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Osteoradionecrosis (ORN) is a major side-effect of radiation therapy in oropharyngeal

cancer (OPC) patients. In this study, we demonstrate that early prediction of

ORN is possible by analyzing the temporal evolution of mandibular subvolumes

receiving radiation. For our analysis, we use computed tomography (CT) scans from

21 OPC patients treated with Intensity Modulated Radiation Therapy (IMRT) with

subsequent radiographically-proven ≥ grade II ORN, at three different time points:

pre-IMRT, 2-months, and 6-months post-IMRT. For each patient, radiomic features

were extracted from a mandibular subvolume that developed ORN and a control

subvolume that received the same dose but did not develop ORN. We used a

Multivariate Functional Principal Component Analysis (MFPCA) approach to characterize

the temporal trajectories of these features. The proposed MFPCA model performs

the best at classifying ORN vs. Control subvolumes with an area under curve (AUC)

= 0.74 [95% confidence interval (C.I.): 0.61–0.90], significantly outperforming existing

approaches such as a pre-IMRT features model or a delta model based on changes at

intermediate time points, i.e., at 2- and 6-month follow-up. This suggests that temporal

trajectories of radiomics features derived from sequential pre- and post-RT CT scans can

provide markers that are correlates of RT-induced mandibular injury, and consequently

aid in earlier management of ORN.
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INTRODUCTION

Radiotherapy (RT) is a highly utilized modality in the treatment
of head and neck (H&N) cancers with well-established local
control and survival benefits (Pan et al., 2016). Advances
in radiation delivery techniques from 2-dimensional (2D)
and 3-dimensional (3D) techniques to intensity-modulated
radiotherapy (IMRT) with the ability to manipulate the beam
path to spare normal tissues has significantly improved cure
rates and toxicity profile (Allison et al., 2014). Despite that,
osteoradionecrosis is a late complication from radiation to the
mandibular bone with a serious impact on the quality of life for
a growing population of younger surviving head and neck cancer
patients (Oh et al., 2004). The incidence of ORN varied between
different modalities ranging from 2 to 40% in the conventional
era to 0–6% in the IMRT era. Different risk factors were
identified to play a role in the development of ORN following
radiotherapy treatments (Allison et al., 2013; Zhang et al., 2017).
Osteoradionecrosis has a great impact on the patients’ quality of
life if not detected and managed properly (Tucker et al., 2016;
Wong et al., 2017). Diagnosis of ORN mainly relies on clinical
and radiological tools such as computed tomography (CT) and
magnetic resonance imaging (MRI) with their limited capacity
for early detection (Tsien et al., 2014).

Fortunately, the recent advances in biomedical imaging were
coupled with the rise of radiomics in terms of extracting
quantifiable imaging features, possibly of high information yield
and subsequent computation of these features kinetics (e.g.,
delta-radiomics) derived from sequential images (Cacicedo et al.,
2016). Paired with machine learning techniques, we hypothesize
that radiomic feature kinetics can characterize and distinguish
mandibular bone subvolumes at higher risk of developing future
ORN. These “temporal virtual digital biopsies” might have the
potential to empower earlier intervention and hence improve
patients’ quality of life.

Consequently, the aims of this study are to:

1. Determine bone radiomic features derived from contrast-
enhanced CT (CECT) images that are significantly different
between ORN and non-ORN mandibular subvolumes.

2. Develop a predictive radiomic-based signature of
ORN based on CECT temporal changes in high-risk
mandibular subvolumes

3. Hypothesis generation for future prospective studies.

MATERIALS AND METHODS

Study Population
Following approval from an institutional review board (IRB)
at our institution, data for biopsy-proven OPC patients treated
between 2002 and 2013 who underwent radiation therapy as
a single or multimodality definitive therapy were considered
for the current investigation (n = 83). This investigation and
relevant methodology were performed in compliance with the
Health Insurance Portability and Accountability Act (HIPAA) as
a retrospective study where the need for informed consent was
waived (Freymann et al., 2012). Electronic medical records were
scanned for documented diagnosis of mandibular ORN following

IMRT in the absence of any prior head and neck re-irradiation
along the same lines as a previous ORN study by our team
(Mohamed et al., 2017). The aspects of our institutional IMRT
approach for oropharyngeal cancer patients were previously
reported in detail (Garden et al., 2013). All patients received
pre-radiotherapy Dental Oncology service clearance, and, if
indicated, prophylactic dental extraction and fluoride trays were
prescribed as per standard Head and Neck Service operating
procedure (Tsai et al., 2013). Inclusion and exclusion criteria for
patients’ selection are illustrated in Figure 1.

ORN Staging
The severity of ORN was graded I through IV as follows:
grade I, i.e., minimal bone exposure requiring conservative
management; grade II: minor debridement required; grade III:
hyperbaric oxygen therapy (HBOT) received; grade IV: major
surgery mandated. This staging system is very comprehensively
given its emphasis on response to treatment as a standard to
categorize ORN (Tsai et al., 2013). Patients who subsequently
suffered from radiographically &/or pathologically proven grade
II or worse ORN were included in this study.

CT Acquisition Protocol and Eligibility
Criteria
According to our institutional protocol, CECT images were
obtained as a prerequisite for pre-treatment diagnostic work-up.
Subsequent post-IMRT CECT scans for response evaluation and
further surveillance were routinely performed at 2 and 6-month
time points and then at regular preset intervals thereafter. Our
study revolved about extracting quantitative imaging biomarkers
from CECT at pre-IMRT (i.e., baseline), 2-month (post-RT2),
and 6-month (post-RT6) post-IMRT, as well as the time instance
corresponding to the development of ORN. To that end,
CECT scans with available non-reconstructed axial cuts at the
aforementioned 4 time points were retrieved. CT slices with
evident ORN lesions that were obscured or otherwise affected by
visible metal artifacts were not contoured and were not included
in the analysis.

All CT scans were attained with a multi-detector row
CT scanner. Scan parameters were as follows: slice thickness
reconstruction (STR) ranges between 1 and 3mm, with a median
STR of 1mm, X-ray tube current of 99–584mA (median:
220mA) at 120–140 kVp. All images acquired at our institution
were composed of 512 × 512 pixels and were acquired following
a 90 s delay after intravenous contrast administration. One-
hundred and twenty milliliters of contrast were injected at a
rate of 3 ml/s. To standardize the image voxel sizes for use in
texture feature calculations, all the CT scans were resampled, via
a trilinear interpolation voxel resampling filter (Shafiq-ul-Hassan
et al., 2017).

Image Segmentation and Registration
We specifically selected CECT scans demonstrating the earliest
radiographically evident ORN characteristic lesion(s) as reported
by radiologists and further confirmed by physical examination by
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FIGURE 1 | Patient selection. Flowchart of selection process of patients for this study.

physicians in Head &Neck Surgery as well as in Dental Oncology
[ORN CECT].

The original delivered DICOM-RT clinical treatment
plans were restored from Pinnacle treatment planning
system (Pinnacle, Phillips Medical Systems, Andover, MA)
into commercially available image registration software
(VelocityAITM 3.0.1). Diagnostic CECT scans at baseline, post-
RT2, post-RT6, and ORN were also imported. Radiographically
evident bony lesions were delineated manually by a radiation
oncologist (HE) to constitute the ORN volumes of interest
(VOIs). Physical exam and other available imaging modalities
such as dental-dedicated panoramic X-rays were utilized to guide
the segmentation of VOIs.

Planning CT was co-registered with ORN CECT using
deformable image registration algorithm of VelocityAITM 3.0.1.
The 3D reconstructed dose grid of RT plan was then overlaid
to the ORN CECT. A neighboring radiographically intact
mandibular subvolume within the same isodose distribution

volume was manually segmented and designated as “Control
VOI” at the ORN CECT. Subsequently, baseline, post-RT2,
post-RT6 CECT scans were co-registered with ORN CECT using
rigid registration algorithms of VelocityAITM 3.0.1. Both “ORN”
& “Control” VOIs were propagated from ORN CECT to other
CECT scans at all three prior time points (Figure 2).

Radiomics Features Extraction
Computed tomography scans with corresponding contoured
VOIs were then extracted in the Digital Imaging and
Communications in Medicine format (DICOM), as DICOM-
RT and RT-STRUCT files, respectively. These files were then
imported into an in-house image biomarker explorer (IBEX)
software, built on MATLAB for subsequent radiomics feature
extraction (Zhang et al., 2015) along the same lines as previous
studies (Elhalawani et al., 2018; Yang et al., 2018).
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FIGURE 2 | Imaging workflow. Registration of CECT scan at time of diagnosis of ORN to radiation dose grid as well as previous CECT scans at: baseline, 2-month,

and 6-month post-RT for each patient with subsequent propagation of ORN & “Control” VOIs.

Radiomic features were derived from two VOIs that
correspond to ORN and Control in the 3 prior time points: pre-
IMRT, post-RT2, and post-RT6 CECT scans. The number of
radiomic features extracted for each VOI summed up to 1,645
individual features. They included a myriad of first- and second-
order radiomic features (Supplementary Table 1). Second-order
radiomic features were calculated in both full 3-dimensional
images (3D) as well as 2.5D, i.e., features calculated for each 2-
dimensional slice and results were then combined. Other than
shape features, a trilinear interpolation voxel resampling filter
to 3mm slice thickness and 1 mm2 pixel spacing was applied
prior to feature extraction to standardize voxel size. First-order
feature categories include shape, intensity direct, and intensity
histogram. Whereas second-order feature categories encompass:
Gray level co-occurrence matrix (GLCM), gray level run length
matrix (GLRL) as well as neighborhood intensity difference.
For GLCM and GLRL features, calculations from multiple
spatial directions were combined to produce one value (Materka
and Strzelecki, 1998). For NID, 3 different permutations of
neighborhood, i.e., 3, 5, or 7 were employed as in previous
projects (Elhalawani et al., 2018,a,b).

Radiomics Features Pre-selection and
Reduction
Initially, we worked with radiomic features computed from VOIs
corresponding to ORN and Control for 24 patients. The number
of radiomic features extracted for each patient is 1,628. Three
patients did not have radiomic features computed for the post-
RT6 time point and hence completely excluded from subsequent
analysis. For these 21 patients, we only kept the radiomic features
whose values are available for (i) all 3 time points, and (ii) both
in “ORN” and “Control” VOIs. One patient has 2 distinct ORN
lesions; accounting for a total number of 43 individual VOIs (22

“ORN” and 21 “Control” VOIs). Thus, we are then left with 1,628
radiomic features from 43 VOIs, i.e., 22 “ORN” and 21 “Control.”

Feature reduction by correlation was critical to ensure that
the performance of any machine learning algorithm is not
degraded because of a high degree of correlation in the features,
or multicollinearity (Garg and Tai, 2013). We first compute
the Spearman correlation (Landberg et al., 1999; Zar, 2005)
for the 1,628 radiomic features at the pre-IMRT time point.
We filter out the features whose average correlation level
with all the remaining features is greater than a user-defined
threshold (Kuhn, 2008). For our data, we used a threshold of
0.5. The threshold was chosen to reasonably balance the dual
requirements of multicollinearity reduction and capturing data
variation. Following correlation filtering, we reduced the number
of features we analyze to 16 features (Supplementary Table 2).

First—as a proof of concept—, we sought to establish that
radiomics can quantitatively discriminate between ORN and
non-ORN mandibular subvolumes. Mann-Whitney test (Mann
and Whitney, 1947) was used to identify specific radiomic
features that show statistically significant differences between
ORN and non-ORN high-risk VOIs.

Functional Principal Component Analysis
We hypothesize that we can predict the risk of ORN by looking
at the temporal evolution of radiomic features. A standard way
of identifying temporal signatures in time series data is by
using functional principal component analysis (FPCA) (Shang,
2014; Aue et al., 2015). FPCA takes multiple time series curves,
as an input, and tries to find the underlying shape signatures
that optimally can be used to represent all the curves. These
shape signatures are called the functional Principal Components
(PC). Each time series can now be represented by a weighted
combination of each of the PCs. This technique has been used
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FIGURE 3 | Visual explanation of the FPCA algorithm and its advantages. The first row displays the 3 functional principal components (FPCs). On the left column, the

temporal evolution of a Gray Level Co-occurrence Matrix (GLCM)-3D feature is shown for three mandibular regions namely Regions 1,2, and 3. Regions 1 and 2 did

not develop ORN, while 3 did. We note that Regions 1,2, and 3 all have similar baseline values, so cannot be distinguished by a model built solely on pre-radiotherapy

features. Further, Regions 2 and 3 also have similar change in their values, which a delta radiomics model would see as equivalent scenarios. On the other hand, the

difference in the temporal kinetics is efficiently encoded in the 3 FPCs. The color and length of the arrows indicate the sign (+ve or –ve) and magnitude (large or low) of

relative contribution made by each FPC in explaining the time series. So, for example, Region 2 and Region 3, which appear alike to a pre-radiotherapy model and a

delta radiomics model, can be readily distinguished because of the difference in relative contribution made by the 3rd FPC.

to predict outcomes from sequential data in a wide variety
of fields such as remote sensing (Cardot et al., 2003), stock
markets (Foutz and Jank, 2010), electroencephalogram (EEG)
analysis (Shou et al., 2015), and cancer pathology (Barua
et al., 2018). Since our data is multivariate, in that we have
a time series for multiple features for the same patient, we
can compute the functional PCs for each feature. One way of
representation would be to assume each feature is independent,
concatenate the PC weights for each feature, and use this
concatenated representation as input to a machine learning
model. However, since each pair of features is correlated to
various degrees, we use a technique called multivariate FPCA
(MFPCA), which explicitly accounts for the relationship between
the features (Dauxois et al., 1982; Berrendero et al., 2011;
Chiou et al., 2014; Happ and Greven, 2018). We utilized
the R package MFPCA for our temporal kinetics analysis
(Happ and Greven, 2018).

The importance of FPCA is visually explained in Figure 3.
We display 3 temporal trajectories from our data on the
leftmost column. We observe that all 3 sequences T1, T2, and
T3, have similar starting points. Further time series T2 and
T3 have similar end points too. This mimics a significant

scenario which we try to address, whereby neither the pre-
radiotherapy features, nor the delta features can distinguish
between the patients. However, FPCA can distinguish all 3,
by accounting for both, the values taken by the time series,
and the shape of the trajectory. The top 3 FPCs representing
the dataset are shown visually in the top row. The relative
contribution of each FPC to each of the time series is shown
with arrows, the length of the arrows representing themagnitude,
and green and red color indicating the sign (positive and
negative, respectively) of the contributions. We can see that
the magnitude and sign of the individual contributions from
the PCs are quite different, and thus can help distinguish the
three-time series.

Training the Random Forest
We used repeated random sampling to produce random forests
where validation (Breiman, 2001) ensued where validation of
each forest was performed using the left out observations, and the
overall accuracy was calculated by averaging the class predictions
of each of the forests. The random forest has been shown to
be robust to over-fitting and among the most effective of the
commonly used classifiers (Breiman, 2001). Each forest used 500
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trees, and each split was determined using
√
p features where p

is the number of features. The random forest calculations were
performed using the random Forest package for R software (Liaw
and Wiener, 2002). To further examine the performance of the
model, the ROC curves were plotted and the area under the curve
(AUC) was calculated using pROC package for R (Robin et al.,
2011).

RESULTS

Patient Information
Twenty-one patients with oropharyngeal cancer (OPC)
were identified to have developed ORN after their definitive
radiotherapy± chemotherapy course, either in induction and/or
concurrent settings as in Figure 1. Eight patients developed grade
2 ORN, whereas 2 patients and 11 patients developed grade 3
and 4 ORN, respectively. The median time to ORN diagnosis was
20.3 months. Table 1 represents patient demographics, tumor,
radiation dose, and ORN disease characteristics.

Radiomics Can Distinguish Between ORN and

Non-ORN
An initial set of 1,628 radiomic features were computed for
each ORN and Control volume of interest (VOI) obtained
from the 21 eligible patients across 3 time points of interest
representing baseline (pre-IMRT), 2-month (post-RT2) post-
IMRT, and 6-month (post-RT6) post-IMRT. Sixteen radiomics
features were ultimately nominated as non-interrelated and
consistently available for all three time points. As an initial
exploratory step, we computed which of these 16 radiomic
features were significantly different between the ORN and
Control volumes of interest (VOIs) using a Mann-Whitney test.
Furthermore, we also computed if each of these features is larger,
or smaller, on average for the ORNVOI compared to the Control
VOI. This demonstrates that certain radiomic features differ
significantly between ORN and non-ORN regions, motivating us
to investigate if their evolution can foretell ORN incidence. The
significantly different features and their associated p-values are
reported in Table 2.

The radiomics features which values are significantly different
between the “ORN” and “Control” VOIs at the ORN time point
identified using a Mann-Whitney test. The corresponding p-
value is reported in the second column. We also report the
direction of the difference of means between the ORN and
Control VOI feature values in the third column.

Model Construction
We trained random forest models using 500 trees for each of
multiple approaches as outlined below: (Figure 4)

• Baseline: Radiomic features computed on the pre-IMRT
CECT scans.

• Delta (2-month follow-up): Relative change in the radiomic
features from pre-IMRT to post-RT2

• Delta (6-month follow-up): Relative change in the radiomic
features from pre-IMRT to post-RT6.

• Temporal Trajectory: The model built using the proposed
multivariate functional principal component analysis

TABLE 1 | Patients, disease, and treatment characteristics.

Characteristics N (%)

SEX

Male 20 (95.2%)

Female 1 (4.8%)

Age at diagnosis, years: median (range) 61 (57–68)

ETHNICITY

White or Caucasian 17 (81%)

Hispanic or Latino 2 (9.5%)

African American 2 (9.5%)

SMOKING STATUS

Current 10 (47.6%)

Former 5 (23.8%)

Never 6 (28.6%)

Smoking pack-years (median; IQR) 10 (0–40.5)

TUMOR LATERALITY

Right 9 (42.9%)

Left 11 (52.4%)

Midline 1 (4.7%)

OROPHARYNX SUBSITES

Base of tongue 12 (57.1%)

Tonsil 7 (33.3%)

NOS* 2 (9.6%)

T CATEGORY

T1 2 (9.5)

T2 10 (47.6%)

T3 5 (23.8%)

T4 4 (19.1%)

N CATEGORY

N0 2 (9.5%)

N1 0

N2 19 (90.5%)

N3 0 (0)

THERAPEUTIC COMBINATION

Induction chemotherapy (IC) followed by concurrent

chemoradiation

10 (47.6%)

IC followed by radiation alone 1 (4.8%)

CC 10 (47.6%)

VITAL STATUS

Alive 14 (66.7%)

Dead 7 (33.3%)

Radiation dose (median; IQR) [Gy] 70 (66–70)

Radiation fractions (median; IQR) 33 (30–33)

Onset of post-RT ORN (median; IQR) 20.3 (7.5–95)

ORN LATERALITY (IN RELATION TO PRIMARY TUMOR)

Ipsilateral 17 (81%)

Contralateral 2 (9.5)

Bilateral 2 (9.5%)

RADIATION DOSE AT THE ORN VOLUME (MEDIAN; IQR) [GY]

Mean dose 67.9 (59.5–71.2)

Minimum dose 51 (44–59.4)

Maximum dose 68.9 (67.6–73.1)

IQR, inter-quartile range; Gy, Gray; NOS, Not otherwise specified;

ORN, osteoradionecrosis.
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TABLE 2 | Significantly differing radiomics features between ORN and

Control VOIs.

Feature p-value Mean difference of feature value

between ORN and Control

feature values

Gray Level Co-occurrence Matrix

25-333-1

InformationMeasureCorr1

0.028 Negative

Gray Level Co-occurrence Matrix

312-4 Cluster Shade

0.034 Positive

Gray Level Co-occurrence Matrix

310-1 Dissimilarity

0.009 Positive

Gray Level Co-occurrence Matrix

38-1InverseDiffMomentNorm

0.0002 Negative

Intensity- Mean 2.43E-7 Negative

Intensity- Local entropy median 4.65E-6 Negative

FIGURE 4 | Overview of radiomics features based approaches. Various

approaches to integrate radiomics features obtained at multiple (≥1) time

points toward building predictive models.

(MFPCA) approach that models the temporal kinetics of the
features. Since the time points are not uniformly spaced, we
used cubic spline sequence completion to fill in radiomic
features at intermediate monthly time points.

• Baseline + Temporal Trajectory: We combined the
predictions from the baseline model and the temporal
trajectory model to give a more robust ORN-risk predictor.

A complete step-by-step guide for the model construction
pipeline is presented in Appendix A1.

The corresponding areas under the curves (AUCs) and 95%
confidence intervals (C.I.) for the prediction of occurrence of
ORN “Yes vs. No,” in both “ORN” and “Control” VOIs according
to the 5 models are depicted in Table 3 and illustrated in
Figure 5. We noticed that the baseline features model gives
an AUC of 0.59 (95% C.I: 0.41–0.76), while the temporal
trajectory gives an AUC of 0.74 (95% C.I: 0.61–0.9). We further
built an ensemble model that combines the predictions of the
baseline model and the temporal trajectory model, to see if these
two models have complementary information that improves
performance. We achieved an AUC of 0.68 (95% C.I: 0.53–
0.86), likely due to the poor performance of the baseline model
which consequently was detrimental to the performance of the
combined model. This suggests a more careful approach is
needed when choosing pre-IMRT features. Surprisingly, models

TABLE 3 | A comparison of the Areas under the curves (AUCs) and the 95%

confidence intervals for the various approaches.

Method AUC (95% CI)

Baseline 0.59 (0.41–0.76)

Delta (2-month follow-up) 0.64 (0.46–0.81)

Delta (6-month follow-up) 0.56 (0.39–0.74)

Temporal trajectory 0.74 (0.61–0.90)

Baseline + Temporal trajectory 0.68 (0.53–0.86)

constructed using percent changes “or delta changes” of the
radiomic feature values, performed poorly in predicting ORN
incidence with AUCs of 0.64 (95% C.I: 0.46–0.81) and 0.56 (95%
C.I: 0.39–0.74) for 2 and 6-month delta changes, respectively.
We further observe that the temporal trajectory and combined
models have a consistent performance in both low-specificity
and high-specificity regimes, in contrast to the delta models
which performance is dependent on the regime of choice. This
demonstrates that greater reliability is achieved by incorporating
the temporal kinetics of the radiomic features. We do note that
as a result of the small sample size, the confidence intervals
of the models are wide and overlapping. As such, larger
validation studies are needed to gauge the true performance of
the models.

To enable the use of our temporal trajectory model for
the stated aim of ORN prediction, we compute the optimal
point on the ROC curve as the point that maximizes
the Youden’s index (sensitivity+specificity-1) (Youden, 1950).
As shown in Supplementary Figure 1, the optimal point
corresponds to a sensitivity of 0.73 and specificity of 0.62.
The optimal threshold for the temporal trajectory model,
which represents the cutoff probability value above which
a given mandibular region is predicted to be “Control” is
found to be 0.54. Thus, if the temporal trajectory model
predicts the likelihood of a given region as lower than 0.54,
the region is classified as “ORN” and if the probability is
higher, the region is classified as “Control.” We next generate
the confusion matrix for the 43 regions classified using the
optimal threshold value; 72.7% of ORN regions and 61.9%
of Control regions were correctly classified as shown in
Supplementary Figure 2.

DISCUSSION

The incidence of head and neck cancer is on the rise, despite
reductions in smoking, owing to the recent prevalence of
the human papillomavirus (HPV)-associated OPC epidemic
(Ang et al., 2010). Forward, it’s projected that hundreds
of thousands of locally advanced OPC patients worldwide
will receive radiation to the head and neck as a definitive
treatment modality (Chaturvedi et al., 2011). This rise in RT
recipients implies that mandibular bone, which comprises the
borders of the oropharynx, will be necessarily irradiated
to ensure adequate tumor coverage with subsequently
growing incidence of crippling sequelae such as ORN
(Gomez et al., 2011).
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FIGURE 5 | ROC curves computed for various radiomics feature based

approaches. The temporal trajectory model using MFPCA (blue) performs

better than the other four models: (i) baseline model (red), (ii) delta model after

2-month follow-up (orange), (iii) delta model after 6-month follow-up (purple),

and (iv) an ensemble of baseline and temporal trajectory models (black).

Osteoradionecrosis ranges from superficial, slowly progressive
bone erosion/devitalization to pathological fracture in a
previously irradiated field and may cause significant hardship
in the afflicted individual (Mendenhall, 2004; Hamilton
et al., 2012). This is particularly apparent when considering
devastating lifelong issues with oral hygiene, nutritional
inadequacies, and difficulty with speech and resultant preclusion
of social interaction (Bonner et al., 2006). Early diagnosis and
intervention, whether conservative or surgical, are key for
improving outcomes (Ben-David et al., 2007). This essentially
applies for grade II ORN, where no consensus has been reached
regarding definitive treatment procedures (Oh et al., 2009;
Jacobson et al., 2010).

Using CT Radiomics to Identify Mandibular
Subvolumes At-Risk of ORN
To date, no imaging modality/clinical nomogram have been
shown to precisely foresee the potential risk of developing
osteoradionecrosis following IMRT (Allison et al., 2014). Being
fully integrated throughout various phases of HNCmanagement,
sequential CECT scans via radiomics analytics can provide a
plethora of data that can serve as quantifiable surrogates of tissue
vitality and vascularity, among others (Wong et al., 2016). To
our knowledge, this study is the first to characterize the kinetics
of radiomics features of various mandibular subvolumes, before
and after exposure to IMRT, to identify subvolumes at high risk
ahead of developing ORN. Radiomics features were analyzed
longitudinally for quantifying temporal changes in mandibular
bone structure in a cohort of OPC patients.

Applying FPCA to Capture Longitudinal
Changes in Mandibular Radiomic Features
This has been subsequently integrated into a framework for early
prediction of ORN solely based on sequential diagnostic CECT

scans. We implemented a Functional Principal Component
Analysis (FPCA)-based approach that efficiently models the
temporal evolution of radiomic features. The model built using
a multivariate FPCA (MFPCA) representation of the entire
temporal dataset, predicts the likelihood of ORN development
with an AUC = 0.74 (95% C.I 0.61–0.9). We further built an
ensemble model that combines the predictions of a baseline
model built using pre-IMRT features, and the MFPCA-based
model, to leverage information from both baseline feature values
and temporal evolution of feature values, which achieved an AUC
of 0.68 (0.53–0.86). This emulates the pathophysiology theories
that combine pre-irradiation bone condition and RT-induced
alterations on tissue, cellular and cytokine levels (Fan et al., 2014).
The latter involves: (1) endarteritis and vascular thrombosis
with subsequent bone hypoxia and hypocellularity as well as
atrophic fibrosis as a consequence of RT-induced activation and
dysregulation of fibroblastic activity (Marx, 1983; Jacobson et al.,
2010). The fact that the ensemble model does not perform better
than theMFPCA-only model suggests the need to choose the pre-
IMRT features in a way that is more clinically meaningful than a
purely data-driven correlation thresholding approach.

Bone texture analysis has been investigated for years as a
potential biomarker of a myriad of structural bone changes
related to osteoporosis (Ollivier et al., 2013; Roberts et al.,
2013). Interestingly, first-order bone texture features derived
from simulation CT scans were correlated to the risk of radiation-
induced insufficiency fractures in patients undergoing pelvic
radiation (Nardone et al., 2017). Along the same lines, for
vascularization status, a previous study by Yin et al. investigated
the correlation between angiogenesis (or: new blood vessel
formation) in primary renal cell carcinoma and radiomic imaging
features from positron-emission tomography (PET) and/or MRI
(Yin et al., 2017).

Our study identifies the bone radiomics features which
temporal evolution is critical in determining ORN risk. These
represent quantifiable imaging biomarkers that capture various
intensity and spatial texture dimensions of the aforementioned
RT-related bone environment changes in the irradiated field.
Most of the discriminating features belong to: “Neighborhood
intensity difference” (NID) and “Gray level co-occurrence
matrix” (GLCM) categories. The GLCM is amatrix that expresses
how combinations of discretized gray levels of neighboring
pixels, or voxels in a 3D volume, are distributed along one of
the image directions. Generally, the neighborhood for GLCM
is a 26-connected neighborhood in 3D and an 8-connected
neighborhood in 2D (Liang et al., 2016). The “NID 2.5D Texture
strength” quantifies how uniform a texture is, i.e., complex
textures are non-uniform and rapid changes in gray levels are
common (Amadasun and King, 1989). GLCM3 Cluster shade
is a measure of the skewness or asymmetry of the matrix and
is believed to be a more objective uniformity metric (Unser,
1986). On the other hand, GLCM3 Contrast gauges gray level
variations in the volume of interest, i.e., the difference between
the highest and the lowest values of a continuous set of pixels
(Haralick et al., 1973). GLCM3Correlation is ameasure of texture
smoothness, where higher values denote regions with similar
gray-levels (Yang et al., 2012). Nonetheless, it is unclear how
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these radiomic features are linked to well-known physiological
underpinnings of ORN evolution. A future validation study
including biological imaging is warranted to investigate the link
between these radiomic features and physiological properties.

We have seen that there is significant information regarding
ORN progression in the first 6 months after radiotherapy that
can be robustly correlated to risk of ORN. Functional principal
component analysis is an efficient statistical algorithm to capture
the temporal evolution of the mandible landscape. Competing
techniques such as pre-radiotherapy only models and delta
radiomics models do not encapsulate how different features
evolve with time. The FPCA efficiently encodes the temporal
kinetics of the features into its functional principal components
(FPCs). The radiomics data can now be compactly represented
by only a small set of numbers but can still capture its time-
varying properties.

Furthermore, we implement a multivariate FPCA (MFPCA)
that accounts for the correlations that exist between various
radiomics features. MFPCA distills a large set of features to a
few specific ones that encompass most of the data variation.
This makes our prediction model more likely to generalize to
new, unseen data (Happ and Greven, 2018). We observe from
the receiver operating characteristic curves that the temporal
trajectory model performs consistently better than the other
models in both the high- and low-specificity or false positive
regions. This demonstrates the reliability of using temporal
kinetics, for example, compared to a delta model, which we
observed to have vastly different performance depending on
the specificity value. The combined prediction model does
not improve over the temporal trajectory only model, possibly
because of the extremely poor performance of the baselinemodel.
However, the combined model also performs consistently in both
the low- false positive or high false positive regimes. We envisage
that with amore careful choice of features, the baselinemodel can
be improved, which will significantly improve the performance
of the combined model. We note however that while the average
performance of the MFPCA model is at least 10 percentage
points better than either the baseline or the two delta models, the
respective confidence intervals are overlapping across models. As
such, larger validation studies are needed to find out the true
predictive ability of each of the models investigated.

The preliminary feature filtering step was performed by
setting an upper limit of 0.5 on average correlation value for
a given radiomic feature. Meaning, if a given radiomic feature
correlated with all other features more than 0.5 on average, it
was dropped from our feature set. The choice of value was made
to whittle the number of features down from a mammoth 1,628
to a more manageable 16 given the small sample size of our
cohort. The reduction of features is necessary to compute robust
functional principal components as well as reduce the possibility
of overfitting by the random forest models. We also found that
reducing the number of features further led to a drop in the
model performance, which suggests loss of information crucial
to prediction performance.

Our study accounted for the fact that artifacts from metal
dental fillings are known to encumber target delineation and
subsequent radiomics analysis (Leijenaar et al., 2015; Block

et al., 2018). For this purpose, the presence of visible dental
artifacts effect anywhere in the slices that encompassed “ORN”
or “Control” VOIs at any time point precluded the integration of
this scan and hence the patient’s data as an input to the model.

Study Limitations
The fact that we excluded these patients with metal dental fillings,
combined with the low event rate of ORN in the IMRT era, as well
as the fact that we excluded patients with grade I ORN with no
radiographically-evident bone lesions to delineate, contributed
to the low sample size; hence limiting the generalizability
of the resulting model. The small sample size limited us to
apply automatically generated radiomics features instead of
engineering features that are explicit surrogates for early vascular
injuries of the mandible. Sub-group analysis based on variables
such as T-stage, radiation dose, and chemotherapy usage were
infeasible because smaller sample sizes within each group reduces
the robustness of the functional principal components computed
and hence the statistical value of any subsequent sub-group
analysis. Another limitation of this study is the conceivable
uncertainties introduced from varied acquisition parameters or
incongruence among various scanners, or even between different
models from the same vendor (Mackin et al., 2015). Most patients
had their scan performed at our center along the same acquisition
parameters. Moreover, we have applied a pre-processing trilinear
interpolation aiming at standardizing voxel size to reduce or
eliminate relevant variability in radiomics features (Mackin
et al., 2017). The results also suggested that the performance
changed rapidly when we changed the number of features, which
suggests the need for a more careful feature-filtering algorithm.
Designating a “Control” VOI that share the same image, time
point, and deposited radiation dose with the “ORN” VOI is an
approach we have used and would recommend for future multi-
institutional radiomics studies. However, it should be noted that
our model was trained on a homogenous, carefully selected set
of patients with OPC where mandibles received similarly high
doses of radiation; hence limitingmodel generalization to varying
clinical scenarios.

Future Directions
Not far from longitudinal imaging studies, our team previously
showed that Dynamic Contrast-Enhanced (DCE-MRI) can
provide biomarkers that are physiological correlates of acute
mandibular vascular injury and recovery temporal kinetics (Joint
and Neck Radiotherapy, 2016). This has further motivated a
National Institute of Dental and Craniofacial Research (NIDCR)-
funded prospective trial that explores the correlation between
DCE-MRI derived spatiotemporal parameter maps following
external beam radiation therapy (EBRT) and subsequent
development of ORN (ClinicalTrials.gov S., 2020). Upon accrual
completion, CT scans from this study will be used for re-training
and externally validating our model. This could potentially
optimize model generalization since patients will display more
diverse and representative head and neck cancer sites, radiation
doses, and other clinical variables. Our results may prompt
the investigation of DCE-MRI-derived radiomics analytics and
subsequent integration into the overall predictive model; thus,
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providing more physiologically and biologically cognizant data
inputs for the machine learning techniques tested.

Furthermore, the availability of larger cohorts will provide
potential avenues for model validation and generalization over
the whole mandible in patients with ORN vs. healthy controls.
Specifically, a larger cohort wouldmake it possible to examine the
performance of our FPCA-based model across T-stage, radiation
dose, and chemotherapy usage, providing additional insights into
the impact of these variables on ORN development. In future
validation studies, we plan to enroll more patients with more
evenly distributed variable levels. A proposed application would
be engineering radiomics features that are explicit surrogates
for osteoclastic dysregulation and subsequent fibro-atrophic
bone changes, and maybe monitoring the response to common
therapeutic maneuvers, such as pentoxifylline.

CONCLUSION

Radiomics analysis allows for quantification of changes in RT-
related bone structure from diagnostic imaging modalities with
subsequent integration of serially derived radiomics features into
an ORN probability computational tool. Computationally, FPCA
efficiently encodes the temporal kinetics of a given radiomic
feature. The MFPCA then compactly combines the temporal
information from FPCA from multiple radiomic features.

In summary, we hope this study calls professionals’ attention
to non-traditional inputs (radiomics), dimensions (temporal
kinetics), and innovative statistical approaches (MFPCA) to
improve interpretation and integration of imaging biomarkers
into RT toxicities prediction andmitigation. In this work, we have
thus provided an end-to-end framework for predicting the risk of
RT-related ORN based entirely on radiomic features.
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