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Abstract

Background: Alternative polyadenylation (APA) causes shortening or lengthening of the 3-untranslated region (3-UTR) of genes (APA
genes) in diverse cellular processes such as cell proliferation and differentiation. To identify cell-type–specific APA genes in scRNA-Seq
data, current bioinformatic methods have several limitations. First, they assume certain read coverage shapes in the scRNA-Seq data,
which can be violated in multiple APA genes. Second, their identification is limited between 2 cell types and not directly applicable
to the data of multiple cell types. Third, they do not control undesired source of variance, which potentially introduces noise to the
cell-type–specific identification of APA genes.

Findings: We developed a combination of a computational change-point algorithm and a statistical model, single-cell Multi-group
identification of APA (scMAPA). To avoid the assumptions on the read coverage shape, scMAPA formulates a change-point problem
after transforming the 3 biased scRNA-Seq data to represent the full-length 3-UTR signal. To identify cell-type–specific APA genes
while adjusting for undesired source of variation, scMAPA models APA isoforms in consideration of the cell types and the undesired
source. In our novel simulation data and data from human peripheral blood mononuclear cells, scMAPA outperforms existing methods
in sensitivity, robustness, and stability. In mouse brain data consisting of multiple cell types sampled from multiple regions, scMAPA
identifies cell-type–specific APA genes, elucidating novel roles of APA for dividing immune cells and differentiated neuron cells and
in multiple brain disorders.

Conclusions: scMAPA elucidates the cell-type–specific function of APA events and sheds novel insights into the functional roles of
APA events in complex tissues.

Keywords: post-transcriptional regulation, alternative polyadenylation, single-cell RNA, cell-type–specific regulation, confounding
factors

Background
Many mammalian messenger RNAs contain multiple polyadeny-
lation (pA) sites, e.g., proximal and distal, in their 3-untranslated
region (3-UTR) [1, 2]. Using multiple pA sites in each gene, al-
ternative polyadenylation (APA) post-transcriptionally produces
multiple APA isoforms with various 3-UTR lengths. These APA
events are involved in diverse cellular processes such as cell
proliferation and differentiation in particular cell types. For ex-
ample, cancer cells of diverse types are reported to undergo
widespread 3-UTR shortening events [3], whereas senescent cells
tend to show widespread 3-UTR lengthening events [4]. To iden-
tify such APA genes for each cell type (cell-type–specific APA
genes) in complex tissues, developing a computational method
that accurately analyzes single-cell RNA sequencing (scRNA-Seq)

data is essential because the data present the cell-type–specific
transcriptome.

To identify cell-type–specific APA genes in scRNA-Seq data, sev-
eral bioinformatic methods have been developed, such as scDAPA
[5], Sierra [6], and scAPA [7]. Although they have various strengths,
they also have several limitations when used for complex tissue
data. First, they only consider certain read coverage shapes in the
input scRNA-Seq data to estimate APA events. This is because sev-
eral scRNA-Seq techniques generate the 3-enriched reads and the
accumulation of the reads that originate from the same APA iso-
form forms a peak. To discriminate the signal part of the peak
from noise, the existing methods assume certain signal shapes in
their peak calling. For example, scAPA uses the findPeaks module
in the Homer package [8] with the preset peak size and height.
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However, these assumptions can be violated in multiple genes
across multiple cell types. For example, it would be useful to quan-
tify APA isoforms of FLT3 and GATA2 in the scRNA-Seq data on
peripheral blood mononuclear cells (PBMCs) of a healthy donor
(10k in https://www.10xgenomics.com/) because their abnormal-
ity may lead to blood disorders [9, 10]. However, their 3 tags form
peaks with different sizes and heights across various cell types
(Fig. 1A and C) for which the existing methods would not be able
to identify peaks from some of the cell types. Second, the existing
methods cannot identify cell-type–specific APA genes when the
scRNA-Seq data contain >2 cell types, which is typical for com-
plex tissues. scDAPA and Sierra can only compare cell types in
a pairwise fashion, which limits their ability for global compar-
ison when >2 cell types exist. While scAPA is the only method
to identify APA genes for multiple cell types, it identifies genes
in which the APA isoform ratio (the ratio of long and short 3-
UTR isoforms) varies across the cell types and does not further
identify which specific cell types drive this variation. Third, the
existing methods do not adjust for other factors that affect the
scRNA-Seq data across cell types. For example, when the scRNA-
Seq data are sampled from various brain regions, some cell types
reside in multiple brain regions [11]. Then, molecular dynamics
specific to the brain regions would affect different portions of the
residing cell types, introducing noise to the cell-type–specific iden-
tification of APA genes. Thus, to identify cell-type–specific APA
genes, one may need to adjust for the brain region information.
Fourth, there is no simulation platform to compare statistical
power and specificity of the methods identifying APA genes in
scRNA-Seq data. Although such a platform is necessary to eval-
uate the methods with the ground truth, it has been challeng-
ing to simulate APA and non-APA genes because it is not clear
how the read coverage shapes differ between APA and non-APA
genes.

To address these limitations, we developed a combination of
a computational optimization algorithm and a statistical model,
single-cell Multi-group identification of APA (scMAPA). To address
the first limitation and quantify APA isoforms without assump-
tions on the read coverage shape, scMAPA first transforms the
input scRNA-Seq data and then formulates a change-point de-
tection problem on the transformed data. First, scMAPA trans-
forms the 3-enriched signal of scRNA-Seq data to represent the
full-length 3-UTR signal. For FLT3 and GATA2 in the PBMCs of
a healthy donor, this transformation makes the APA short and
long isoforms readily distinguishable across all cell types regard-
less of the differences in read coverage shape (Fig. 1B and D).
Then, on the transformed coverage shapes, scMAPA quantifies
APA isoforms by detecting a change-point. To address the second
and the third limitations to identify cell-type–specific APA genes
while controlling undesired source of variation, scMAPA consid-
ers cell type information and the undesired source by develop-
ing a statistical model with them as covariates. To address the
fourth limitation and simulate APA genes, we identified a com-
mon feature of APA genes in real data, a high variance in the
APA isoform ratios across cell types, and simulate the APA iso-
form specific count matrix on the basis of the common feature.
Because this simulation platform does not generate data at the
level of read coverage shape, it can generate the ground truth
APA genes without having to resolve the difference between APA
and non-APA genes in the read coverage shape. By systematically
addressing these limitations, scMAPA accurately and robustly
identifies cell-type–specific APA genes and facilitates a system-
atic understanding of APA regulation in complex tissues in this
article.

Findings
scMAPA
To identify cell-type–specific APA genes accurately and robustly,
scMAPA combines a computational algorithm and a statistical
model in 3 steps. First, scMAPA transforms each read in the
scRNA-Seq data by padding it from the annotated 3-UTR start site
to where the read ends (Step 1 in Fig. 1E). While the scRNA-Seq
reads are usually 3 biased owing to the 3 selection and enrichment
techniques in the library construction step, the transformed reads
will represent the read coverage shape across the 3-UTRs. Second,
scMAPA identifies a pA site that minimizes the difference between
the expected coverage shape of the inferred APA isoforms and the
accumulated observed coverage (change-point, Step 2 in Fig. 1E).
Because the difference can be calculated by a quadratic function,
scMAPA detects the change-point by quadratic programming [12].
To solve this problem for multiple cell types in scRNA-Seq data,
scMAPA extends multiple modules of DaPars2 [13], which uses the
quadratic programming approach to identify APA genes in bulk
RNA-Seq data. Third, to simultaneously identify APA genes across
cell types and for each cell type based on the APA isoforms quan-
tified, scMAPA develops a multinomial regression model that ex-
plicitly models each APA isoform (Step 3 in Fig. 1E) with covari-
ates representing the cell type and other source of variation (Step
4 in Fig. 1E). On the model, scMAPA uses the log-likelihood test
and the Wald test to identify across–cell-type APA genes and cell-
type–specific APA genes, respectively. Altogether, scMAPA is the
first method to simultaneously identify across–cell-type and cell-
type–specific APA genes in scRNA-Seq data of multiple cell types.

scMAPA outperforms the other method in
sensitivity for the multi-group setting
To assess the performance of scMAPA using the ground truth,
we developed a novel simulation platform where APA isoform-
specific expressions are simulated in multiple steps. First, to learn
parameters from real data, we determined APA genes across 5
cell types of mouse brain scRNA-Seq data [11] (neurons, astro-
cytes, immune cells, oligodendrocytes, and vascular cells, Step 0
in Fig. 2A) as those identified by both scAPA and scMAPA. We used
only scAPA and scMAPA because they are the only methods de-
signed for >2 cell types. Then, we quantified a common feature
of the APA genes by calculating the proportion of the long and
short isoforms in each cell type and the standard deviation of
the proportions across the 5 cell types (SDisoprop, see Methods).
To validate the effectiveness of this measure for APA simulation,
we calculated SDisoprop values for non-APA genes that scAPA and
scMAPA agreed on in the data. We found that SDisoprop values sig-
nificantly distinguish APA genes from non-APA genes (0.127 vs
0.009 of SDisoprop on average, P < 10–16, Supplementary Fig. S2A),
suggesting that it is reasonable to simulate APA genes to have high
SDisoprop values in the data of multiple (≥2) cell types (multi-group
setting).

To simulate APA long and short isoform expressions, we simu-
lated gene expression values for 5 simulated cell clusters (Step 3
in Fig. 2A) and divided the values into APA long and short isoforms
based on the SDisoprop values. Because the SDisoprop values are the
standard deviation of APA long and short isoform ratios, the sim-
ulation based on the high SDisoprop values estimated from the APA
genes spreads the APA long and short isoform expressions across
the 5 cell clusters. In the same sense, the simulation based on
the low SDisoprop values produces less variable isoform expressions
across the clusters. On the simulated APA isoform expressions for
APA and non-APA genes, we ran scMAPA and scAPA to assess their

https://www.10xgenomics.com/
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Figure 1: Motivation and schematic illustration of scMAPA. (A) The read density shape on the FLT3 3-UTR in multiple cell types of 10k PBMC scRNA-Seq
data. (B) The transformed read density shape on the FLT3 3-UTR in multiple cell types of 10k PBMC scRNA-Seq data. The red arrow indicates the
proximal polyA site predicted. (C) The read density shape on the GATA2 3-UTR in multiple cell types of 10k PBMC scRNA-Seq data. (D) The transformed
read density shape on the GATA2 3-UTR in multiple cell types of 10k PBMC scRNA-Seq data. The red arrow indicates the proximal polyA site predicted.
(E) In Steps 0 and 1, bars in solid color represent 3-biased scRNA-Seq reads and bars in light color indicate how the 3-biased reads are padded from the
3 start site to the end of the read to represent the full-length 3-UTR of the transcript. In Step 2, the blue and green bars indicate the estimated isoforms
in each cell type, where solid and light coloring mode indicate 3 UTR long and short isoforms. In Steps 3 and 4, the bars represent the estimated
number of APA isoforms in each cell type. HSPC: hematopoietic stem and progenitor cell; NK: natural killer; pDC: plasmacytoid dendritic cell.

sensitivity and specificity. In the first scenario simulating 500 APA
and 4,500 non-APA genes, we varied SDisoprop values for APA genes
in the range observed in the mouse brain data (0.06–0.18, Supple-
mentary Fig. S2A). Across all simulated SDisoprop values, scMAPA
consistently outperforms scAPA with higher sensitivity (Fig. 2B)
while having a similar specificity (Fig. 2C). In assessing specificity,
we did not vary SDisoprop values for non-APA genes because the
mouse brain data show a narrow range of SDisoprop values for non-
APA genes (Supplementary Fig. S2A). In the second scenario, we
varied the number of APA and non-APA genes and the cell group
size while fixing the SDisoprop values for APA and non-APA genes
(to 0.127 and 0.009, respectively). With various numbers of true
APA genes (250, 500, and 1,000), scMAPA consistently outperforms
scAPA in terms of sensitivity (Fig. 2D and Supplementary Fig. S2B
and D) with a slight loss of specificity (Fig. 2E and Supplemen-
tary Fig. S2C, E, F). To sum, scMAPA outperforms scAPA in various

simulation scenarios in terms of sensitivity with a similar level of
specificity.

scMAPA outperforms existing methods in
identifying APA isoforms with high robustness
To assess the performance of scMAPA using real data, we used 3
PBMC data sets of various numbers of cells (1k, 5k, and 10k data
representing the number of cells) from the 10x Genomics website
(see Methods, Supplementary Table S1). To assess the accuracy of
scMAPA in identifying annotated pA sites, we identified pA sites
in the 10k and 5k data using scMAPA, scAPA, and Sierra. scDAPA
was not included in this comparison because it does not return
results that are compatible for the comparison, such as pA peaks,
sites, or intervals. Among the identified pA sites, we calculated
the proportion that are close to the annotated pA sites in PolyA-
Site 2.0 [14] (see Methods). scMAPA consistently outperforms the
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Figure 2: Performance assessment on the statistical component of scMAPA and scAPA using simulated data, with fixed number of true APA events
(500 of 5,000) and uniform distribution of cell cluster size (600 cells in each cell type) (A). Illustration of the simulation process. Genes identified as
significant APA genes by both scMAPA and scAPA were considered as APA genes. Genes identified as non-significant APA genes by both methods were
considered as non-APA genes. (B), (C) Comparison of scMAPA vs scAPA in terms of sensitivity and specificity. We varied the standard deviation (SD) of
APA isoforms across clusters (SDisoprop) for 500 true APA genes (0.06–0.18) with the fixed SDisoprop value for 4,500 non-APA genes (0.009). (D), (E)
Comparison of scMAPA vs scAPA in terms of sensitivity and specificity. We varied cell cluster size: (20%, 20%, 20%, 20%, 20%) for scenario a, (30%,
17.5%, 17.5%, 17.5%, 17.5%) for b, and (50%, 12.5%, 12.5%, 12.5%, 12.5%) for c. In the box-and-whisker plot, the lower end of the line indicates the
minimum excluding outlier, the bottom line first quartile, the middle line median, the upper line third quartile, the upper end of the line maximum
excluding outlier.
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other methods by identifying the highest proportion of the anno-
tated pA sites across all degrees of proximity (Fig. 3A, Supplemen-
tary Fig. S3A and B). This result suggests the outperformance of
scMAPA in identifying possible bona fide APA events originating
from the annotated pA sites.

We further evaluated the robustness of the methods in 2 ways.
First, we ran scMAPA, scAPA, scDAPA, and Sierra to identify APA
genes in the 1k, 5k, and 10k PBMC data. Because the 1k, 5k, and 10k
data sets comprise similar sets of cell types from healthy adults
(1k and 10k from the same donor and 5k from another healthy
donor, Supplementary Table S1), the APA genes are expected to
overlap across the data sets. Thus, a high percentage of APA genes
identified commonly across the data sets would indicate the ro-
bustness of the methods to the number of cells in the data. Al-
though Sierra and scDAPA cannot identify APA genes directly from
multiple (>2) cell types, we artificially identified the APA genes for
multiple cell types by combining all pairwise identifications after
false-discovery rate (FDR) control (see Methods). Compared to the
competing methods, scMAPA identifies a 2-fold higher percent-
age of APA genes commonly across the 3 types of the data sets
(40.7% vs 18.9%, 11.6%, and 18.6%, respectively, Fig. 3B), showing
that scMAPA identifies APA genes robustly to the number of cells
in the data. Second, from the 10k data comprising the total of 13
cell types, we randomly sampled various numbers of cell types
(5, 7, 9, and 11) and ran scMAPA and scAPA separately in each
sample. For direct comparison, we compared scMAPA only with
scAPA, the only other method that can directly handle the multi-
group setting. In the APA genes identified in each sample (sample
APA genes), we calculated the overlap with those identified using
all 13 cell types (total APA genes). Then, we calculated APA agree-
ment ratio, defined as the number of the overlap between the sam-
ple and total APA genes normalized by the number of total APA
genes. In all the numbers of cell types sampled, scMAPA outper-
forms scAPA with higher APA agreement ratios (Fig. 3C). Because
the APA agreement ratio indicates the number of the total APA
genes that are found in the sample APA genes, the result shows
that scMAPA identifies APA genes robustly to the number of cell
types in the data.

Furthermore, to investigate whether the APA genes identified
by scMAPA are biologically relevant, we performed Ingenuity Path-
way Analysis (IPA) on 3,574 APA genes that scMAPA identified in
the 10k PBMC data. Especially, to accurately investigate the APA
genes’ roles in PBMC biology, we set the 18,804 genes expressed in
the data as the background (see Methods). This IPA analysis shows
significant (Benjamini-Hochberg [B-H] P < 0.01) enrichments to
32 IPA terms that are characterized with keywords “blood” and
“hematology” (Fig. 3D), suggesting that the APA genes identified
by scMAPA can play important roles in PBMC biology.

To examine the unique contribution of scMAPA in character-
izing the function of APA genes for PBMC biology, we manually
inspected 1,432 APA genes that are identified only by scMAPA, not
by other methods (scMAPA-unique APA genes, Supplementary Ta-
ble S2). In the scMAPA-unique APA genes, we found clear changes
in the APA isoform ratios across the cell types and great poten-
tial to function for PBMC biology. For example, FLT3 and GATA2
are included in the scMAPA-unique APA genes and show the dy-
namic APA isoform ratios across the cell types especially after the
data transformation step of scMAPA (Fig. 1B and D). Interestingly,
GATA2 is an APA gene in the scRNA-Seq data of bone marrow
mononuclear cells from patients with acute myeloid leukemia
[15]. Because hematopoietic stem and progenitor cells (HSPC in

Fig. 1D) originate from bone marrow [16], we speculate that the
molecular mechanisms rendering the APA event on GATA2 in the
bone marrow mononuclear cells cause GATA2 to show different
APA patterns than other cells in the PBMC. Together, scMAPA en-
ables accurate and robust identification of biologically relevant
APA genes in the PBMC scRNA-Seq data.

scMAPA estimates APA effect size and identifies
APA genes across multiple cell types
Compared with other methods, scMAPA is the only method that
can estimate the effect size and the significance of APA events
for each cell type in the multi-group setting (see Methods). To
demonstrate how the APA effect size enables us to understand
the post-transcriptional regulation in each cell type, we analyzed
the mouse brain scRNA-Seq data comprising 5 major cell types:
neurons, astrocytes, immune cells, oligodendrocytes, and vascu-
lar cells [11] (Fig. 4A, see Methods). First, to identify the distances
among the cell types in terms of the APA effect size, scMAPA esti-
mated the effect size of 3,223 genes significantly (B-H P < 0.05)
identified as APA genes across the 5 cell types (Fig. 4B). Based
on these effect sizes, we performed principal component analy-
sis (PCA) (Fig. 4C) and calculated Euclidean distance (Supplemen-
tary Fig. S4A) between the cell types. While both analyses sup-
port the previous finding that immune cells and neurons are most
different in terms of the APA effect size [7], they further reveal
that immune cells are most different from all the other cell types.
Second, to identify the overall relationships between APA regu-
lation and gene expression regulation, we correlated the APA ef-
fect sizes of all the identified genes with their expression level.
The result shows that the APA effect sizes are not correlated with
their expression level in all the cell types (e.g., Spearman ρ < 0.05
for all cell types, Supplementary Fig. S4D–H), demonstrating that
APA events are regulated independently of gene expression in the
mouse brain.

Furthermore, cell-type–specific APA genes (3-UTR shortening
and lengthening genes) identified by scMAPA provide a system-
atic understanding of cellular status. Previous studies showed
that APA is involved in regulating cell division status. For exam-
ple, various types of dividing cells are associated with widespread
3-UTR shortening [17, 18]. Likewise, differentiated and senescent
cells are associated with widespread 3-UTR lengthening [19, 20].
To systematically extend these findings that were made in cell
line data [17, 19, 21] or heterogeneous tissue data [18], we ran
scMAPA in the mouse data further to identify 438 significant (B-
H P < 0.05) cell-type–specific APA genes in neurons, 891 in im-
mune cells, 374 in astrocytes, 422 in vascular cells, and 430 in
oligodendrocytes, with some overlaps across the cell types (Sup-
plementary Fig. S4B). A further division into 3-UTR shortening and
lengthening genes in each cell type (Fig. 4D) showed that 3-UTR
shortening and lengthening are significantly enriched in immune
cells and neurons, respectively. As immune cells actively divide
to dynamically regulate the immune system, the enriched 3-UTR
shortening may contribute to active division. In the same sense,
we could find a biological explanation for why 3-UTR lengthening
is enriched in neurons. While neurons do not divide once they are
formed in the brain, our result suggests that 3-UTR lengthening
can play a significant role in keeping neurons from further divid-
ing. Together, by identifying cell-type–specific APA genes, scMAPA
systematically links the cellular APA profile to dividing immune
cells and differentiated neurons.
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Figure 3: Performance assessment of scMAPA, scAPA, scDAPA, and Sierra using PBMC data. (A) The ratio of annotated pA sites identified by scMAPA vs
scAPA and Sierra on the PBMC 10k data. The identified pA sites were deemed annotated when they are within a range to any annotated pA sites while
the range was set from 10 to 130 bp, respectively. We extracted the annotated pA sites from PolyASite 2.0. (B) The ratio of significant APA genes found
in all 3 PBMC data (10k, 5k, and 1k) in blue bar and in any combination but all 3 in orange by scMAPA, scAPA, scDAPA, and Sierra. (C) Box plots showing
the proportion of the overlap between sample APA genes and total APA genes normalized to total APA genes (APA agreement ratio). The APA
agreement ratio values were evaluated in various numbers of cell types sampled. (D) Significance of enrichment (blue bar) and number of overlaps
(orange line) of 3,574 scMAPA APA genes on IPA Disease and Function terms with the keyword “blood” or “hematology” In the box-and-whisker plot, the
lower end of the line indicates the minimum excluding outlier, the bottom line first quartile, the middle line median, the upper line third quartile, the
upper end of the line maximum excluding outlier.

scMAPA adjusts for undesired source of variance
to uncover APA functions that would be invisible
without the adjustment
To show how scMAPA controls undesired source of variance in the
data and why it is important, we analyzed the mouse brain data
consisting of 5 cell types collected from 2 brain regions (cortex
and midbrain). Because some cell types were collected from mul-
tiple brain regions (Figs 4A and 5A), APA genes associated with a
brain region could be mistakenly identified as cell-type–specific
APA genes, which would further confuse the study of cell-type–
specific functions of APA genes. To see whether scMAPA can re-
move such false-positive APA genes, we set scMAPA to adjust for

the brain region information (cortex and midbrain dorsal) (brain-
region–adjusted scMAPA). Then, we compared the result from
another scMAPA run that does not adjust for that information
(brain-region–unadjusted model), separately. As the brain-region–
adjusted scMAPA and the brain-region–unadjusted model identi-
fied 2,715 and 2,793 APA genes, respectively (Supplementary Ta-
ble S6), 113 genes are not identified in the brain-region–adjusted
scMAPA. Thus, these APA genes are expected to be related to the
brain region from which it was sampled (cortex and midbrain)
(Fig. 5B). To test whether the 113 genes function specifically for
the brain region, we tested whether they express highly specif-
ically in the brain region. To conduct this test comprehensively,
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Figure 4: A novel module of scMAPA cell-type–specific APA identification on the mouse brain data. (A) tSNE plot showing the cell types of the mouse
brain scRNA-Seq data. (B) Heat map of the APA effect sizes estimated for each cell type, representing the coefficients in the scMAPA logistic regression
model. (C) PCA plot showing how the cell types are similar or dissimilar in the APA effect size. PC1 and PC2 together account for 70.3% of the variation.
(D) Bar plot showing the counts of significant 3-UTR lengthening (red) and shortening (blue) identified in each cell type.
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Figure 5: (A) tSNE plot showing the brain region of the mouse brain scRNA-Seq data. (B) Venn diagram showing the APA genes identified by the
confounder-adjusted scMAPA and the confounder-unadjusted model. (C) Box plot showing significance of overlap between the 113 genes and the
up-regulated genes in GTEx brain samples whether they are from cortex (red) or not (green). (D) Significance (B-H P-value) of IPA enrichment terms
that are uniquely and significantly (B-H P < 10–2) enriched to 2,793 confounder-adjusted scMAPA. In the box-and-whisker plot, the lower end of the line
indicates the minimum excluding outlier, the bottom line first quartile, the middle line median, the upper line third quartile, the upper end of the line
maximum excluding outlier.
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we identified their human homolog genes in the Mouse Genomic
Informatics (MGI) homology database and compared expression
of the human homologs between cortex and other brain regions
in the Genotype-Tissue Expression (GTEx) [22] (see Methods). The
result shows that these APA genes are significantly up-regulated
in brain cortex compared to other brain regions (P = 5.8 × 10–7,
Fig. 5C, Supplementary Table S7), suggesting that their functions
are specific to brain cortex. Because GTEx did not collect the ex-
pression data for midbrain, we did not conduct this analysis for
midbrain. This result suggests that scMAPA can successfully ad-
just for undesired source of variation and identify APA genes likely
caused by differences between cell types.

To demonstrate why adjusting for undesired source of varia-
tion is critical for accurate downstream analysis, we further con-
ducted IPA analysis on the 2,715 and 2,793 APA genes identi-
fied by the brain-region–adjusted scMAPA and the brain-region–
unadjusted model, respectively (brain-region–adjusted and brain-
region–unadjusted APA genes, respectively). Comparing the IPA
enrichment between brain-region–adjusted and brain-region–
unadjusted APA genes, we found considerable differences in im-
portant terms for brain study: among the 24 terms to which the
brain-region–adjusted APA genes are uniquely and significantly
(B-H P < 0.01) enriched, 7 terms are directly related to brain dis-
eases (Fig. 5D). For example, 2 terms with the keyword “mental
retardation” are significantly enriched (B-H P < 2.2 × 10–4) only for
the brain-region–adjusted APA genes. On the other hand, among
the 30 terms to which the brain-region–unadjusted APA genes are
uniquely and significantly enriched, no term refers to a brain dis-
ease (Supplementary Fig. S5A). With APA events potentially play-
ing roles in brain diseases [23, 24], this result suggests that ad-
justing for the variation from brain region uncovers the APA genes
that can play critical roles in brain disease, which would be invis-
ible without the adjustment.

Supplementary material
APA regulation on expression
Previous studies have suggested that APA genes are more likely
differentially expressed [1, 2] because either 3-UTR shortening
removes microRNA (miRNA) binding sites on the 3-UTR and
evades miRNA-mediated repression or 3-UTR lengthening adds
miRNA binding sites and enhances miRNA-mediated repression.
Our analysis reaffirms the previous observations in the scRNA-
Seq data.

scMAPA consensus with other methods
In the PBMC data, scMAPA results still recover most of the results
from the other methods. To assess the overlap, we identified sig-
nificant APA genes across all the cell types in scMAPA and scAPA.
Because scDAPA and Sierra identify APA genes only between cell-
type pairs, we combined the pairwise significant APA genes in each
method separately. After controlling FDR on the combined APA
genes, we called APA genes if they are significant in any of the
pairwise identifications. While scMAPA identifies an intermediate
number of APA genes between scDAPA and Sierra/scAPA (10k in
Supplementary Fig. S3C and 5k in Supplementary Fig. S3D), more
than half of scMAPA’s findings are found in other methods (59.9%
for 10k and 51.9% for 5k). While scMAPA solves an optimization
problem based on the padding of 3-biased reads (Step 1 in Fig. 1C),
it successfully recovers most results from other methods, validat-
ing the use of scMAPA for comprehensive identification.

Cell-type–specific APA genes in 10k PBMC data
The global size differences in PBMC cells are different from in the
mouse brain data in several aspects. First, 3-UTR lengthening oc-
curs more than 3-UTR shortening in all the cell types (Supplemen-
tary Fig. S4E). Second, however, the number of 3-UTR shortening
genes is significantly correlated with that of lengthening genes
across the cell types (P = 5 × 10–5, Supplementary Fig. S4F). Be-
cause both trends are not shown in the mouse brain data, scMAPA
elucidates the unique APA profiles of the PBMC data.

Specificity of high expression in 113 brain-region–related
APA genes for the brain cortex region
In demonstrating the high expression of the 113 brain-region–
related APA genes in the brain cortex region, we further inves-
tigated whether the APA genes are not down-regulated in nei-
ther brain vs non-brain samples (Supplementary Fig. S5B) nor cor-
tex vs non-cortex brain samples (Supplementary Fig. S5C). Also,
this brain-region–specific expression pattern was not found for
2,715 APA genes identified by the brain-region–adjusted scMAPA
(Supplementary Fig. S5D–G). Together with our analysis on up-
regulation (Fig. 5), the results suggest that the 133 APA genes func-
tion specific to the brain region.

Discussion
To identify APA genes in scRNA-seq data for complex tissue data,
we developed scMAPA, which addresses several limitations in ex-
isting methods using a combination of a computational optimiza-
tion algorithm and a statistical model. First, while existing meth-
ods detect APA signals with assumptions on the shape of the input
data, scMAPA avoids such assumptions by formulating this task in
quadratic programming. By solving this quadratic programming
for genes with different read coverage shapes across cell types,
scMAPA outperforms existing methods in accurately and robustly
identifying APA genes in various simulated (Fig. 2) and PBMC data
(Fig. 3). Second, scMAPA identifies APA genes specific to each cell
type in a statistically rigorous model. These cell-type–specific APA
genes elucidate their connections to the cell division status of im-
mune cells and neurons in the mouse brain data (Fig. 4). Third,
scMAPA can control confounding factors. In the mouse brain data
of 5 cell types collected from 2 brain regions, scMAPA can distin-
guish the 113 APA genes that are likely related to the brain regions.
By removing the false-positive APA genes from further analyses,
scMAPA could clarify the functions of APA genes in brain diseases
such as “mental retardation” (Fig. 5). Last, we developed a novel
simulation platform in which to assess the statistical power of
identification methods on the basis of a common feature of APA
genes, the high variation of APA long and short isoforms (SDisoprop)
across cell clusters.

When identifying the annotated pA sites, scMAPA makes point
estimations of the pA sites. While other methods mainly pro-
duce interval estimates, point estimations are more directly rel-
evant to further analyses than interval estimations, e.g., conduct-
ing omics data analyses and designing validation experiments.
However, when point estimation methods are naively compared
to interval estimation methods in terms of the distance to the an-
notated pA sites, point estimations produce generally disadvan-
tageous results because point estimation returns a single point
while interval estimation returns 2 points (start and end of the
interval) to measure the distance. For example, the interval esti-
mations produce better results than the point estimations within
both Sierra and scAPA (Supplementary Fig. S3A and B). Even with
this disadvantage of point estimation for comparison purposes,
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the point estimation of scMAPA outperforms the interval estima-
tion results of Sierra and scAPA in identifying the annotated pA
sites, showing a clear advantage of scMAPA (Fig. 3A, Supplemen-
tary Fig. S3A and B).

A limitation of this article is that, although scMAPA can con-
sider >2 pA sites (see Methods), our analysis focused on the use
of 2 pA sites (most distal and most proximal) for the following
reasons. First, some of the methods that compare with scMAPA
consider only 2 pA sites, e.g., scAPA. For fair comparisons, we lim-
ited scMAPA to consider 2 pA sites. Second, we focused on this
binary APA trend to make it easier to investigate across multiple
cell types. In the future, we plan to consider >2 pA sites in com-
plex tissues after characterizing the binary trend across multiple
cell types. For example, after solving the quadratic programming
with >2 pA sites and developing a multinomial logistic regression
model with the identified pA sites in the mouse brain data, we can
estimate the APA effect size for each use of the multiple pA sites.

scMAPA can be extended in the following directions in the fu-
ture. First, the transformation step of scMAPA allows us to use
other methods originally developed for bulk RNA-Seq data (e.g.,
APATrap [25], TAPAS [26]) to analyze scRNA-Seq data. Because
the methods can identify APA genes in the full-length 3-UTR sig-
nal of transcripts, scMAPA can use such methods on the trans-
formed scRNA-Seq data that represent the full-length 3-UTR sig-
nal of transcripts. This extension can make those APA identifi-
cation methods become reasonable alternatives because those
methods are well established and studied in terms of sensitiv-
ity and specificity. Second, while existing methods developed for
scRNA-Seq data are mostly designed for 3-biased scRNA-Seq data
(e.g., 10x), scMAPA can be used for scRNA-Seq data that are not
3-biased (e.g., Smart-seq2 [27]) simply by skipping the data trans-
formation step, because the scRNA-Seq data already present the
full-length 3-UTRs.

Altogether, we developed scMAPA to identify APA genes in
scRNA-Seq data of multiple cell types. With high sensitivity and
robustness in addition to adjusting for undesired source of vari-
ations, scMAPA elucidates the cell-type–specific function of APA
events, which is essential to shed novel insights into the func-
tional roles of APA events in complex tissues.

Methods
Processing data sets
PBMC data. Aligned BAM files were downloaded from the 10X ge-
nomics repository (https://support.10xgenomics.com/single-cell-
gene-expression/datasets). According to the data description of
10X, 1k and 10k data were generated from the same materials. The
5k data were generated from different cells. PCR duplicates were
removed using UMI-tools 1.0.0 with “–method = unique –extract-
umi-method = tag –umi-tag = UB –cell-tag = CB.” Cell clustering
was performed using R package Seurat 3.1.4 [28]. To further vali-
date the number of clusters, we examined the percentage of vari-
ance explained (between-group variance/total variance) against
the different number of clusters in elbow plot analysis (Supple-
mentary Fig. S3A–C for 1k, 5k, and 10k data, respectively). From
the elbow plots, we can see that the number of clusters was set
in an acceptable range of the explained variance (between the
steepest increase and the flattening point), suggesting that Seu-
rat’s method delineated an appropriate number of clusters in the
1k, 5k, and 10k data. Especially, although 5× more cells in the 5k
data did not proportionally increase the number of clusters from
the 1k data, the defined clusters explain a very similar percentage

of the variance (∼16.25%), supporting the number of clusters in
the 1k and 5k data again.

Another support comes when checking the dimension-reduced
space (UMAP) of the data (Supplementary Fig. S3D–F for 1k, 5k,
and 10k data, respectively) because distinct cell types are ex-
pected to be well separated on the UMAP. Because it is the case for
the 1k, 5k, and 10k data, we believe that the numbers of defined
clusters were set appropriately. Then, we filtered to keep cells with
>1,000 UMI counts and 500 genes expressed. Cells with >15% UMI
counts from mitochondrial genes were filtered out. Then, raw data
were normalized by regressing against UMI count, mitochondrial
mapping percentage, and ribosome genes mapping percentage us-
ing the SCTransform function. We ran PCA analysis and took the
top 20 principal components as input to the FindNeighbors func-
tion. Finally, the FindClusters function was run with resolution set
to 0.2 to identify cell communities. Cell types were annotated by
matching the expression pattern of well-known marker genes for
PBMC [29].

Mouse brain data. Aligned BAM file and clustering results of
cortex and midbrain dorsal from 2 donors were downloaded from
[11]. PCR duplicates were removed using UMI-tools [30] with the
same parameters used for PBMC data. To keep consistent with the
analysis performed by scAPA, we included only neurons, immune
cells, astrocytes, oligodendrocytes, and vascular cells in our anal-
ysis. Differential expression analysis was performed by the Find-
AllMarkers function of the Seurat package with min.pct set to 0.25
and all other parameters as default.

Investigating sample-specific up-regulated genes
in GTEx
First, the mouse-human homology data were downloaded from
the Vertebrate homology database in the Mouse Genome Infor-
matics (MGI) database (http://www.informatics.jax.org/homology
.shtml) and used to find homologs in human. Then, we ranked
GTEx samples on the basis of the overlap between the upregu-
lated genes and the homolog genes using a database that curates
the up- and down-regulated genes for each GTEx sample, Enrichr
[31]. Enrichr evaluates the overlap by combining P-value and odds
ratio (Combined Score in Enrichr). We could not conduct this anal-
ysis for the midbrain dorsal region because GTEx did not collect
data from that region.

scMAPA algorithm
Step 0. Split aligned reads by cell clusters
scMAPA takes aligned BAM files and user-provided clustering in-
formation (e.g., cell type) as a match table to split the whole BAM
file into each cluster using pysam. Clustering information should
include all the categorical variables that the user would like to
consider in the modeling, not only cell type. For example, when
detecting APA genes in the mouse brain data, we used both brain
region and cell type as covariate variables. After splitting, UMI-
tools is used to remove the PCR duplicates by grouping reads that
share the same UMI. Furthermore, scMAPA can identify false APA
identifications due to internal priming of A-rich internal regions
if >7 consecutive adenines with up to 1 mismatch exist in 10 nt
downstream of the predicted proximal pA site [14]. In the PBMC
10k data, we identified that 90 of 3,574 APA events are due to sus-
pected internal priming according to this standard.

Step 1. Pad reads along the 3-UTR after preprocessing
We transform aligned scRNA-Seq data that use 3 selection and/or
enrichment techniques in library construction (e.g., Drop-Seq,

https://support.10xgenomics.com/single-cell-gene-expression/datasets
http://www.informatics.jax.org/homology.shtml


scMAPA | 11

CEL-Seq, and 10x Genomics). A 3-biased read assigned to the 3-
UTR of a gene represents the most 3 end part of the transcript.
With this reasoning, we extend the 3-biased read starting from
the annotated 3-UTR start site to where the read ends (Step 1 in
Fig. 1). After padding all the reads this way, we recalculate the read
coverage on the 3-UTRs using “bedtools genomecov” in the Bed-
tools package [32] for each gene. Because the result represents the
full-length read coverage of the transcript in the 3-UTR, our novel
padding step enables us to use sensitive statistical approaches as
follows.

Step 2. Quantify 3-UTR long/short isoforms
For further quantification, we formulate an optimization problem
to infer the proximal pA site. Because our transformation reveals
the proximal pA site where the read coverage changes, the opti-
mization problem is minimizing the difference between the ac-
cumulated density of the isoforms and the input RNA-Seq read
coverage as follows.

(w∗
kL, w∗

kS, P∗
k ) = argmin

w∗
kL,w

∗
kS≥0,1<Pk<L

∥∥Rki − (wkLIkL + wkSIkP )
∥∥2

2

where wkL and wkS are the transcript abundances of long
and short 3-UTR isoforms for cell cluster k, respectively. Rki =
[Rki1, . . . , Rki j, . . . , RkiL]T is the corresponding read coverage at
single-nucleotide resolution normalized by total sequencing
depth. L is the length of the longest 3-UTR length from annotation,
Pk is the length of alternative proximal 3-UTR to be estimated, IkL

is an indicator function with L times of 1, and IkP has Pk times of
1 and L − Pk times of 0. We solve this equation using quadratic
programming [18] as was done in DaPars2. We describe how this
is extended to identify genes with >2 pA sites at the end of this
section.

Step 3. estimate APA significance across cell clusters
To make sure that only genes with strong APA signals among mul-
tiple cell types are identified, we first filter out genes in which
only 1 pA site is detected in <3 cell types. Then, for each gene,
we calculate the counts per million mapped reads (CPM) for long
and short isoforms separately and average over all cell types. Only
genes with an average CPM >10 for both long and short isoforms
are kept. In addition to gene-wise filtering, we also apply cell-wise
filtering for each passed gene to keep only cell types with ≥20 raw
counts of reads in the model. For each gene, cell types with ex-
tremely low coverage (<20) will not be used to estimate the APA
status.

To model the relationship between the long/short isoform iden-
tified above and the given cell types, we build logistic regression
for each gene with log-odds of the event that the transcript uses
the distal pA site (having long isoform) as the outcome and cell
types as predictors using a weighted effect coding scheme. When
scRNA-Seq data are collected from multiple samples or individ-
uals, scMAPA can be easily extended to control the effect of un-
matched confounding factors by adding them into the regression
model:

� = ln
p

1 − p
= β0 +

∑n−1

i
βi ∗ Ci +

∑m

j
β j ∗ Vj,

where p/(1 − p) is the odds of the transcript having a long isoform.
βi and Ci denote the coefficients and the binary indicator of each
cell type, respectively. n is the number of cell types. Because 1 cell

type needs to be chosen as a reference for model fitting, scMAPA
fits the model twice to get the estimates of coefficients for all cell
types. Vj and β j denote the sample-specific binary confounding
variables (e.g., clinical variable) and their coefficients, respectively.
m is the number of confounding factors.

When there is no confounding factor, the likelihood ratio test
(LRT) between cell type only model and null model is conducted
to test the unadjusted effect of cell type, which is equivalent to
the likelihood ratio χ2 test of independence between long/short
isoforms and cell types. With the existence of confounding vari-
ables, LRT between the full model and confounding variables–only
model is conducted to test the adjusted effect of cell type. P-values
from all tests are further adjusted by the B-H procedure to con-
trol the FDR at 5%. In addition, to ensure that there is a significant
change in effect size, the odds ratio of each cell type against the
grand mean of all included cell types is calculated. There should
be ≥1 cell type whose odds ratio is >0.25 for a gene to be called
an APA gene.

Currently, scMAPA assumes only 2 pA sites in the 3-UTRs. How-
ever, our logistic model for Step 2 can be easily extended to detect
>2 peaks if using other quantifiers that can consider >2 pA sites.
For example, when only 2 peaks are detected for a gene, a binary
logistic regression model would be fitted. However, when >2 peaks
are detected for a gene, a multinomial logistic regression model
would be fitted. To the our knowledge, because the only current
tool that detects >2 peaks is scAPA, a multinomial logistic regres-
sion model is only compatible with the peak detection result of
scAPA. LRT test is used to estimate the significance of APA among
multiple peaks and cell types similarly.

Identification of cluster-specific 3-UTR dynamics
For the genes where significant APA dynamics is detected, scMAPA
further analyses which cell type significantly contributes to the
APA in which direction within each gene. By using a weighted
effect coding scheme, each coefficient in the logistic regression
can be interpreted as a measurement of deviation from the grand
mean of all cells. This grand mean is not the mean of all cell type
means; rather it is the estimate of the proportion of long isoforms
of all cells for each gene. So, the unbalanced cell population sizes,
which are common in scRNA-Seq, would not affect the accuracy
of estimation.

We use the following 2 criteria to determine the cluster-specific
significant 3-UTR dynamics:

First, given coefficients estimated from logistic regression, we
use the Wald test to determine the P-value of each coefficient.
P-values among all genes with significant APA of the same cell
type are further adjusted by FDR. Then, we further selected genes
whose APA degrees change >2-fold. If the APA degree increases
>2-fold, the respective gene is considered as 3-UTR lengthening;
if the APA degree decreases <2-fold, the respective gene is consid-
ered as 3-UTR shortening. However, users can define a different
cut-off value of fold change to call 3-UTR lengthening or shorten-
ing.

Identification of genes of >2 pA sites
scMAPA can be easily extended to detect >2 pA sites and subse-
quently identify their significant differential usage. To detect >2
pA sites, scMAPA uses a similar approach to DaPars as follows. In-
stead of optimizing the regression model with a fixed number of
predictors (proximal and distal pA sites), the case with >2 pA sites
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across n cell types can be formulated as follows.

⎡
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...
... · · ·

...
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where m is the length of the longest 3-UTR of a transcript. The
quantity wi j is the estimated abundance of 1 possible 3-UTR i in
cell type j. Then, detecting multiple pA sites and estimating the
abundance can be optimized by a LASSO regularization, in which
the following equation should be optimized.

argmin
W

1
2

‖C − MW‖2
2 + λ‖W‖1

While the number of non-zero wij indicates the number of pA sites
for this gene, scMAPA will consider the genes with ≤4 estimated
non-zero wij by default, which can be further changed by the user.
While this would avoid overfitting, we expect the default value to
allow us to capture most genes according to a recent study on the
number of pA sites for genes [33].

After pA site detection, the binomial logistic regression could
be extended to a multinomial logistic regression to identify differ-
ential pA site usage when >2 pA sites exist. If in total P pA sites
are detected by the pA site detection module, the differential pA
site identification could be modeled as follows:

Prob (PAi = p) = eβp · Xi∑p
k=1 eβk · Xi

,

where p is 1 of the p pA sites. The quantity Xi is a row vector of
features of an observed transcript. βp is the coefficients associated
with pA site p.

Simulation
First, we used Splatter [34], a widely known scRNA-Seq simula-
tor, to simulate the cell-level count matrix, which acts as the base
of synthetic data. Splatter was trained by unfiltered mouse brain
data and set to generate count matrices containing 5,000 genes
and 3,000 cells. The matrix then collapsed into 5 columns, rep-
resenting the total count of 5 cell groups. We call this 5,000 × 5
matrix a cluster-level count matrix.

From the analyses of PBMC and mouse brain data, we found
that the standard deviation of PDUI (percentage of distal polyA
site usage, which is equivalent to the proportion of long isoforms)
of each gene could act as a classifier of APA gene and non-APA
gene. On that basis, the standard deviation of PDUI for APA genes
in synthetic data is estimated by calculating the mean of standard
deviations of PDUI from APA genes detected by both scMAPA and
scAPA from mouse brain data. Similarly, the standard deviation of
PDUI for non-APA genes was estimated by calculating the mean of
standard deviations of PDUI from genes identified as non-APA by
both scMAPA and scAPA. With the estimated standard deviations,
a PDUI matrix with the same size (5,000 × 5) as the cluster-level
count matrices was generated. Each row of the PDUI matrix has a
standard deviation equal to either the estimated standard devia-
tion for the APA gene or the non-APA gene. This is achieved by cen-
tering 5 randomly selected numbers from standard normal distri-
bution to 0. Then multiply the desired standard deviation by these
centered numbers and add them to the desired mean. The mean
of each row was randomly picked from 0.05 to 0.95. Because the
estimated SDisoprop values are averaged to 0.127 and 0.009 for the
APA and the non-APA genes, respectively, we generated simulation

data with SDisoprop for APA genes in a range centered on 0.13 while
fixing that for non-APAs at 0.009. The rows representing true APA
genes were randomly selected. Then, each number in the cluster-
level count matrix is divided into the count of long isoforms and
the count of short isoforms by multiplying and PDUI matrix or (1
− PDUI matrix), respectively. Finally, the Pearson χ2-squared test
(scAPA) or logistic regression model + LRT (scMAPA) could be ap-
plied to assess the performance of these 3 methods. For each re-
peat of simulation, the PDUI matrix is regenerated but the cluster-
level count matrix stays the same for the sake of computational
burden. Every simulation design was repeated 100 times to derive
summarized statistics.

To examine the effect of experimental design on statistical
power to detect significant APA genes, we assess the performance
of scMAPA and scAPA in the following aspects: (i) To test the ef-
fect of unbalanced cell populations, the proportions of 5 cell types
in the synthetic cell-level count matrices were set to 3 scenar-
ios with different distribution of cell-type populations: (20%, 20%,
20%, 20%, 20%), (30%, 17.5%, 17.5%, 17.5%, 17.5%), and (50%, 12.5%,
12.5%, 12.5%, 12.5%). (ii) To test the effect of the proportion of true
APA genes, we set 3 levels of true APA proportions, 5%, 10%, and
20%. (iii) To test the effect of the extent of APA dynamics, instead
of using mean of standard deviations, we set the standard devi-
ations of true APA genes in the simulated PDUI matrix to the 15
equally spaced sequence of numbers between the first quartile
and the third quartile of standard deviations estimated from APA
genes in mouse brain data. In total, there were 9 scenarios, cor-
responding to 9 combinations of factors (i) and (ii). When testing
factor (iii), we chose balanced cell type proportion (0.2, 0.2, 0.2, 0.2,
0.2) and 10% true APA genes.

Assessing accuracy of pA site estimation
To assess the pA site/peak interval prediction accuracy, we used
peak lists or pA site lists from scMAPA, scAPA, and Sierra on PBMC
data. The estimation accuracy is measured by the percentage of
the predicted peaks or pA sites overlapped with pA sites annotated
in PolyASite 2.0. Because it is meaningless to find the overlap be-
tween 2-point estimates, we expanded the point position from the
annotation database to an interval by manually adding a distance
ranging from 10 to 150 bp in a 10-bp increment to both sides of the
annotated pA sites. scMAPA gives a point estimate of pA site as
predicted proximal pA site and Sierra gives 2-point estimates as
fit max position and max position. To make the comparison more
comprehensive, we calculated the midpoint of peak interval as the
pseudo point estimate of scAPA. The point estimates from these
methods are considered as supported by the annotation database
if the point position falls in the annotated interval (annotated pA
site ± distance). For peak intervals estimated by scAPA and Sierra,
as long as there is 1 bp overlap between the estimated interval
and the annotated interval (either start or end of estimated inter-
val falls in annotated pA site ± distance), the estimate would be
considered as supported by annotation database. Then, the per-
centage supported by annotation is calculated as the number of
pA sites or peak intervals supported by the annotation database
divided by total peaks detected for each method.

Running scDAPA, scAPA, and Sierra
Sierra and scDAPA were run with default parameters. scAPA was
run with default parameters and intronic regions omitted. The
genes with a CPM of <10 were filtered out. We want to point out
that scAPA uses the chisq.test function in R to estimate the sig-
nificance of dynamic pA site usage among multiple clusters. This
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potentially makes the identification of scAPA more conservative
than other tools in the multi-group setting because it does not
allow any cell type to have 0 count because R’s chisq.test would
return NA as P-value if there is 0 presented in the count table.
However, it is common to observe that a few cell types would not
express certain genes in scRNA-Seq, especially when the whole
cell population is split into >5 clusters (cell types), which is typi-
cal for complex biological systems.

To compare scDAPA and Sierra with scAPA and scMAPA in
multiple-cluster settings, because scDAPA and Sierra identify APA
genes only between cell cluster pairs, we combined the pairwise
significant APA genes in each method separately. After controlling
FDR on the combined APA genes, we called APA genes if they are
significant in any of the pairwise identifications.

Controlling undesired source of variance in
cell-type–specific identification of APA genes
To compare the running modes, we first divided the mouse brain
data into 10 cell groups by cell type and brain region (5 cell
types × 2 brain regions). In each data group, we quantified the
APA isoforms using scMAPA in 2 running modes, referred to as
brain-region–confounding/controlled in the main text. The brain-
region–confounding model is formulated as

APA Isoform ∼ cell type.

And the brain-region–controlled model is formulated as

APA Isoform ∼ cell type + brain region.

Availability of Supporting Source Code and
Requirements
Project name: scMAPA

Project home page: https://github.com/ybai3/scMAPA
RRID:SCR_021822
biotoolsID: biotools:scmapa
Operating system: Platform independent
Programming language: R
License: GNU GPL

Data Availability
An archival copy of the code and other supporting data are avail-
able via the GigaScience database GigaDB [35].
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