutionary-based

likelihood estimated using MULAN allows to significantly reduce the set of plausible evolu-

tionary histories.

For each tree constructed by infSCITE, we estimated the following:

(a) the evolutionary likelihood of the most probable fitness landscape, as calculated by our

recently published tool SCIFIL [18]. Roughly speaking, this likelihood measures the

probability to observe given subclone frequencies when the clonal population evolution-

ary trajectory over the most likely inferred fitness landscape is described by the tree T.

(b) the likelihoods of mutation instability landscapes with three mutation rates, one of

which correspond to the normal rate.

It turned out that for the analyzed dataset, mutability likelihoods and evolutionary likeli-

hood provided an additional strong signal that allows to resolve the ambiguities present in the

error-based model. It is especially visible for the JAK2-negative myeloproliferative neoplasm

(Fig 5). There, both likelihoods point to the same two mutations FRG1 and ASNS as most

Fig 5. Log-likelihoods of trees with and without recurrent mutations for JAK2-negative myeloproliferative neoplasm. Upper

left: log-likelihoods produced by infSCITE. Upper right: log-likelihoods produced by SCIFIL. Lower middle: log-likelihoods

produced by MULAN.

https://doi.org/10.1371/journal.pcbi.1008454.g005
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probable recurrent mutations and trees TFRG and TASNS as most probable trees. Only these two

trees had higher likelihoods than the perfect phylogeny (even despite the fact that they define

more transmission events), and their mean mutability log-likelihoods were higher than for

other recurrence trees: −70.46 (std = 1.53) vs −78.75 (std = 7.79).

Independent acquisitions of mutations with confirmed cancer effects in parallel lineages

potentially indicate the convergent evolution and may be suggestive of their evolutionary

advantage. In this context, it should be noted that both FRG1 and ASNS have been identified

in [59] as belonging to the shorter list of selected mutations having the highest likelihood of

being involved in essential thrombocythemia initiation and/or progression. Furthermore, 5

out of 7 most likely repeated mutations identified by MULAN belong to that list.

For the lymphoblastic leukemia datasets, the signal was not so strong, possibly because

introductions of repeated mutations did not significantly alter the topologies of the recurrence

trees (see [61]), thus resulting in many of them having close mutability likelihoods. Neverthe-

less, even then, the correlations between evolutionary and mutability likelihoods of the trees of

the 5 analyzed datasets were 0.85, 0.31, 0.96, 0.91, and 0.69, respectively, with both models

agreeing on the most probable recurrence trees. The fact that the same signal was produced by

two independent models can be considered as an indicator of their validity. It also suggests

that the reliable inference of tumor phylogenies under the finite site assumption requires the

utilization of advanced likelihood models that take into account the dynamics of cancer evolu-

tion in addition to the simpler models regulating the number and type of mutation events.

Analysis of mutability models. In this set of experiments, our purpose was to test the

assumption that mutation rates change over the course of tumor evolution. For this purpose,

we compared the single-rate model with the simplest model non-flat mutability landscape

model that assumes two mutation rates. Following [61] and [39], the moldels were compared

using Bayes factor BF [62], Akaike Information Criterion difference ΔAIC [63] and Bayesian

Information Criterion difference ΔBIC [64]. In our case, these parameters are estimated as

BF ¼ expðL2 � L1Þ; DAIC ¼ 2ðk1 � k2Þ þ 2ðL2 � L1Þ; DBIC ¼ ðk1 � k2Þ log ðnÞ þ 2ðL2 � L1Þ; ð18Þ

where n is the number of vertices of the tree T, L1 and L2 are maximum log-likelihoods of one-

mutation and two-mutation models, and k1 = 1 and k2 = 3 are the numbers of parameters esti-

mated by these models (the mutation rate in the former case and the two mutation rates and

one rate change event in the latter case). Larger positive values of parameters indicate the pref-

erence of the two-rate model over the one-rate model. The models were compared for the per-

fect phylogeny TPF and the two most probable recurrence trees TFRG and TASNS for the

JAK2-negative myeloproliferative neoplasm [59], as well as for the trees produced by SCITE

[25] for lymphoblastic leukemia datasets [60]. For 3 out of 6 trees, the evidence for the variable

mutation rate is considered as very strong (according to [62]), for 2 trees—as strong, and for

one tree (TFRG) the evidence for any of the models was not conclusive (Table 1).

Mutability landscape of JAK2-negative myeloproliferative neoplasm. For two most likely

recurrent trees TFRG and TASNS identified above, more detailed analysis of their mutability

landscapes using the general MULAN model demonstrated that in both cases the increase in

Table 1. Comparison of one-rate and two-rate models for experimental data.

Tree TPF [59] TFRG [59] TASNS [59] T1 [60] T2 [60] T3 [60]

BF 5.010 � 105 1.448 � 101 2.587 � 105 5.037 � 103 3.882 � 102 9.199 � 101

ΔAIC 26.249 5.3456 24.925 13.049 7.923 5.043

ΔBIC 20.358 −0.543 19.036 11.058 6.378 4.438

https://doi.org/10.1371/journal.pcbi.1008454.t001
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the inferred mutation rates is likely associated with the emergence of mutation in the gene

SESN2 (Fig 6). SESN2 is an antioxidant activated by p53, and it is indeed known that mutations

in this gene may lead to genetic instability [59]. The structures of inferred mutability land-

scapes for these two trees also suggests that under the maximum parsimony criterion the first

tree could be considered as more plausible than the second tree, where clones revert from

higher to lower rates in one of its branches.

4 Discussion

Genomic instability is a typical characteristic of cancer cells, which may significantly contrib-

ute to tumor progression. Another paramount feature of cancer is an extremely high intra-

tumor heterogeneity, with the genomic instability being one of the traits that may significantly

differ between subclones. Thus, quantification of differential mutability and genomic instabil-

ity for tumors may provide valuable information for understanding mechanisms of cancer

progression and the design of personalized treatment strategies. The phenomenon of heteroge-

neous genomic instability could be geometrically represented by a concept of mutability land-
scape, which is the analog of the classical concept of the fitness landscape. Single-cell

sequencing provides an unprecedented insight into intra-tumor heterogeneity and allows us to

assess and study mutability landscapes of tumors on the finest possible level of individual sub-

clones. In this paper, we presented likelihood-based methods for the inference of mutability

landscapes of cancer subclonal populations from single-cell sequencing data. Most available

methods for inference of differential mutation rates are tailored to the populations consisting

of relatively distant genomes. In contrast, our method is specifically tailored to the specifics of

cancer clone populations that consist of highly similar but distinct genomes and takes full

advantage of the information about the structure and evolutionary history of the clonal popu-

lation provided by single-cell sequencing. It infers mutation rates of subclones rather than

individual genes, thus making it possible to use the obtained results to detect and quantify

genomic interactions and epistasis. Instead, then considering all possible cancer phylogenies,

MULAN uses as a starting point, a character-based mutation tree produced by other tools.

This tree represents partial information about the order of the appearance of the clones.

MULAN enriches this information by reconstructing orders of the appearance of sibling

clones in the tree and uses it to infer mutation rates and clone appearance times. Thus, our

methods can be used jointly with available tools for cancer tree inference from scSec data, such

as SCITE [25], SiFit [51], SPhyR [27] and SCARLET [56], as well as from a combination of

bulk and scSec data such as B-SCITE [46] and PhISCS [45]. The latter approach could be espe-

cially useful in the context of mutation clusters resolution. Indeed, MULAN assumes by default

Fig 6. Two alternative mutation trees with the repeated mutations in ASNS gene (top) and FRG1 gene (bottom), respectively. The

different mutation rates are color-coded from green (low rate) to orange (high rate). The node corresponding to the mutation in SESN2

gene is highlighted. Leafs (not taken into account) are highlighted in white.

https://doi.org/10.1371/journal.pcbi.1008454.g006
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that every mutation results in a new subclone. However, scSec-based methods sometimes infer

branches of mutations whose linear ordering cannot be resolved and group them into muta-

tion clusters. Bulk data provides information about variant allele frequencies that allows infer-

ring the temporal order of such mutations [46]. If such data is unavailable, ambiguities in

clusters could be resolved arbitrarily, but the set of inferred mutation rates of clustered nodes

should be interpreted as representing the whole subpopulation rather than individual

subclones.

Our experiments demonstrated that the proposed approach allows for accurate inference of

mutability landscapes and can be used for the analysis of the evolutionary history for real

tumors. In particular, MULAN was able to detect a mutability increase event during the evolu-

tion of JAK2-Negative Myeloproliferative Neoplasm, that could be linked to the mutation in

the gene with known associations with genetic instability. In addition, for several analyzed

tumors the evolutionary signal produced by our mutability landscape model agreed with the

signal produced by an independent fitness landscape model. This fact could be considered as

an indication of the validity of both models.

There are several directions for the possible expansion of the proposed computational

framework. Since mutation rates are the most important parameters for the inference, it could

be beneficial to marginalize the likelihood over the remaining parameters. It may require the

derivation of analytical expressions and/or accurate approximations for the marginalized like-

lihood that allows reducing its maximization to convex programming. Another direction is the

development of the joint model for the inference of mutation and replication rates of cancer

subclones. In this paper, we follow the common assumption of the standard molecular clock-

based methods that do not consider population sizes. This assumption is usually justified, for

example, using the neutral theory of molecular evolution [65, 66], which is also applicable to

cancer [67, 68]. To take into account a wider range of evolutionary scenarios, a comprehensive

framework incorporating replication rate and mutation rate diversity should be developed.

One of advantages of such approach is its ability to utilize the observed frequencies of

sequenced clones for the inference (for example, of mutation orders). Such utilization is not

straightforward [18, 69]: high frequency of a particular clone can be indicative of its earlier

birth time or of its higher replication rate. To distinguish between these alternatives, an incor-

poration of a separate maximum likelihood framework is necessary. It potentially could be

achieved, for example, by integrating MULAN with our previously published framework SCI-

FIL for the inference of cancer fitness landscapes [18]. Finally, MULAN was developed with

targeted single-cell sequencing experiments in mind and it scales well for datasets typical for

such settings. It is still scalable for whole-genome sequencing, if the mutation tree has not too

many branching events. However, for more branching trees with thousands of vertices the

scalability could become an issue. In that case, faster strategy for search in the space of muta-

tion orderings should be considered.
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