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A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential
for a P300-based brain-computer interface (BCI). The time-shift correlation series data were collected as the input nodes of an
artificial neural network (ANN), and the classification of four LED visual stimuli was selected as the output node. Two operating
modes, including fast-recognition mode (FM) and accuracy-recognition mode (AM), were realized. The proposed BCI system
was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from
investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM
was used to control the robot with a higher information transfer rate (ITR). When the robot walked in a crowded area, the AM
was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the
accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the
AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints.

1. Introduction

Brain-computer interfaces (BCIs) are systems that inter-
pret the electrical activities of a subject’s brain when in
command of external devices. Thus, BCIs provide subjects
with a nonmuscular method to connect with world. For
disabled people who have suffered from spinal cord injuries
and strokes, BCIs can improve their independence in their
daily lives. In addition, several works have proved that
there is a great potential to develop BCI in wider appli-
cations, such as robotics [1] and rehabilitation [2]. EEG
and hemodynamic monitoring are two different methods
to monitor the brain’s activities. However, EEG is currently
the most common method to obtain brain activity. It has
the advantages of low cost, acceptable temporal resolution,
high mobility, and higher acceptance by subjects. Moreover,

EEG includes noninvasive and invasive recording methods.
Noninvasive recording methods are easier to set up. How-
ever, noisy signals and low signal amplitude and spatial
resolution present challenges in signal processing. Com-
pared to noninvasive approaches, invasive methods require
the insertion of microelectrode arrays into subjects’ skulls.
Invasive recording methods feature the advantages of high
accuracy and resolution but are accompanied by health risk
considerations.

In robotic applications, integration of BCIs has attracted
great attention. A BCI allows subjects to manipulate mobile
robots, robotic exoskeletons, and robotic wheelchairs via
their “minds.” For example, a brain-actuated wheelchair is
a solution for subjects who are unable to use conventional
interfaces due to motor disabilities but able to issue com-
mands using their thoughts. Long et al. proposed a hybrid
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BCI integrating motor imagery-based mu rhythm and P300
potential to control wheelchairs [3]. Subjects were able to
command directions by using left and right hand imageries
and change speeds via flashing buttons on a graphical user
interface. Despite commanding the steering of wheelchair
directly, Iturrate et al. used an autonomous navigation system
to drive a wheelchair in an indoor environment [4]. Subjects
were able to move to defined locations through attending to
target stimuli on a panel. Gandhi et al. used an intelligent
adaptive user interface to address multiple motion command
options for mobile robots [5]. This novel interface offered
multiple control options for robotic devices by providing a
continuously updated prioritized list as well as improving
ITR.

With respect to humanoid robot applications, Chae et
al. proposed a BCI to control a humanoid robot navigating
in an indoor maze [6]. The power spectral analysis of
EEG was used to recognize subjects’ intentions. Experiment
results reported that all subjects finished navigation tasks
successfully. Güneysu and Akin developed a BCI which
allowed subjects to interact with a humanoid robot [7]. A
portable EEG recorder was used for EEG measurements.
Steady-state visually evoked potential (SSVEP) was elicited
through a number of flickering stimuli. According to the
dominant response frequency of EEG, the humanoid robot
was capable of performing defined tasks. Humanoid robots
have structures that are similar to those of humans, so they
exhibit highly adaptive mobility in uncertain environments,
such as walking on rough terrain or encountering sudden
disturbances. Humanoid robots therefore show great poten-
tial for performing complicated tasks in living and industrial
environments. Therefore, to control a humanoid robot with
BCI is a promising solution in the future daily life.

P300, which is elicited after a visual stimulus, is detected
as a positive deflection in voltage with a latency of around
300 milliseconds. It was reported by Sutton et al. in 1965 [8].
Generally, it occursmost strongly in the parietal and occipital
lobes [9]. A P300-based BCI requires a small amount of a
subject’s data for training and modeling and is feasible for
practical applications without requiring long-term training
[10, 11]. Rakotomamonjy and Guigue proposed an ensemble
of classifiers approach to improve the performance of SVM
classifier for BCI application [12]. A small part of dataset
was used to train liner SVM through channel selection
procedure. The proposed approach addressed the problem
of subjects’ variabilities responding to visual stimuli. Dal
Seno et al. used error potentials (ErrPs) to enhance the
performance of P300-based BCI [13]. The genetic algorithm
was used as the BCI classifier. By adding ErrP detections,
the genetic algorithm (GA) based classifier provided high
performance in detecting P300. A P300 speller based on an
oddball paradigm allows a subject to communicate a series
of letters to a computer [14, 15]. Kaper et al. proposed a P300
speller paradigm based on a support vector machine (SVM)
classifier [16]. Their SVM-based BCI system achieved 0.0%
error rate when the collected EEG signals were applied with
averaging five epochs.The oddball paradigm that is presented
to a subject intensifies randomly in rows and columns of
a matrix. Each cell contained in the matrix represents a

particular letter. Subjects are required to focus on a cell, and
the selected row and column elicit P300. BCI classifiers are
used to recognize either target or nontarget stimuli according
to extracted epochs [17]. Then, the target letter is detected.
Usually, a P300-based BCI needs a number of stimuli that
flash repeatedly to achieve high accuracy performance. The
number of repetitions leads to a trade-off between ITR and
accuracy, which has been widely discussed for P300-based
BCIs [18].

This paper proposed a BCI based on P300 visually evoked
potential for the control of an adult-size humanoid robot. A
display of a 1 × 4 matrix was presented in front of subjects.
Each stimulus represented a command for instructing the
movement of humanoid robot. EEG was acquired from
the Cz, Pz, and Oz channels. When subjects focused on a
target, P300 components of ERP were elicited. The time-
shifting correlation algorithm was proposed to resolve the
uncertainty of both peak time and potential of P300. The
time-shift correlation series data were collected as the inputs,
and an ANN was employed to classify target stimuli and
nontarget stimuli. The proposed time-shifting correlation
algorithm and the ANN-based classifier were implemented
on a microcontroller. To evaluate the proposed P300-based
BCI, five healthy subjects were first trained via a BCI-robot
simulator. Then, the online-operating sessions with an adult-
size humanoid robot were performed. The performance of
proposed P300-based BCI, including accuracy rate and ITR,
was evaluated. Moreover, ground truth trajectories, which
were collected via a motion capture system, were reported
to discuss the feasibility of the proposed system. The system
architecture is depicted in Figure 1.

This paper is organized as follows: Section 2 describes the
method of acquisition of the EEG, Section 3 describes the
proposed P300-based BCI and the integration of BCI and an
adult-size humanoid robot, Section 4 reports the results and
evaluations, and conclusions are drawn in Section 5.

2. Method

2.1. Subject. Five healthy subjects composed of 4 males and 1
female (mean age 22 years, standard deviation three years)
participated in experiments. All subjects were students of
National Taiwan University of Science and Technology and
had no previous experience operating a P300-based BCI. All
subjects have normal or corrected-to-normal vision.

2.2. Stimulus and Experimental Paradigm. Five subjects were
asked to view a display of a 1×4matrix, as shown in Figure 2.
The display was composed of four LED array modules.
The four LED array modules with the same dimensions of
3 cm × 3 cm were placed at intervals of 8 cm. Each LED array
represented a command for instructing the movement of
the humanoid robot. From right to left in the display, they
were forward, right-turn, left-turn, and backward. Each LED
array presented visible red light of moderate intensity on a
black background. An LED indicator was affixed over each
LED array providing the target stimulus feedback. There was
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a 50 cm distance between the display and the subjects, who
were in comfortable postures.

The system was triggered after subjects blinked three
times, and the stimulus cue was 4 seconds. The four LED
indicators flashed once from right to left during the stimulus
cue. From right to left, each LED array flashed for 100 mil-
liseconds, and the interstimulus interval was 100milliseconds
[19, 20]. An interval of 250milliseconds passed between trials.
Therefore, the total duration of a trial was 1050 milliseconds.
The experimental trial paradigm is illustrated in Figure 3.

2.3. Data Acquisition and Preprocessing. Reported by [9],
P300 increases in amplitudes from frontal to parietal areas.
In this work, electrodes placed at parietal and occipital lobes
were used to measure the response EEG of P300. Three
electrodes were placed at Cz, Pz, and Oz, according to the
10/20 system. A reference electrode was placed on one side of
the lobes, and a ground electrode was placed on the subject’s
forehead. An EEGmeasurement circuit, as shown in Figure 4,
was used to acquire EEG signal. The three EEG channels
were amplified by using a 125,000 gain amplifier with an
8–30Hz band-pass filter and sampled at 250Hz. A 60Hz
notch filter was used online to remove environmental noise.
Acquired EEG signals from Cz, Pz, and Oz were averaged
as an input for further analysis of time-shifting correlation.
The time-shifting correlation algorithm is based on analyzing

the correlation between elicited P300 and an acquired EEG.
Therefore, a database for each subject was established in
the training procedure. Before starting training procedures,
subjects selected a target from the display. Subjectswere asked
to focus on a selected target which continuously flashed at
5Hz. Later analysis of offline row data proceeded to select the
elicited P300 manually. For example, if a subject selected a
target “RT,” he/she was asked to pay attention to the selected
target. When a trial began at time 𝑡, the intervals of elicited
P300 with right to left stimuli usually appeared at 𝑡+81ms to
𝑡 + 360ms, 𝑡 + 281ms to 𝑡 + 560ms, 𝑡 + 481ms to 𝑡 + 760ms,
and 𝑡+681ms to 𝑡+960ms (𝑡+200 ⋅𝑘+81 to 𝑡+200 ⋅𝑘+360,
𝑘 = 0, 1, 2, 3). In this example, the selected target, “RT,” was
the second stimulus.Therefore, the interval of 𝑡+284ms to 𝑡+
560ms was collected. An average of ten elicited P300 epochs
was stored in the database for a particular subject.The elicited
P300 responses from the database of one subject are shown
in Figure 5. Because of the variation in the amplitude and
the difference in voltage levels, EEG signals were normalized
from 0 to 1.

2.4. Time-Shifting Correlation Algorithm. The Pearson
product-moment correlation coefficient (PPMCC) described
the linear correlation between two variable sets, 𝑃 and 𝑄,
where𝑃was an acquired EEG and𝑄was elicited P300 as [21].
Equation (1) gave a feature vector, 𝑟, and elements ranged
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from 1 to −1, where 1 represented total positive correlation, 0
represented no correlation, and −1 represented total negative
correlation. Because each epoch is 280 ms long, there are 70
sampled points for 𝑃 and 𝑄:

𝑟
𝑖
=

∑ (𝑃
𝑖
− 𝑃) × (𝑄

𝑖
− 𝑄)

√∑
70

𝑗=1
(𝑃
𝑗
− 𝑃)
2

× √∑
70

𝑗=1
(𝑄
𝑗
− 𝑄)
2

𝑖 = 1, 2, . . . , 31.

(1)

Visually evoked potential occurs with a latency of 250
milliseconds to 500 milliseconds between stimulus and
response.Moreover, the elicited time and the amplitude of the
P300 are related to visual fatigue of subjects, especially after
long-term operation. Therefore, the time-shift correlation
was used to resolve peak time uncertainty in the P300. An
acquired EEG was shifted forward and backward within the
range of 60 milliseconds with a shifting interval of 4 millisec-
onds for computing each correlation. Hence, there were 31
PPMCCs associated with each acquired EEG. In Figures 6–
10, elicited P300 from the database and five acquired EEG
signals are shown.They were all normalized and ranged from
0 to 1. In Figure 6, there was a high correlation between
the acquired EEG and the elicited P300. After the system
computed the time-shifting correlation, 31 PPMCCs were
obtained and presented a bell-shaped curve when plotted. In
contrast, in Figures 7–9, because there were low correlations
between the acquired EEG signals and the elicited P300,
the time-shifting correlation presented irregular sine curves.
Figure 10 shows an acquired EEG which correlated well with

the elicited P300, but there was a shifting interval between the
two. However, the time-shifting algorithmwas robust to time
uncertainty, and a bell-shaped curve was obtained.

2.5. Feedforward Backpropagation Neural Network for BCI
Classification. ANNs are computational models that are
inspired by biological nervous systems. They mimic the
brain’s mechanism as a nonlinear and continuous-time sys-
tem to simulate intelligence.The feedforward neural network
(FFNN) is one of the most common architectures and is
used for classification in this paper. Known as a multilayer
perceptron, an FFNN consists of a number of neurons that
are organized in layers, including an input layer, hidden
layers, and an output layer. A single-hidden-layer FFNNwith
one output was adopted, as shown in Figure 11. Specifically,
node outputs were expressed via (2). In this work, the FFNN
toolbox provided in MATLAB was used to train classifier
models. The numbers of hidden layers and neurons were
determined according to trial and error method:

𝑁
𝑖
=

𝑛

∑

𝑗=1

𝑥
𝑗
⋅ 𝑤
𝑖,𝑗
+ 𝑏
𝑖

𝑖 = 1, 2, . . . , 𝑚,

𝐻
𝑖
= 𝑓 (𝑁

𝑖
) 𝑖 = 1, 2, . . . , 𝑚,

𝑦 =

𝑚

∑

𝑖=1

𝐻
𝑖
⋅ 𝐻𝑤
𝑖
+ 𝑂𝑏.

(2)

𝑥 is the input vector which includes 31 PPMCCs. 𝑛 and𝑚
are the number of inputs and hidden neurons, where 𝑛 = 31

and 𝑚 = 15. 𝑤 and 𝐻𝑤 are the input and hidden weights.
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Figure 7: Elicited P300 and a nontarget EEG signal ranging from 𝑡 + 281ms to 𝑡 + 560ms (LHS) and the time-shifting correlation between
them (RHS).

𝑏 is the bias vector of hidden layers, and 𝑂𝑏 is the bias of
an output layer. As mentioned in [22], the hyperbolic tangent
sigmoid function is used as the activation function of a neural
network, as shown in

𝑓 (𝑁
𝑖
) =

2

1 + exp (−2 × 𝑁
𝑖
)
− 1. (3)

The backpropagation algorithm was deployed for the
neural network training. It was assumed that a given training
dataset included 𝑝 input-target sets. The sum of squared
errors 𝐸 is shown in

𝐸 =

𝑝

∑

𝑘=1

(𝑇
𝑘
− 𝑦
𝑘
)
2
. (4)

When 𝐸 is equal to zero, a neural network processes
exactly one input to each desired target. Hence, network
variables, including 𝑤, 𝐻𝑤, 𝑏, and 𝑂𝑏, are adjusted to
minimize the squared error by applying a backpropagation
algorithm. There were 𝑚 × (𝑛 + 2) + 1 variables arranged
in a deployed FFNN that should be updated through the
backpropagation algorithm.

After the subjects blinked three times, the system started
and followed the protocol depicted in Figure 3. A 280-
millisecond window was applied to detect possible P300
potential with an averaged amplitude of the three selected
channels. The window moved in time, and the time-shifting
correlation algorithm was activated to obtain 31 PPMCC
features. These features were imported to the trained FFNN
model, which generated an output for each epoch, and the
stimulus was judged to be either a target or a nontarget

according to the output. Target or nontarget stimuli were
classified by a defined threshold which was determined in
experiments. The threshold was 0.6 in this paper, and the
details for selecting a proper threshold are discussed later in
Section 4.1. In Figures 12–15, acquired EEG signals of four
intervals in a trial are depicted, and the elicited P300 occurs
at the interval of 𝑡+284ms to 𝑡+560ms. A bell-shaped curve
was observed in Figure 13. Then, features for four intervals,
as shown in Figure 16, were imported into the trained FFNN.
The outputs for the four feature sets were 0.2910, 0.9473,
0.2493, and 0.0233. Because the threshold was set at 0.6, a
target was obtained from the second stimulus.

3. P300-Based BCI

P300 signals were prominent in the parietal and occipital
electrodes. However, their amplitudes ranged from 10𝜇V
to 25 𝜇V, which were easily affected by background noise.
Usually, the numbers of epochs associated with target and
nontarget stimuli are averaged to ensure reliable detection.
As a result, the number of averages decreases the ITR of
P300-based BCIs. Hence, this paper proposes two methods,
FM and AM, which were adapted for different desired
purposes. In this work, a target epoch is obtained when the
output of the FFNN is higher than the defined threshold.
Legal trials were defined as when only an output of the FFNN
is higher than the defined threshold. Multiple targets and
nontargets are regarded as illegal trials.

3.1. Fast-Recognized Mode (FM). The block diagram of FM
is shown in Figure 17. The FM recognized either targets or
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Figure 8: Elicited P300 and a nontarget EEG signal ranging from 𝑡 + 481ms to 𝑡 + 760ms (LHS) and the time-shifting correlation between
them (RHS).
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Figure 9: Elicited P300 and a nontarget EEG signal ranging from 𝑡 + 681ms to 𝑡 + 960ms (LHS) and the time-shifting correlation between
them (RHS).

nontargets by the last legal trial. When a legal result was
obtained, when an output of the FFNN was higher than
the defined threshold, the system consequently generated
a command to the robot according to the selected target.
However, for an illegal result, such as multiple targets and

nontargets, the epoch was stored and averaged with the next
epoch. Therefore, the features of elicited P300 became more
distinct and recognition improved.Themaximumnumber of
averaged epochs was 5. After 5 trials, if no legal result was
obtained, the stored epochs were erased.
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3.2. Accuracy-Recognized Mode (AM). The AM was accom-
plished via a voting algorithm. A target was obtained when
the same result occurred twice in the last three legal trials.The
block diagram of AM is depicted in Figure 18. For example,
the voting algorithm begins as a target is triggered, as shown
in Figure 19.The triggered target is assumed to be labeled “1,”
and this legal trial is called the first trial. When the target
labeled “1” is triggered again in the second legal trial, the
target labeled “1” is obtained as route (a). However, if a target
labeled “2” which is different from label “1” is triggered in
the second legal trial, the voting algorithm proceeds to the
third legal trial. In the third legal trial, if the target labeled

“1” is triggered, the target labeled “1” is obtained as route (b);
if the target labeled “2” is triggered, the target labeled “2” is
obtained as route (c). If a different target labeled “3,” which
is different from labels “1” and “2,” is triggered, the result of
the first trial is abandoned. Targets are then composed of the
second, the third, and the next legal trials as route (d). The
procedure is repeated until a target is obtained according to
the rules of the voting algorithm.

3.3. Averaging Method. Averaging methods, which aver-
age several epochs to achieve high accuracy performance,
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Figure 13: The second interval (target), 𝑡 + 284ms to 𝑡 + 560ms, of acquired EEG and the time-shifting correlation diagram; output value =
0.9473.
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Figure 14: The third interval, 𝑡 + 484ms to 𝑡 + 760ms, of acquired EEG and the time-shifting correlation diagram; output value = 0.2493.
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Figure 15: The fourth interval, 𝑡 + 684ms to 𝑡 + 960ms, of acquired EEG and the time-shifting correlation diagram; output value = 0.0233.

are common techniques in P300-based BCIs [16]. In this
paper, different quantities of epochs, including one, two, and
three, were implemented. Four intervals were observed for
the potential existence of an elicited P300, and the time-
shifting correlation algorithm was activated to obtain 31

PPMCC features as well. The 31 PPMCC features as an input
vector were fed into a trained FFNN. The four outputs that
were generated by a trained FFNN represented either targets
or nontargets. A legal result was obtained when the output of
the FFNN was higher than the defined threshold.
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Figure 17: Block diagram of the FM.

3.4. OnlineOperation for Adult-SizeHumanoid Robot Control.
Online operations were arranged in a 7m × 2m area with
moderate lighting. A desired trajectory was indicated with
black tape, and the robot started at one end. Subjects were
asked to sit behind the active area and were presented with a
stimulus display. They were requested to instruct the robot

to follow the desired trajectory as closely as possible. A
motion capture system was introduced to record ground
truth trajectories. An optical sensor with lightening red LED
module was affixed to the hip of the robot. Different gait
lengths under different modes, FM and AM, were further
examined. However, before the online-operating sections,
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Figure 18: Block diagram of the AM.
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a BCI-robot simulator was developed to provide an efficient
way to evaluate the performance of different modes.

4. Experiment

4.1. FFNNTraining. Each subject performed 160 trials, which
were labeled targets and nontargets, to train FFNNs. Subjects
were instructed to focus on a particular target according to an
arranged sequence, and each target was performed 40 times.
At the beginning of each trial, the time-shift correlations for
four intervals were obtained. In these four epochs, there were

three nontargets and one target. Input vectors (time-shift
correlations) and output vectors (targets or nontargets) for
epochs were randomly divided into three sets. Seventy per-
cent of the 160 trials (112 trials) were used to train the FFNN;
15% of the 160 trials (24 trials) were independently used to
test the network generalization; 15% of the 160 trials (24 trials)
were used to stop training before overfitting during network
generalization.The introduced FFNNbased on the backprop-
agation learning algorithm was trained by a neural network
tool box provided in MATLAB. Generally, neural network
models converged after 9000 epochs with 10−5 of the MSE.
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Figure 20: Evaluations of trained FFNN of all subjects.
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Figure 21: Accumulations of wrong reorganization for FM, AM, and averaging methods for subject 1.

To determine a threshold that classified targets or non-
targets, 20 trials were further selected randomly from the 160
trials. Time-shift correlations as input vectors were imported
into the trained FFNN, and the four outputs for the trial
were obtained. Target epochs were labeled “1” and nontarget
epochs were labeled “0,” so the four outputs described how
similar they were between input vectors and the target.
Evaluations of trained FFNN for the five subjects are shown
in Figure 20, where the horizontal axis is the number of
trials and vertical axis is the magnitude of outputs from
trained FFNNs. Red solid lines and blue solid lines are
targets and nontargets, respectively, which were defined
according to arranged sequences. Comparing targets with
nontargets, there were significant differences with respect to
themagnitudes of outputs. In target epochs, outputs exceeded
0.7 in labeled targets; in nontarget epochs, outputs were

usually less than 0.0. Hence, a threshold of 0.6 was defined
to classify targets or nontargets of epochs.

4.2. The Performance of BCI. In this session, subjects were
asked to follow an arranged sequence which contained 100
trials with randomly selected targets. Following the protocol,
which is depicted in Figure 3, subjects focused on a target
according to an arranged sequence and EEG signals were
recorded. In addition to the proposed AM and FM, different
quantities of one, two, and three averaged epochs were
performed. Hence, 500 trials for a subject were performed for
comparison between the proposed and averaging methods.
Experimental results for five subjects with the different
methods are listed in Table 1. In the 100 trials for eachmethod,
the numbers of correct, wrong, and nonreorganization trials
were counted. Meanwhile ITRs were evaluated according
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Figure 22: Accumulations of wrong reorganization for FM, AM, and averaging methods for subject 2.

to (5), where𝑇exp is experimental time (sec);𝑁
𝑜
is the number

of correctly target events;𝐾
𝑠
is the number of stimuli; and 𝑃

𝑎

is accuracy [23]. Consider

ITR =
Bits

Command
⋅
60

CTI

CTI =
𝑇exp

𝑁
𝑜

Bits
Command

= log
2
𝐾
𝑠
+ 𝑃
𝑎
log
2
𝑃
𝑎
+ (1 − 𝑃

𝑎
)

× log
2
[
(1 − 𝑃

𝑎
)

(𝐾
𝑠
− 1)

] .

(5)

The proposed FM and AM showed the highest second-
highest averaged ITRs when compared to average meth-
ods. The proposed AM showed the highest averaged accu-
racy rate in all methods, but strict recognition constraints
resulted in a lower ITR when compared to FM. In addition,
the proposed FM represented the second-highest averaged
accuracy rate. However, FM featured high ITRs that were
capable of different desired applications. Although the aver-
aging method with one epoch generated an output every
trial, its poor averaged accuracy rate was unable to offer
a friendly BCI. The averaging method with three epochs
required a longer recognition time, but there was no sig-
nificant improvement with respect to averaged accuracy
rate.
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Table 1: Evaluation of BCI.

Methods Correct/wrong/nonreorganization rate (%)
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Average

Fast mode, FM 71/0/29 97/3/0 75/18/7 99/1/0 97/3/0 87.8/5.0/7.2
Data transfer rate (bit/min.) 8.54 70.61 15.72 101.58 67.20 52.73
Accuracy mode, AM 88/12/0 96/4/0 78/22/0 100/0/0 98/2/0 92.0/8.0/0.0
Data transfer rate (bit/min.) 10.24 40.24 9.91 52.42 43.53 31.27
Average 1 epoch 31/8/61 72/0/28 42/9/49 89/0/11 78/4/18 62.4/4.2/33.4
Data transfer rate (bit/min.) 0.23 28.83 2.38 67.42 39.72 27.72
Average 2 epochs 55/2/43 83/0/17 40/4/56 98/0/2 81/1/18 71.4/1.6/27.0
Data transfer rate (bit/min.) 4.62 25.44 0.89 51.15 23.08 21.04
Average 3 epochs 51/0/49 91/0/9 52/2/46 96/0/4 74/1/25 72.8/0.6/26.6
Data transfer rate (bit/min.) 2.17 24.63 2.38 30.98 10.73 14.18
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Figure 23: Accumulations of wrong reorganization for FM, AM, and averaging methods for subject 3.
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Figure 24: Accumulations of wrong reorganization for FM, AM, and averaging methods for subject 4.

4.3. Visual Fatigue Effect. In addition to comparing the
accuracy and ITRs of different methods, the accumulations
and the accumulation rates of wrong reorganizations were
examined in this study, where the accumulation rate of wrong
reorganizations was computed according to

𝐸𝑟
𝑖
=
𝐸𝑛
𝑖
− 𝐸𝑡

𝐸𝑡
𝑖 = 1, 2, . . . , 100. (6)

𝐸𝑟 is the accumulation rate of each trial; 𝐸𝑛 is the
cumulative number of wrong reorganizations; and 𝐸𝑡 is the
total number of wrong reorganizations. In 100 trials for each
method, the accumulations and accumulation rates of wrong
reorganizations are represented in Figures 21–25, where FM,
AM, and averaging methods (1, 2, and 3 epochs) were
depicted. The accumulations of wrong reorganizations and
trials are indicated on the 𝑦-axis and the 𝑥-axis, respectively.

In addition, a horizontal dashed line indicates an accumu-
lation rate of 0.5. In FM, AM, and averaging methods with
one epoch and two epochs, accumulation rates exceeded 0.5
after 50 trials. In the averaging method with three epochs,
accumulation rates were still less than 0.5 after 50 trials.
From the observations regarding accumulation rates, wrong
reorganizations of FM, AM, the averaging method with one
epoch, and the averaging method with two epochs were uni-
formly distributed in trials, and the curves of accumulation
rates gradually increased. The averaging method with three
epochs had the highest averaged accuracy rate of all averaging
methods, but wrong reorganizations occurred in later trials.
The number of wrong recognitions increased faster after 60
trials, at approximately five minutes after the first trial. The
proposed AM and FM featured stable accuracy rates over
long operation times and were less affected by visual fatigue
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Figure 25: Accumulations of wrong reorganization for FM, AM, and averaging methods for subject 5.

effects. In contrast, the averaging method with three epochs
featured the highest accuracy rate among the averaging
methods, but the wrong recognition rate increased quickly
with longer operating time. Thus, this averaging method was
unsuitable for long operations. As operating time increased,
the significant decrease in the accuracy rate is a concern for
practical applications.

4.4. Online Operation. The experimental setup is shown in
Figure 26. In each trial, the operating mode (AM or FM)
and a fixed gait length (3 cm or 6 cm) of the robot were set.
Therefore, subjects were unable to switch the operatingmode
or change the speed of the robot. Each subject performed four
trials including 3 cm and 6 cm gait lengths. Figure 27 (LHS)
shows the ground truth trajectory of a robot, where blue

circles were the position of the robot’s hip at each captured
frame. To record ground truth trajectories clearly from a
motion capture system, an optical LED maker was affixed
to the hips’ center of the robot. In Figure 26, the red light
was an optical marker, and the trajectory of the LED maker
represents the ground truth trajectories of the robot. A low
pass filter was used to smooth the recorded trajectories. The
finish time, total length, PPMCC, and length difference are
listed in Table 2. In AM, when a 3 cm gait length was set,
the robot’s trajectories featured the highest averaged PPMCC,
which signified that there were high correlations between
the robot’s and the desired trajectories. The robot’s trajectory
closely matched the desired trajectory. AM featured the
highest accuracy rates with a longer response time. Although
therewere low ITRswithAM, the robot’s trajectories could be
corrected under a lower walking speed when errors occurred.
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Experimental setup of online operation

Start position End position

Motion capture Desired trajectory

100 200 300 400 500 6000
x (cm)

−300

−200

−100

0

100

200

300

y
(c

m
)

Figure 26: The experimental setup for online operation.
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Figure 27: Ground truth trajectories of robot using FM, 3 cm gait length (LHS), and AM, 3 cm gait length (RHS).

In FM, when a 3 cm gait length was set, the averaged PPMCC
decreased but it still represented high correlations between
the robot’s and the desired trajectories. FM featured higher
ITRs but a lower accuracy rate when compared to AM.
However, with the lower accuracy rates of FM, the robot’s
trajectories could be corrected with higher ITRs when errors
occurred.

In AM, when a 6 cm gait length was set, the lowest
averaged PPMCC occurred that showed there were low
correlations between the robot’s trajectory and the desired
trajectory. When errors occurred, the direction of the robot
could not be corrected in time due to the low ITR of AM.

However, in FM,when a 6 cmgait lengthwas set, the averaged
PPMCC was improved and the shortest finishing time was
measured. Although the robot was operating at a higher
speed, the high ITR of FM was also able to respond faster to
the robot’s directions and correct themwhen errors occurred.
When AM was selected, a lower walking speed of the robot
was recommended, especially in a crowded area, for higher
accuracy of recognition to reduce the likelihood of collision.
When FM was selected, a higher walking speed was possible
when navigating a robot efficiently in a spacious area. FM
was also used to respond faster to the uncertainty in the
environment.
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Table 2: Experimental results of online operation.

Mode (gait length) Subject #
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Average STD

Fast mode, FM (3 cm)
Finishing time (sec.) 255.00 245.00 238.00 283.00 257.00 255.60 17.14
Total length (cm) 660.40 639.50 606.60 716.80 668.00 658.26 40.46
PPMCC 0.40 0.42 0.62 0.41 0.43 0.46 0.09
Length difference (%) 1.60% −1.62% −6.68% 10.28% 2.77% 1.27% —

Accuracy mode, AM (3 cm)
Finishing time (sec.) 249.00 228.00 228.00 263.00 235.00 240.60 15.18
Total length (cm) 638.50 672.00 625.10 726.30 697.90 671.96 41.64
PPMCC 0.56 0.58 0.49 0.43 0.49 0.51 0.06
Length difference (%) −1.80% 3.40% −3.80% 11.70% 7.40% 3.38% —

Fast mode, FM (6 cm)
Finishing time (sec.) 191.00 165.00 165.00 166.00 170.00 171.40 11.15
Total length (cm) 580.20 631.50 703.50 704.28 724.62 668.82 60.87
PPMCC 0.48 0.59 0.46 0.24 0.36 0.43 0.13
Length difference (%) −10.70% −2.80% 8.20% 8.40% 11.50% 2.92% —

Accuracy mode, AM (6 cm)
Finishing time (sec.) 161.00 142.00 118.00 172.00 175.00 153.60 23.73
Total length (cm) 667.40 600.30 595.30 729.10 730.80 664.58 66.11
PPMCC 0.10 0.43 0.45 0.49 0.31 0.36 0.16
Length difference (%) 2.70% −7.60% −8.40% 12.20% 12.40% 2.26% —

Table 3: Performance comparison of the proposed approach and conventional CCA SVM.

Methods
Classification accuracy/illegal trial rates (%)

Subject 1 Subject 2 Subject 3
Proposed BCI CCA SVM Proposed BCI CCA SVM Proposed BCI CCA SVM

Average 1 epoch 90.0/30.0 87.92/40.0 84.81/21.0 83.52/46.0 75.00/28.0 74.00/50.0
Data transfer rate (bit/min.) 49.41 38.49 43.82 28.17 24.45 16.09
Average 2 epochs 95.35/14.0 96.22/15.50 88.64/12.0 91.44/18.50 83.72/14.0 87.1/19.0
Data transfer rate (bit/min.) 38.77 39.68 29.18 30.72 22.65 25.01
Average 3 epochs 100.0/3.03 100.0/7.0 96.67/9.09 97.78/9.25 90.0/9.09 90.48/12.0
Data transfer rate (bit/min.) 36.57 35.07 28.78 30.30 21.18 20.95
Accuracy rate = correct/(correct + incorrect).
Illegal trial rate = illegal/total trials.

4.5. Performance Comparison with Other Approaches. In
order to provide performance comparison of our approach
with other conventional approaches, canonical correlation
analysis of (CCA) spatial filter and support vector machine
(SVM) was additionally done for comparisons with new
processed experiments. The results of averaging 1 to 3
times epochs from two classifiers of three subjects were
summarized in Table 3. The results demonstrated that the
proposed BCI outperformed higher performance in 1-epoch
experiment with lower illegal rate than the CCA SVM
classifier. Although the accuracy rates in average 2 and 3
epochs are similar to the CCA SVM classifier, the ITRs of
these two subjects were significantly improved. Notably, the
ITR is very crucial to the applications of real-time control
purposes because a higher ITR means a faster command
update rate and a greater control resolution. Hence, the

proposed approach is very suitable for real-time control
purposes, especially for online humanoid locomotion con-
trol.

5. Conclusions

BCIs have been widely discussed and show a great poten-
tial for providing subjects with a nonmuscular method to
connect with world. A P300-based BCI for the navigation
of an adult-size humanoid robot was proposed in this
paper. A P300-based system has the advantages of using a
small amount of a subject’s data for training and modeling.
However, visually evoked potential occurs with a latency of
250 milliseconds to 500 milliseconds between stimulus and
response. Moreover, the elicited time and the amplitude of
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the P300 relate to the visual fatigue of subjects. Therefore, a
time-shifting algorithm was proposed. The proposed time-
shifting algorithm was activated to obtain four sets of 31
PPMCC features for four intervals where the elicited P300
usually appeared after a stimulus in the proposed system.The
31 PPMCC features for each interval were collected as the
inputs, and a trained FFNN was employed to classify target
and nontarget stimuli.

Two operating modes (FM and AM) were implemented
for different conditions. An adult-size humanoid robot was
introduced to performonline-operating sessions, andmotion
capture was deployed to record ground truth trajectories.
With respect to conditions of navigation, the operating
modes and the walking speeds of the robot were examined.
AM featured high accuracy rates and was suitable for high
accuracy of recognition to reduce the likelihood of collision;
FM featured high ITRs and was able to navigate the robot
efficiently to explore a spacious area. A hybrid BCI that
integrates event related potential (ERP) and motor imagery
(MI) is a solution to meet the task of higher uncertainty in
robot navigation. In addition, a P300-based BCI is expected
to multitask in the future, including the operation of upper
limbs of a robot.

In the future, an optimal NN approach will be applied to
this study in the future to resolve the drawback of using trial-
and-error selection of NNmodel parameters in this paper, as
well as improving the performance of NN model. Moreover,
semiautonomous navigation function with visual perception
for humanoid robot will be done to avoid the obstacles in
front of the robot so that the proposed BCI approach could
be more practical and feasible to be used in the daily life.
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