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ABSTRACT
With the development of nanomedicine, a mass of nanocarriers have been exploited and utilized for
targeted drug delivery, including liposomes, polymers, nanoparticles, viruses, and stem cells. Due to
huge surface bearing capacity and flexible genetic engineering property, filamentous bacteriophage
and phage-mimetic nanoparticles are attracting more and more attentions. As a rod-like bio-nanofiber
without tropism to mammalian cells, filamentous phage can be easily loaded with drugs and directly
delivered to the lesion location. In particular, chemical drugs can be conjugated on phage surface by
chemical modification, and gene drugs can also be inserted into the genome of phage by recombinant
DNA technology. Meanwhile, specific peptides/proteins displayed on the phage surface are able to
conjugate with nanoparticles which will endow them specific-targeting and huge drug-loading cap-
acity. Additionally, phage peptides/proteins can directly self-assemble into phage-mimetic nanoparticles
which may be applied for self-navigating drug delivery nanovehicles. In this review, we summarize the
production of phage particles, the identification of targeting peptides, and the recent applications of
filamentous bacteriophages as well as their protein/peptide for targeting drug delivery in vitro and in
vivo. The improvement of our understanding of filamentous bacteriophage and phage-mimetic nano-
particles will supply new tools for biotechnological approaches.
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1. Introduction

Since the presentation of “side chain theory of immunity”
and “magic bullet concept” by Paul Ehrlich more than
100 years ago (Strebhardt & Ullrich, 2008; Bertrand et al.,
2014; Vigevani & Valc�arcel, 2014), a vast variety of novel
drugs have been discovered. With the development of nano-
medicine, more and more carriers have also been developed
for targeted delivery of these new drugs to exert therapeutic
effects, such as liposomes, dendrimers, polymers, micelles,
virus-like particles, and even stem cells (Peer et al., 2007;
Blanco et al., 2011; Wang et al., 2012; Cao et al., 2014).
Normally, an ideal delivery vector should possess several spe-
cial properties, such as good biocompatibility, proper hydro-
philicity, targeting specificity, low toxicity, high uptake
efficiency, and so on (Ma et al., 2012). However, all existing
delivery systems have some inherent shortcomings more or
less. For example, liposomes, which have been approved by
US Food and Drug Administration (FDA) and widely used in
clinics (Noble et al., 2014), are easily degraded in vivo and
their large size (>100 nm) will hinder the penetration and dif-
fusion (Longmire et al., 2011; Wen et al., 2013).

To date, safety and efficiency are two main evaluation cri-
teria during drug delivery (Ryvolova et al., 2013), and how to
improve their performance has been a hot topic of modern

medical research. Although many therapeutic agents have
been proposed for disease treatment, the therapeutic effect
is still less than satisfactory. This phenomenon is mainly
caused by the following several aspects: drugs are degraded
before reaching the lesion sites; low target-specificity results
in severe side effects; the quantity of drugs delivered into
the cells is not sufficient for effective exertion and so on.
Among all these factors, targeting is one of the key elements.
Lately, as the excellent specificity, antibody has been pro-
posed and applied for targeting delivery. However, because
of “binding site barrier” and rapid clearance, antibody is not
the best choice as a targeting motif in a targeted delivery
system (Osdol et al., 1991). Subsequently, depending on the
properties of peptide, such as small size, easy synthesis and
typically non-immunogenicity (Hart et al., 1995; Bray, 2003;
Ruoslahti, 2012; Bakhshinejad et al., 2014), it was widely used
as targeting specific molecule from single target to complex
multicomponent machinery (Dobbelstein & Moll, 2014). But
the chemical synthesis of peptide is much more cost-effective
than the production of antibodies. In case the peptides can
be expressed and displayed directly on the surface of nano-
carrier, such as filamentous phage, the cost of peptides will
be negligible, and this is very meaningful for the develop-
ment of novel drug delivery nanocarriers.
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Bacteriophage (generally called phage), a kind of virus,
was discovered by Frederick Twort and F�elix d’H�erelle in
1915 and 1917, respectively (Kaur et al., 2012). Compared
with other viruses, one of the significant advantages of
phage is their non-infectivity to mammalian cells. Besides,
small genome, simple structure, and easy engineering are
also the major properties of phage. So biologists, chemists,
materials scientists, and medical scientists have paid more
and more attentions to the phage. Since the technology of
phage display was first elaborated by George P. Smith (1985)
via inserting a fragment of EcoR I endonuclease on the pIII
position of filamentous phage f1, different phage display sys-
tems have been exploited and applied, including phage vec-
tor-based display system and phagemid vector-based display
system. Even each system has its own advantages and disad-
vantages, these two systems can allow small peptides to be
displayed on the surface of phage in a manner of single or
multivalent display. Based on phage display technology, a
phage library has been constructed and used for selection of
targeting phages or peptides through biopanning. The
detailed process of biopanning is showed in Figure 1(A). The
selected phages or peptides can be used to develop many
new functional phages or phage-mimetic particles for a var-
iety of applications (Figure 1), such as cell-targeting, tumor-
homing and cell-penetrating, etc.

Until now, phages have been widely used in immunogenic
vaccine delivery (Cruz et al., 1988; Henry et al., 2015), materi-
als synthesis (Mao et al., 2003; Mao et al., 2004; Lee et al.,
2009b; Qiu & Mao, 2010; Mao et al., 2012; Huang et al.,
2015), cell growth, and differentiation (Merzlyak et al., 2009;
Zhu et al., 2011; Qiu et al., 2013; Wang et al., 2013; Wang
et al., 2014; Kim et al., 2017), molecular imaging (Deutscher,
2010; Carrico et al., 2012; Ghosh et al., 2012; Ma et al., 2017),
and battery materials (Nam et al., 2006; Oh et al., 2014;
Mohan & Weiss, 2016). One of the most important applica-
tions of phage is its use as the drug and gene delivery carrier
(Figure 1(B,C)). For chemical drug delivery, filamentous
phages can be loaded with a great deal of chemical drugs
and have superior pharmacokinetic as well as delivery effi-
ciency comparing with spherical nanoparticles (Lee et al.,
2009a; Chauhan et al., 2011; Shukla et al., 2013). For gene
delivery, foreign genes can be able to insert into the genome
of phage by recombinant DNA technology, and can also be
loaded by phage-mimetic nanoparticles through chemical or
physical methods. Previous studies have identified that the
single-strand genome of fd can be converted into double-
stranded DNA in mammalian cells (Bakhshinejad et al., 2014).
Most importantly, phage particles can be modified with tar-
geting or internalizing peptides by phage display, which is a
significant profile different from any other gene and drug

Figure 1. General concept of using phage for drug and gene delivery. (A) Identification of target-recognizing peptide through bio-screening. A phage library is
mixed with immobilized targets and incubated for a proper time. Unbound phages are then washed away with a washing buffer. Bound phages are eluted with an
elution buffer, and amplified using medium containing preincubated E.coli bacteria and then acted as a new input library for next round bio-screening. After 3� 5
rounds, the selected phage clones are identified. (B) The paradigm of drug and gene delivery using phage particles. Phage can be chemically modified and/or gen-
etically engineered to load drugs (a) and carry foreign genes (b), respectively. Phage can also be incorporated with other nanometer carriers for drug and gene
delivery, such as liposomes (c) and nanoparticles (d). (C) The paradigm of drug and gene delivery using phage-borne proteins. Wild type or fused phage proteins
can be inserted into liposomes (e) and polymer nanoparticles (g) to form phage-mimetic complexes, and even self-assembly into nanophage (f) to deliver drug and
gene.
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delivery system. Moreover, with this unique characteristic,
phage can also combine with other nanometer carriers to
produce phage-mimetic nanoparticles and exploit plenty of
new delivery systems (Figure 1(B)).

So far, there are a few review articles on phage display
(Smith & Petrenko, 1997; Kehoe & Kay, 2005; Sergeeva et al.,
2006; Hamzeh-Mivehroud et al., 2013), phage library (Gray &
Brown, 2014), phage for imaging (Deutscher, 2010), phage
self-assembly structures (Moona et al., 2015), nanomaterials
for gene, and drug delivery (Biju, 2014). However, to our best
knowledge, there is no review on the use of phage in gene
and drug delivery. So in this review, we summarize the pro-
duction of phage particles and the identification of targeting
peptides using for drug delivery. Meanwhile, we also discuss
the recent applications of phages and phage-mimetic nano-
particles for in vitro and in vivo drug delivery.

2. Mass production of phage nanofibers by
infecting bacteria

Filamentous bacteriophage is a kind of virus that can only
infects E.coli containing F pilus. The most studied filamentous
bacteriophages are f1, fd, and M13, which contain a single-
strand DNA (ssDNA) genome encapsulated by major coat
proteins (pVIII) forming the backbone of filamentous bac-
teriophage, and minor coat proteins at two ends, one end
composed of pIII and pVI, the other end composed of pVII
and pIX.

Phages are divided into temperate and virulent phage on
the basis of lifestyle. Virulent phage will initial the lysis of
host cells. On the contrary, filamentous bacteriophages as
temperate phages do not lyse host, moreover, it can protect
the host from infection by other phages. The detailed pro-
cess of filamentous phage infection is demonstrated as fol-
lows: At the beginning, phages absorb to the surface of host
cells by interaction of pIII and F pilus, and the phage gen-
ome is injected into the cell with coat proteins staying out-
side. Subsequently, single-strand DNA (ssDNA) replicates into
replicative form (RF) via a rolling circle mechanism, and new
coat proteins are synthesized to assemble into phage particle
by taking over host metabolism and molecular mechanism.
Afterwards, pV binds to ssDNA and form a rod-like structure.
Finally, with the help of pI, pVII, and pIX, ssDNA anchors to
the inner membrane, and pVIII self-assembly on the surface
of ssDNA. Then a whole phage is successfully assembled and
released from the cell.

3. Identification of targeting using phage libraries

Since the first proposition of phage display by George
P. Smith, this technology attracted more and more atten-
tions. By genetic engineering of phage genome and assem-
bly of phage proteins, foreign gene sequences which encode
small peptides with specific targeting ability can be displayed
on the surface of phage particles. The most commonly used
coat proteins for phage display are pVIII and pIII (Wang & Yu,
2004; Kehoe & Kay, 2005). There are �2700 copies of major
coat proteins pVIII with a-helical architecture (about 20�)

arranged tightly along the phage particle. To avoid incorrect
assembly, only short peptides (less than 10 amino acids) are
allowed to display on every copy of pVIII. Actually, only �5
copies of pIII are responsible for infection and assembly ter-
mination. In addition, pVI (Hufton et al., 1999), pVII
(Kwa�snikowski et al., 2005), and pIX (Gao et al., 2002b) can
also applied for phage display.

Based on phage display technology, various phage display
libraries have been constructed, such as random peptide
library, phage antibody library and phage protein library, by
using Kunkel mutagenesis, PCR reaction and ligation, codon
sets reduction, and incorporation of unnatural amino acids.
Phage library contains a reservoir of peptides that can be
used for selecting versatile ligands in biomedical area, for
example cell targeting drug carriers, directed location of
gene delivery vectors, and targeting and tissue penetration
of nanoparticles (Ruoslahti, 2012). Furthermore, the selecting
peptides can also be used to overcome the obstacles in the
process of drug delivery, including specific cell binding and
internalization, endosome escape, and nuclei location (Han
et al., 2016; Wang et al., 2016; Staquicini et al., 2017).

3.1 Cell-binding peptide

Originally, phage library was only used for selection of a
given known protein or antibody solution (Devlin et al., 1990;
Scott & Smith, 1990; Lam et al., 1991). But now, from biomo-
lecules to inorganic nanoparticles, from known molecules to
unknown targets, from in vitro to in vivo, phage library has
already been applied to select all sorts of targets. One of its
significant applications is to screen peptides that can bind
with cell surface, named cell-binding peptides. On the surface
of a cell, there are a large number of specific macromole-
cules, such as integrin (Hart et al., 1994), cadherin (Devemy &
Blaschuk, 2009), HER2 (Houimel et al., 2001), EGFR (Li et al.,
2005) and so on. The subtle differences of these molecules
can be discriminated by small specific ligands which can be
captured through bio-screening of phage libraries. For
example, many targeting peptides bind to a specific antigen
of cancer cells have been obtained using phage libraries and
reviewed somewhere else (Sergeeva et al., 2006; Gray &
Brown, 2014). Otherwise, the whole cells can also be immedi-
ately utilized for screening with phage library to obtain small
peptides that bind with unknown specific targets of cells.

3.2 Cell-penetrating peptide

Many targeting molecules, named homing peptides (HPs),
only help nanocarriers deliver their attached cargoes onto
the surface of cell without penetrating it (Svensen et al.,
2012). However, most gene and drug delivery systems need
to penetrate into cells, or escape from endosomes and lyso-
somes, or even translocate into nucleus. So a new kind of
peptide, named cell-penetrating peptide (CPP), has been dis-
covered and verified. This peptide can be displayed on the
surface of phages and phage-like particles which can help
them internalize/penetrate into cells through endocytosis
receptor-mediated endocytosis or receptor-independent
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endocytosis (Madani et al., 2011; Milletti, 2012). Since the
trans activating transcription (Tat) protein of HIV-1 reported
(Frankel & Pabo, 1988; Green & Loewenstein, 1988), more
and more CPPs are discovered and used for translocation of
therapeutic cargoes, including oligonucleotides, proteins and
nanoparticles (Heitz et al., 2009; Milletti, 2012; Ruoslahti,
2012). Till now, lots of CPPs have been identified through
bio-screening of phage libraries, such as HN-1 (Hong &
Clayman, 2000), pep-7 (Gao et al., 2002a), 439a, 435 b
(Kamada et al., 2007) and so on.

For internalizing and penetrating of phage and phage-like
nanoparticles, many mechanisms of endocytosis have been
proposed. In particular case, due to its own profiles of a
delivery system, the special mechanism of endocytosis needs
to be identified. In other words, a specific CPP only for a spe-
cific endocytic pathway should be selected and defined. For
instance, through combination of phage display bio-screen-
ing and endocytic selection, two H1299 non-small cell lung
cancer CPPs were identified and proved with two different
mechanism of endocytosis (McGuire et al., 2014; Umlauf
et al., 2014). This is the first report on the selection of endo-
cytosis-specific peptide through phage library. While CPPs
can also help therapeutic cargoes escape from endosomes
and avoid degradating by lysosomes, which is crucial for
gene delivery. Because, a majority of phage particles are
sequestrated by endo-lysosomal degradative pathway
(Stoneham et al., 2012). In addition, significant increase of
gene delivery efficiency has been achieved through disrup-
tion of endosome and lysosome by virtue of lysosomotropic
chemical agents and fusion or penetration of endosome
membrane (Marsh & Helenius, 2006).

3.3 Nuclear location peptide

After escaping from endosome and lysosome, drugs will be
released as proposed. But for gene delivery, nuclear envelope
is the biggest barrier, which needs to be translocated.
Luckily, nuclear localization signal (NLS) can be recognized
by the nuclear transport proteins and help genes arrive at
the nucleus. It has been reported that NLSs exist in the ter-
minal proteins (TPs) of many bacteriophages, such as A29,
Nf, PRD1, Bam35, Cp-1 and YS61 (Redrejo-Rodr�ıguez et al.,
2012; Redrejo-Rodr�ıguez et al., 2013; Redrejo-Rodr�ıguez &
Salas, 2014). At present, no NLSs have been found in fila-
mentous bacteriophage. And this may be the reason of low
transduction efficiency (4%�10%) in mammalian cells when
transduced with filamentous bacteriophage (Poul & Marks,
1999; Larocca et al., 2001). So some new strategies have
been proposed. For example, the inverted terminal repeats
(ITRs) in adeno-associated virus were inserted into filament-
ous bacteriophages for improving expression efficiency of
foreign genes (Hajitou et al., 2007).

In a word, drug and gene delivery is a sophisticated pro-
cess, and most previous studies only endowed phage target-
ing ability to bind with cell surface or internalize into the
cell. However, after entering into cells, phage particles need
to escape from endosomes or lysosomes and arrive at
nucleus. But the detailed mechanism is still unknown.

Interestingly, phage library offers a reservoir of different pep-
tides can exert different effects in drug and gene delivery
through biopanning in vitro and in vivo (Krag et al., 2006).

4. Filamentous phage-mediated delivery

As demonstrated above, phage as a delivery system can be
applied for treating different diseases, such as bacterial infec-
tion (Yacoby et al., 2006; Gravitz, 2012; Qadir, 2015; Bardy
et al., 2016; Pires et al., 2016), tumor (Gandra et al., 2013a;
Bakhshinejad et al., 2014; Bedi et al., 2014; Yata et al., 2014;
Gross et al., 2016; Hou & Meng, 2017), Alzheimer’s disease
(Frenkel & Solomon, 2002; Munke et al., 2017) and so on.

4.1 Targeted gene delivery by filamentous phage

With the enhancement of tolerance to antibiotics, phage
therapy has demonstrated to be a new renaissance for anti-
microbial therapy. As well known, lytic phage can infect bac-
teria and result in cell death by lysis, but at the same time,
the released endotoxin will produce severe side effects
(Slopek et al., 1982). Hence, non-lytic phage was engineered
to deliver lethal genes and used for antibacterial therapy
(Hagens & Bl€asi, 2003; Westwater et al., 2003; Hagens et al.,
2004). Beyond that, the genetically engineered M13 phage
can also transfers genes into bacteria and renders them
more sensitive to antibiotics (Lu & Collins, 2009; Edgar et al.,
2012).

Originally, lambda phage was used to transducer mamma-
lian cells for tumor therapy as early as 1975, but failed (Horst
et al., 1975). Later, recombinant f1 phage containing urokin-
ase type-plasminogen activator (u-PA) was used for transfec-
tion of simian COS-7 cells with the help of DEAE dextran
(Yokoyama-Kobayashi & Kato, 1993) or lipopolyamine
(Yokoyama-Kobayashi & Kato, 1994), leading to an increased
efficiency of DNA transfection. Later, Andrew Baird (2011)
proposed a detailed protocol about how to transfer mamma-
lian cells using filamentous bacteriophage. However, all these
phage vectors lack targeting capacity.

With the advent of “internalizing phages”, phage-medi-
ated gene delivery is further developed. RGD peptide fused
with phage proteins can mediate the internalization of DNA
into cells (Hart et al., 1994). The first report about gene
transfer of mammalian cells (COS-1 cells) by genetically tar-
geted filamentous phage was published in 1999 by David
Larroca et al. (1999), in which the phage was engineered
with FGF2 and GFP as pIII fusion protein and report protein
respectively. In addition, Poul and Marks (1999) further con-
firmed the feasibility of phage particles for gene transfer to
SKBR3 breast tumor cells using the multivalently displayed
anti-ErbB2 scFv as a target and GFP as a reporter, but the
infection efficiency was very low. Soon after, David Larroca
(2001) applied a multivalent phagemid vector for targeted
delivery of GFP into PC-3 cells and improved the transduc-
tion up to 10%, which is still much lower than the trad-
itional methods.

As well known, eukaryotic virus can provide superior gene
delivery and transduction, despite their native tropism to
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mammalian cells. If the excellent properties can combine
with phage particles, the gene transfer efficiency by target
phage will definitely be improved. So a new system contain-
ing the engineered RGD-targeting filamentous phage and
the cis-elements of adeno-associated virus (AAV) was intro-
duced (Hajitou et al., 2006; Hajitou et al., 2007). This novel
AAV/phage (AAVP) chimers were applied to enhance the
delivery and expression of various genes, such as TNF-a for
antivascular therapy using M21 cells (Tandle et al., 2009) and
HSVtk suicide gene for cancer using SVEC4-10-transformed
murine small vessel endothelial cells (Trepel et al., 2009). But
the transduce efficiency is still low, ranging from 10% to 20%
in different cancer cells (Trepel et al., 2009). With the
purpose of advancing the efficiency of AAVP system, the
stress-inducible Grp78 promoter was introduced instead of
CMV promoter. Then after treating with histone deacetylation
inhibitor and DNA methylation inhibitor, the efficiency of
AAVP-mediated gene transfer was significantly improved (Kia
et al., 2013). Later, a M13RGD8-AAVGFP hybrid phage was con-
structed using for gene delivery, and related analysis
revealed that this hybrid phage could achieve selective deliv-
ery and induce GFP expression into MC3T3 cells (Yoo et al.,
2016). Moreover, in order to improve anticancer safety ther-
apy of AAVP system, this system was further modified by
combining AAVP together with natural dietary genistein
which had anticancer activity, and the results showed
increased cell killing. (Tsafa et al., 2016).

In addition, the electrostatic repulsion between phage par-
ticles and cell surface as well as buffering capacity of phage
may also affect the transduction efficacy. Therefore, a novel
hybrid phage/polymer complex was developed and used for
gene delivery through combining recombinant phage and cat-
ionic polymers (PDL and DEAE-DEX) (Yata et al., 2014). And
the transduction efficiency of this novel hybrid phage/polymer
was increased compared with no polymer modified phage.
The researchers believed that this cationic polymer can help
phage escape from endosomes. Hence it is feasible to deliver
genes into mammalian cells using phage particles, and what
we need to do is how to improve its transduction efficiency.

4.2 Targeted drug delivery by filamentous phage

Since 1996, monoclonal antibodies (mAbs) as therapeutics
have already been reported and some of them have been
approved by FDA (Reichert, 2008; Sievers & Senter, 2013).
Except for targeting to the antigen on the surface of cells,
mAbs or their fragments can also be displayed on a phage
and act as new therapeutics for diagnosis and treatment of
diseases. More importantly, phage possesses the ability to
load antibodies and preserve their biological activities.

Apart from antibody, a substantial number of drugs are
emerged as therapeutics for human diseases, such as antibi-
otics (chloramphenicol), anticancer drugs (doxorubicin), tox-
ins, PDT agents (photosensitizer), radionuclides, cytokines,
and so on. Due to higher toxicity to host and less sufficient
of drug quantities, more and more drugs have been
excluded from therapeutics. While, as a robust scaffold, fila-
mentous phage can be applied to overcome these problems

by chemical modification of chemical groups, including
amino, carboxylic acid and phenol groups (Li et al., 2010),
which can serve as linkers for drug decoration. Animal stud-
ies suggest that phage can carry drugs to its sidewall, pene-
trate the blood barrier, and then deliver the drug to brain
(Carrera et al., 2004).

Previous studies have revealed that peptides can be conju-
gated to doxorubicin with NHS and EDC (Arap et al., 1998).
Obviously, pVIII coat protein of phage with �2700 copies can
also be decorated with drugs. In order to observe the visual-
ization of phage infection, NHS chemistry was utilized for
chemical conjugation of biotins on the phage particle to form
biotinylated phages (BIO-phages) (Nakamura et al., 2001;
Nakamura et al., 2002), which can be detected under confocal
fluorescence microscopy by Biotin-Avidin-System (BAS). The
first report on filamentous phage drug carrier is about the tar-
geting eradication of bacteria, in which a large load of chlor-
amphenicol (about 3000 molecules/phage) was linked to the
lysines of phage on pVIII and delivered into the target cells by
IgG-binding ZZ domain which was also displayed on pIII
(Yacoby et al., 2006). In order to increase the loading capacity
of filamentous phage, the phage coat carboxyl residues
instead of the amine residues are used to conjugate chloram-
phenicol by EDC chemistry with over 40000 chloramphenicol
molecules/phage (Yacoby et al., 2007), and thus leading to
complete growth inhibition toward pathogens.

Besides antibacterial nanomedicines, the drug-carrying
phage can also be applied for antitumor therapy. In the
proof of concept study, the antibody-targeted phage is modi-
fied with cytotoxic drugs by a covalent bond or a cathepsin-
B cleavable peptide, and then treated specific cancer cells.
The results indicated that the potency of selective cell killing
was significantly enhanced with a factor of >1000 over the
corresponding free drugs (Bar et al., 2008).

Moreover, polymers which can load drugs and protect
them from degradation are another good alternative for the
conjugation of drugs with phage particles. For example, the
FA-M13-PCL-P2VP nanoassemblies were developed, which
composed of two main functional modules: one is M13
phage modified with folic acid constitute the shell acting as
targeting moieties and drug carriers; the other is the PCL-
P2VP copolymer loaded with doxorubicin constitute the core
and used for drug protection and release. The results showed
that the DOX-loaded particles also had a significantly higher
tumor uptake and selectivity compared to free DOX
(Suthiwangcharoen et al., 2011). Without release, some thera-
peutics just needed to be delivered to the target site, such
as photosensitizer (PPa) and radionuclides. Through decorat-
ing with PPa on the surface via EDC and displaying with
SKBR-3 cell-binding peptide (VSSTQDFP), Mao’s group pre-
pared the p-PPPa complexes using for the selective killing of
SKBR-3 cancer cells (Gandra et al., 2013a).

4.3 Phage-liposome complex for drug and gene delivery

Liposomes as artificial phospholipid vesicles have been devel-
oped as pharmaceutical carriers with biomedical profiles,
such as good biocompatibility, little or no side effect, easy
biodegradation, and large loading capacity (Torchilin, 2005;
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ElBayoumi & Torchilin, 2010). In order to optimize the charac-
terization of liposomes, many new liposome formulations
have been produced for longer half-life and targeting deliv-
ery. In fact, bacteriophages may be the good complementary
to liposomes.

Recently, phage particles have been combined with lipo-
somes to form new phage-liposome complexes. For instance,
by multivalent electrostatic interactions, cationic liposomes
are assembled on the surface of M13 phage displayed with
negative charged peptides to form phage-liposome com-
plexes (Ngweniform et al., 2009), which not only stabilize the
liposome but also help ZnPC-loaded liposomes arrive specific
cells. This provides a novel approach for delivering liposomes
to desired targets. Through altering the ratio of liposome/
phage, the structure evolution of phage-liposome complexes
was studied, including “beads-on-rod” structure, nanoweb
structure, short rings or spirals and phage matrix embedded
with liposomes (Kalarical Janardhanan et al., 2010). Based on
the targeting ability of engineered phage and loading
capacity of liposomes for anticancer drugs, the nanoweb
phage-liposome complexes are characterized and used as an
efficient novel vehicle for drug (ZnNC) delivery. Compared
with simple liposomes, nanoweb complexes can deliver more
drugs to targeted cancer cells and result in increased death
of cells.

5. Phage-mimetic nanoparticles-mediated delivery

5.1 Integrating targeting peptide/protein into liposome
for targeted drug and gene delivery

With the excellent profiles of easy synthesis, good biocom-
patibility, flexible surface modification, low toxicity, and large
drug/gene loading capacity, liposome as the first choice of
gene and drug carrier has been used successfully in clinical
trials (Noble et al., 2014). However, with the progress of lipo-
some, quick clearance from circulation and nonspecific tar-
geting has been the new stumbling blocks in liposome
delivery. So some methods are developed and applied for
liposome surface modification. Due to lower cost and facile
chemical modifications, different length and density PEG was
utilized to modify liposomes (Fang et al., 2005; Dos Santos
et al., 2007; Maldiney et al., 2011). Although more attention
has been paid to PEG coating and much progress was
achieved, biomimetic coating was still adopted. One signifi-
cant example is the short peptides that screened from phage
libraries and used for targeting. By direct chemical conjuga-
tion, synthesized peptides were incorporated into liposomes
for cell targeting in monomeric form (Pastorino et al., 2006;
Stefanick et al., 2013; Noble et al., 2014) or multivalent form
(Accardo et al., 2013; Gray et al., 2013; Avvakumova et al.,
2014). In addition, peptides with different function were
inserted into a same liposome to endow the complex more
versatile. For example, rMSC-targeting peptide and a NLS
peptide were encapsulated into a liposome protamine/DNA
lipoplex (LPD), which improved its targeting capacity to rMSC
and nuclei (Ma et al., 2013). These LPD nanoparticles were
also used to deliver eye-specific genes to eyes for improving
the vision of blind mice in vivo (Rajala et al., 2014).

However, the cost of synthesized peptides and the repro-
ducibility of these systems are still major challenges for
pharmaceutical applications. More importantly, the chemical
modification of synthesized peptides makes the preparation
process more complicated, even possibly alter the property
and specificity of peptides (Emerich & Thanos, 2008).
Therefore, a new alternative need to be recommended.
Because of the “membranophilic” nature of phage major coat
proteins, numerous studies have showed that the “wild-type”
phage protein can be integrated into micelles and phospho-
lipid bilayers (Stopar et al., 2003; Jayanna et al., 2009).
So phage fusion pVIII coat proteins are directly inserted into
liposomes and formed a new phage protein-liposome nano-
vehicles, which have been used in several drug and gene
delivery (Bedi et al., 2011; Petrenko & Jayanna, 2014).

5.2. Transferring phage protein/peptide to nanoparticles
for targeted drug and gene delivery

To date, a large number of nanoparticles are considered as
potential drug and gene delivery carriers, such as polymeric
nanoparticles (Nicolas et al., 2013), metal nanoparticles
(Conde et al., 2012), dendrimers (Cheng et al., 2011), exo-
somes (Kooijmans et al., 2012) and so on. However, the
deliver efficiency of these nanoparticles is too low due to
nonspecific targeting ability. Therefore, many targeting pepti-
des are conjugated on their surface to improve specific tar-
geting (has been reviewed elsewhere (Pearce et al., 2012;
Levine et al., 2013)) . Through transferring mesenchymal
stem cells (MSCs)-targeting pVIII from phage to virus-mimetic
magnetic silica nanoclusters (VMSNCs), the VMSNCs loaded
with interesting genes can be targeting delivered to MSCs at
a higher efficiency than commercially available vectors
(Gandra et al., 2013b).

Beyond that, phage proteins themselves can assemble
into nanoparticles for gene delivery. After inserting with spe-
cific targeting peptides, the phage will produce fusion pVIII
(fpVIII) which has new targeting ability. Based on this, MCF-7
cells-targeting pVIII proteins self-assemble with polymeric
PEG-PE to form phage-micelles, which have been used for
targeting delivery of poorly soluble drugs (Wang et al., 2010;
Vladimir, 2012). Similarly, Deepa Bedi et al. (2013) utilize
fpVIII to encapsulate siRNA and form a kind of phage-
mimetic nanoparticle, named “nanophage”, which can deliver
siRNA to the target region and result in gene silencing.

6. In vivo applications of phage and phage-mimetic
nanoparticles

Since the report of direct intralesional injection of bacterio-
phage in 6 patients with staphylococcal boils by Bruynhoge
R and Maisin J in 1921, a large quantity of clinical applica-
tions of phage have been performed and reviewed elsewhere
(Debattista, 2004; Fischetti et al., 2006; Kropinski, 2006;
Skurnik & Strauch, 2006), most of them are mainly focus on
antibacterial therapies. Subsequently, with the discovery of
phage display technology by George P. Smith, many target-
ing peptides are explored from animals or patients in vivo
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using phage libraries. In 1996, the first in vivo selection of
organ targeting peptide was selected (Pasqualini & Ruoslahti,
1996), and then a wide variety of organ and disease tissues
were applied for targeting peptides exploration, including
brain, kidney, lungs, liver and so on (B�ab�ı�ckov�a et al., 2013).
The first phage-mediated target gene transfer in vivo was
reported in 2002 by Mechael A. Burg et al. (2002). Thereafter,
by combining with camptothecin (CPT), EGF-targeted phage-
mid vector-mediated gene transfer efficiency was significantly
improved up to 45% and its transduction in vivo was also
assessed in PC-3 tumor xenografts of mice. Meanwhile,
Frenkel and Solomon (2002) demonstrated that filamentous
phage which delivered antibody to the brain could penetrate
into the central nervous system in an intact form. Recently, it
was reported that FDA-approved phase I clinical trial showed
no safety concern (Chanishvili, 2012). In a word, all those
above experiments show that no significant side effects are
appeared in animals or humans in vivo after treated with
phages.

During last several decades, a large quantity of administra-
tion methods have been utilized for phage delivery in vivo.
One of the most common administration methods is intra-
venously delivery by directly injecting phage particles into
blood. Phages are directly contacted with circulating blood
first and then arrived different areas of the body. So this
method is generally used for selection of peptides targeting
vascular receptors of organs (Pasqualini & Ruoslahti, 1996;
Arap et al., 2002; Yao et al., 2005; Jung et al., 2012) or tumor
in vivo (Newton et al., 2006; Larimer & Deutscher, 2014).
Because of the blood-brain barrier, intranasally delivered
phage is exploited for targeting central nervous system (CNS)
of brain (Frenkel & Solomon, 2002; Rakover et al., 2010;
Lochhead & Thorne, 2012). Additionally, transdermal deliver
(Prausnitz & Langer, 2008), intestinal delivery, oral administra-
tion, and intraperitoneal injection (Akita et al., 2006) are also
used for in vivo delivery of phage and phage-mimetic nano-
particles. The closer administration to target organ or tissue,
the stronger affinity will be obtained (B�ab�ı�ckov�a et al., 2013).

Even a lack of reports on adverse effects, it does not
mean that there is no any side effect of phage in animal and
human therapy. After entering into animals or humans, bac-
teriophages can interact with host immune system including
the phage immunogenicity and the immune-modulatory of
phage (G�orski et al., 2012). These interacts can induce specific
immune response, and trigger innate or adaptive immune
responses, such as phagocytosis, cytokines production and
nonspecific antibodies production. All of these reactions may
impact the effects of phage therapy in vivo. Obviously, as
one kind of nanoscale biomaterial, phages need to be con-
sidered as nanoparticles for investigating their operation
mechanism in vivo (Henein, 2013).

7. Conclusion

Filamentous bacteriophage has been exploited in the develop-
ment of target drug delivery as virus-based delivery system.
Phage enables target-selective delivery in several pathways:
Firstly, the phage displayed with the target-specific peptides
or antibodies can be used as nanocarriers of chemical drugs

or gene drugs. Secondly, the phage displayed with target-spe-
cific peptides or antibodies can be conjugated with other
vehicles (such as liposomes, inorganic nanoparticles) to form a
novel delivery system. Third, the peptides or antibodies
selected from a random phage library can be directly used as
raw material to build new delivery systems by themselves or
combining with other vehicles.

Though progress on filamentous phage-based delivery
system has been made during last decades, the potential of
this biomaterial needs further exploitation. Lately, the new
concept of “self-navigating nanomedicines” based on fila-
mentous bacteriophage was first proposed on the Tech
Connect World Innovation Conference and Expo Techconnect
Briefs 2017 (Petrenko & Gillespie, 2017), which may direct the
future development of phage-based drug delivery system. As
the research moves along, we believe that filamentous phage
and phage-mimetic nanoparticles will play a crucial role for
the development of precise and personal medicine.

Disclosure statement

The authors declare that there is no conflict of interests regarding the
publication of this paper.

Funding

Zhigang Ju and Wei Sun would like to thank the grants from the
National Natural Science Foundation of China (81703700 and 31760076),
the Administration of Traditional Chinese Medicine of Guizhou Province
(S20160829000), and the Guiyang University of Chinese Medicine (043-
160002). This work was also supported by the Initial Fund Key
Laboratories of Guizhou Province (grant no. 2011-4005), and the grants
from the Science and Technology Department of Guizhou Province (LH
[2016]7211) and Guizhou Normal University (0516006).

References

Accardo A, Ringhieri P, Tesauro D, et al. (2013). Liposomes derivatized
with tetrabranched neurotensin peptides via click chemistry reactions.
New J Chem 37:3528–34.

Akita N, Maruta F, Seymour LW, et al. (2006). Identification of oligopepti-
des binding to peritoneal tumors of gastric cancer. Cancer Sci
97:1075–81.

Arap W, Kolonin MG, Trepel M, et al. (2002). Steps toward mapping the
human vasculature by phage display. Nat Med 8:121–7.

Arap W, Pasqualini R, Ruoslahti E. (1998). Cancer treatment by targeted
drug delivery to tumor vasculature in a mouse model. Science
279:377–80.

Avvakumova S, Colombo M, Tortora P, et al. (2014). Biotechnological
approaches toward nanoparticle biofunctionalization. Trends
Biotechnol 32:11–20.

B�ab�ı�ckov�a J, T�othov�a L', Boor P, et al. (2013). In vivo phage display-a dis-
covery tool in molecular biomedicine. Biotechnol Adv 31:1247–59.

Baird A. (2011). Gene transfer into mammalian cells using targeted fila-
mentous bacteriophage. Cold Spring Harb Protoc 2011:950.

Bakhshinejad B, Karimi M, Sadeghizadeh M. (2014). Bacteriophages and
medical oncology: targeted gene therapy of cancer. Med Oncol
31:1–11.

Bar H, Yacoby I, Benhar I. (2008). Killing cancer cells by targeted drug-
carrying phage nanomedicines. BMC Biotechnol 8:37.

Bardy P, Pantucek R, Benesik M, et al. (2016). Genetically modified bacter-
iophages in applied microbiology. J Appl Microbiol 121:618–33.

1904 Z. JU AND W. SUN



Bedi D, Gillespie JW, Petrenko VA, et al. (2013). Targeted delivery of
siRNA into breast cancer cells via phage fusion proteins. Mol Pharm
10:551–9.

Bedi D, Gillespie JW, Petrenko VA. (2014). Selection of pancreatic cancer
cell-binding landscape phages and their use in development of anti-
cancer nanomedicines. Protein Eng Des Sel 27:235–43.

Bedi D, Musacchio T, Fagbohun OA, et al. (2011). Delivery of siRNA into
breast cancer cells via phage fusion protein-targeted liposomes.
Nanomedicine 7:315–13.

Bertrand N, Wu J, Xu X, et al. (2014). Cancer nanotechnology: the impact
of passive and active targeting in the era of modern cancer biology.
Adv Drug Deliv Rev 66:2–25.

Biju V. (2014). Chemical modifications and bioconjugate reactions of
nanomaterials for sensing, imaging, drug delivery and therapy. Chem
Soc Rev 43:744–64.

Blanco E, Hsiao A, Mann AP, et al. (2011). Nanomedicine in cancer ther-
apy: innovative trends and prospects. Cancer Sci 102:1247–52.

Bray BL. (2003). Large-scale manufacture of peptide therapeutics by
chemical synthesis. Nat Rev Drug Discov 2:587–93.

Burg MA, Jensen-Pergakes K, Gonzalez AM, et al. (2002). Enhanced phag-
emid particle gene transfer in camptothecin-treated carcinoma cells.
Cancer Res 62:977–81.

Cao B, Yang M, Zhu Y, et al. (2014). Stem cells loaded with nanoparticles
as a drug carrier for in vivo breast cancer therapy. Adv Mater
Weinheim 26:4627–31.

Carrera MR, Kaufmann GF, Mee JM, et al. (2004). Treating cocaine addic-
tion with viruses. Proc Natl Acad Sci USA 101:10416–21.

Carrico ZM, Farkas ME, Zhou Y, et al. (2012). N-Terminal labeling of fila-
mentous phage to create cancer marker imaging agents. ACS Nano
6:6675–80.

Chanishvili N. (2012). Phage therapy—history from Twort and d’Herelle
through Soviet experience to current approaches. Bacteriophages
83:1.

Chauhan VP, Popovi�c Z, Chen O, et al. (2011). Fluorescent nanorods and
nanospheres for real-time in vivo probing of nanoparticle shape-
dependent tumor penetration. Angew Chem Int Edit 123:11619–22.

Cheng Y, Zhao L, Li Y, et al. (2011). Design of biocompatible dendrimers
for cancer diagnosis and therapy: current status and future perspec-
tives. Chem Soc Rev 40:2673–703.

Conde J, Doria G, Baptista P. (2012). Noble metal nanoparticles applica-
tions in cancer. J Drug Deliv 2012:751075.

Cruz V, Lal A, Mccutchan T. (1988). Immunogenicity and epitope map-
ping of foreign sequences via genetically engineered filamentous
phage. J Biol Chem 263:5.

Debattista J. (2004). Phage therapy: where East meets West. Expert Rev
anti Infect Ther 2:815.

Deutscher SL. (2010). Phage display in molecular imaging and diagnosis
of cancer. Chem Rev 110:6.

Devemy E, Blaschuk OW. (2009). Identification of a novel dual E- and
N-cadherin antagonist . Peptides 30:1539–47.

Devlin JJ, Panganiban LC, Devlin PE. (1990). Random peptide libraries: a
source of specific protein binding molecules. Science 249:404–6.

Dobbelstein M, Moll U. (2014). Targeting tumour-supportive cellular
machineries in anticancer drug development. Nat Rev Drug Discov
13:179–96.

Dos Santos N, Allen C, Doppen A-M, et al. (2007). Influence of poly(ethyl-
ene glycol) grafting density and polymer length on liposomes: relat-
ing plasma circulation lifetimes to protein binding. Biochim Biophys
Acta 1768:1367–77.

Edgar R, Friedman N, Molshanski-Mor S, et al. (2012). Reversing bacterial
resistance to antibiotics by phage-mediated delivery of dominant sen-
sitive genes. Appl Environ Micro 78:744–51.

Elbayoumi TA, Torchilin VP. (2010). Current trends in liposome research.
Methods Mol Biol 605:1.

Emerich DF, Thanos CG. (2008). Multifunctional peptide-based nanosys-
tems for improving delivery and molecular imaging. Curr Opin Mol
Ther 10:132–9.

Fang C, Shi B, Pei Y-Y. (2005). Effect of MePEG molecular weight and par-
ticle size on in vitro release of tumor necrosis factor-alpha-loaded
nanoparticles . Acta Pharmacol Sin 26:242–9.

Fischetti VA, Nelson D, Schuch R. (2006). Reinventing phage therapy: are
the parts greater than the sum? Nat Biotechnol 24:1508–11.

Frankel AD, Pabo CO. (1988). Cellular uptake of the tat protein from
human immunodeficiency virus. Cell 55:1189–93.

Frenkel D, Solomon B. (2002). Filamentous phage as vector-mediated
antibody delivery to the brain. Proc Natl Acad Sci USA 99:5675–9.

Gandra N, Abbineni G, Qu X. (2013a). Bacteriophage bionanowire as a
carrier for both cancer-targeting peptides and photosensitizers and its
use in selective cancer cell killing by photodynamic therapy. Small
9:215–21.

Gandra N, Wang DD, Zhu Y, et al. (2013b). Virus-mimetic cytoplasm-
cleavable magnetic/silica nanoclusters for enhanced gene delivery to
mesenchymal stem cells. Angew Chem Int Edit 125:11488–91.

Gao C, Mao S, Ditzel HJ, et al. (2002a). A cell-penetrating peptide from a
novel pVII-pIX phage-displayed random peptide library . Bioorg Med
Chem 10:4057–65.

Gao C, Mao S, Kaufmann G, et al. (2002b). A method for the generation
of combinatorial antibody libraries using pIX phage display. Proc Natl
Acad Sci USA 99:12612–16.

Ghosh D, Kohli AG, Moser F, et al. (2012). Refactored M13 bacteriophage
as a platform for tumor cell imaging and drug delivery. ACS Synth
Biol 1:576–82.

G�orski A, MieRdzybrodzki R, Borysowski J, et al. (2012). Phage as a modu-
lator of immune responses: practical implications for phage therapy.
Adv Virus Res 83:41–71.

Gravitz L. (2012). Turning a new phage. Nat Med 18:1318–20.
Gray BP, Brown KC. (2014). Combinatorial peptide libraries: mining for

cell-binding peptides. Chem Rev 114:1020–81.
Gray BP, Li S, Brown KC. (2013). From phage display to nanoparticle

delivery: functionalizing liposomes with multivalent peptides improves
targeting to a cancer biomarker. Bioconjugate Chem 24:85–96.

Green M, Loewenstein PM. (1988). Autonomous functional domains of
chemically synthesized human immunodeficiency virus tat trans-acti-
vator protein. Cell 55:1179–88.

Gross AL, Gillespie JW, Petrenko VA. (2016). Promiscuous tumor targeting
phage proteins. Protein Eng Des Sel 29:93–103.

Horst J, Kluge F, Beyreuther K, et al. (1975). Gene transfer to human cells:
transducing phage lambda plac gene expression in GMI-gangliosidosis
fibroblasts. Proc Natl Acad Sci USA 72:3531–5.

Hagens S, Bl€asi U. (2003). Genetically modified filamentous phage as bac-
tericidal agents: a pilot study. Lett Appl Microbiol 37:318–23.

Hagens S, Habel A, Ahsen UV, et al. (2004). Therapy of experimental
pseudomonas infections with a nonreplicating genetically modified
phage. Antimicrob Agents Chemother 48:3817–22.

Hajitou A, Rangel R, Trepel M, et al. (2007). Design and construction of
targeted AAVP vectors for mammalian cell transduction. Nat Protoc
2:523–31.

Hajitou A, Trepel M, Lilley CE, et al. (2006). A hybrid vector for ligand-
directed tumor targeting and molecular imaging. Cell 125:385–98.

Hamzeh-Mivehroud M, Alizadeh AA, Morris MB, et al. (2013). Phage dis-
play as a technology delivering on the promise of peptide drug dis-
covery. Drug Discov Today 18:1144–57.

Han L, Liu P, Petrenko VA, et al. (2016). A label-free electrochemical
impedance cytosensor based on specific peptide-fused phage
selected from landscape phage library. Sci Rep 6:22199.

Hart S, Harbottle R, Cooper R, et al. (1995). Gene delivery and
expression mediated by an integrin-binding peptide. Gene Ther
2:552–4.

Hart SL, Knight AM, Harbottle RP, et al. (1994). Cell binding and internal-
ization by filamentous phage displaying a cyclic Arg-Gly-Asp-contain-
ing peptide. J Biol Chem 269:12468–74.

Heitz F, Morris MC, Divita G. (2009). Twenty years of cell-penetrating pep-
tides: from molecular mechanisms to therapeutics. Brit J Pharmacol
157:195–206.

Henein A. (2013). What are the limitations on the wider therapeutic use
of phage? Bacteriophage 3:e24872.

Henry KA, Arbabi-Ghahroudi M, Scott JK. (2015). Beyond phage display:
non-traditional applications of the filamentous bacteriophage as a
vaccine carrier, therapeutic biologic, and bioconjugation scaffold.
Front Microbiol 6:755.

DRUG DELIVERY 1905



Hong FD, Clayman GL. (2000). Isolation of a peptide for targeted drug
delivery into human head and neck solid tumors. Cancer Res
60:6551–6.

Hou L, Meng X. (2017). Phage display technology and tumor targeted
therapy. Cancer Res and Clin 29:214–16.

Houimel M, Schneider P, Terskikh A, et al. (2001). Selection of peptides
and synthesis of pentameric peptabody molecules reacting specifically
with ErbB-2 receptor. Int J Cancer 92:748–55.

Huang J, Lin L, Sun D, et al. (2015). Bio-inspired synthesis of metal nano-
materials and applications. Chem Soc Rev 44:6330–74.

Hufton SE, Moerkerk PT, Meulemans EV, et al. (1999). Phage display
of cDNA repertoires: the pVI display system and its applications
for the selection of immunogenic ligands. J Immunol Methods
231:39–51.

Jayanna PK, Torchilin VP, Petrenko VA. (2009). Liposomes targeted by
fusion phage proteins. Nanomedicine 5:83–9.

Jung E, Lee NK, Kang SK, et al. (2012). Identification of tissue-specific tar-
geting peptide. J Comput Aided Mol Des 26:1267–75.

Kalarical Janardhanan S, Narayan S, Abbineni G, et al. (2010).
Architectonics of phage-liposome nanowebs as optimized photosensi-
tizer vehicles for photodynamic cancer therapy. Mol Cancer Ther
9:2524–35.

Kamada H, Okamoto T, Kawamura M, et al. (2007). Creation of novel cell-
penetrating peptides for intracellular drug delivery using systematic
phage display technology originated from Tat transduction domain.
Biol Pharm Bull 30:218–23.

Kaur T, Nafissi N, Wasfi O, et al. (2012). Immunocompatibility of bacterio-
phages as nanomedicines. J Nanotechnol 2012:1687–9503.

Kehoe JW, Kay BK. (2005). Filamentous phage display in the new millen-
nium. Chem Rev 105:4056–72.

Kia A, Yata T, Hajji N, et al. (2013). Inhibition of histone deacetylation
and DNA methylation improves gene expression mediated by the
adeno-associated virus/phage in cancer cells. Viruses 5:2561–72.

Kim Y, Kwon C, Jeon H. (2017). Genetically engineered phage induced
selective H9c2 cardiomyocytes patterning in PDMS microgrooves.
Materials (Basel) 10:1–8.

Kooijmans SA, Vader P, Van Dommelen SM, et al. (2012). Exosome mim-
etics: a novel class of drug delivery systems. Int J Nanomedicine
7:1525.

Krag DN, Shukla GS, Shen GP, et al. (2006). Selection of tumor-binding
ligands in cancer patients with phage display libraries. Cancer Res
66:7724–33.

Kropinski AM. (2006). Phage therapy: everything old is new again. Can J
Infect Dis Med Microbiol 17:297.

Kwa�snikowski P, Kristensen P, Markiewicz WT. (2005). Multivalent display
system on filamentous bacteriophage pVII minor coat protein.
J Immunol Methods 307:135–43.

Lam KS, Salmon SE, Hersh EM, et al. (1991). A new type of synthetic pep-
tide library for identifying ligand-binding activity. Nature 354:3.

Larimer BM, Deutscher SL. (2014). Development of a peptide by phage
display for SPECT imaging of resistance-susceptible breast cancer. Am
J Nucl Med Mol Imaging 4:435.

Larroca D, Jensen-Pergakes K, Burg MA, et al. (2001). Receptor-targeted
gene delivery using multivalent phagemid particles. Mol Ther
3:476–84.

Larroca D, Kassner PD, Witte A, et al. (1999). Gene transfer to mammalian
cells using genetically targeted filamentous bacteriophage. FASEB J
13:727–34.

Lee SY, Ferrari M, Decuzzi P. (2009a). Shaping nano-/micro-particles for
enhanced vascular interaction in laminar flows. Nanotechnology
20:495101.

Lee YJ, Yi H, Kim WJ, et al. (2009b). Fabricating genetically engineered
high-power lithium-ion batteries using multiple virus genes. Science
324:5.

Levine RM, Scott CM, Kokkoli E. (2013). Peptide functionalized nanopar-
ticles for nonviral gene delivery. Soft Matter 9:985–1004.

Li K, Chen Y, Li S, et al. (2010). Chemical modification of M13 bacterio-
phage and its application in cancer cell imaging. Bioconjug Chem
21:1369–77.

Li Z, Zhao R, Wu X, et al. (2005). Identification and characterization of a
novel peptide ligand of epidermal growth factor receptor for targeted
delivery of therapeutics. FASEB J 19:1978–85.

Lochhead JJ, Thorne RG. (2012). Intranasal delivery of biologics to the
central nervous system. Adv Drug Deliv Rev 64:614–28.

Longmire MR, Ogawa M, Choyke PL, et al. (2011). Biologically optimized
nanosized molecules and particles: more than just size. Bioconjug
Chem 22:993–1000.

Lu TK, Collins JJ. (2009). Engineered bacteriophage targeting gene net-
works as adjuvants for antibiotic therapy. Proc Natl Acad Sci USA
106:4629–34.

Ma K, Wang DD, Lin Y, et al. (2013). Synergetic targeted delivery of
sleeping-beauty transposon system to mesenchymal stem cells using
LPD nanoparticles modified with a phage-displayed targeting peptide.
Adv Funct Mater 23:1172–81.

Ma Y, Nolte RJ, Cornelissen JJ. (2012). Virus-based nanocarriers for drug
delivery. Adv Drug Deliv Rev 64:811–25.

Ma Z, Qin H, Chen H, et al. (2017). Phage display-derived oligopeptide-
functionalized probes for in vivo specific photoacoustic imaging of
osteosarcoma. Nano Medicine 13:111–21.

Madani F, Lindberg S, Langel U, et al. (2011). Mechanisms of cellular
uptake of cell-penetrating peptides. J Biophys 2011:414729.

Maldiney T, Richard C, Seguin J, et al. (2011). Effect of core diameter, sur-
face coating, and PEG chain length on the biodistribution of persist-
ent luminescence nanoparticles in mice. ACS Nano 5:854–62.

Mao C, Flynn CE, Hayhurst A, et al. (2003). Viral assembly of oriented
quantum dot nanowires. Proc Natl Acad Sci USA 100:6946–51.

Mao C, Solis D, Reiss B, et al. (2004). Virus-based toolkit for the directed
synthesis of magnetic and semiconducting nanowires. Science
303:213.

Mao C, Wang F, Cao B. (2012). Controlling nanostructures of mesoporous
silica fibers by supramolecular assembly of genetically modifiable bac-
teriophages. Angew Chem Int Edit 51:6411–15.

Marsh M, Helenius A. (2006). Virus entry: open sesame. Cell 124:729–40.
Mcguire MJ, Gray BP, Li S, et al. (2014). Identification and characterization

of a suite of tumor targeting peptides for non-small cell lung cancer.
Sci Rep 4:4480.

Merzlyak A, Indrakanti S, Lee S. (2009). Genetically engineered nanofiber-
like viruses for tissue regenerating materials. Nano Lett 9:7.

Milletti F. (2012). Cell-penetrating peptides: classes, origin, and current
landscape. Drug Discov Today 17:850–60.

Mohan K, Weiss GA. (2016). Chemically modifying viruses for diverse
applications. ACS Chem Biol 11:1167–79.

Moona JS, Kimb WG, Kimc C, et al. (2015). M13 bacteriophage-based self-
assembly structures and their functional capabilities. Mini-Rev Org
Chem 12:11.

Munke A, Persson J, Weiffert T, et al. (2017). Phage display and kinetic
selection of antibodies that specifically inhibit amyloid self-replication.
Proc Natl Acad Sci USA 114:6444–9.

Nakamura M, Tsumoto K, Ishimura K, et al. (2001). A visualization method
of filamentous phage infection and phage-derived proteins in
escherichia coli using biotinylated phages. Biochem Bioph Res Co
289:252–6.

Nakamura M, Tsumoto K, Ishimura K, et al. (2002). The effect of an agglu-
togen on virus infection: biotinylated filamentous phages and avidin
as a model. FEBS Lett 520:77–80.

Nam KT, Kim DW, Yoo PJ, et al. (2006). Virus-enabled synthesis and
assembly of nanowires for lithium ion battery electrodes. Science
312:885–8.

Newton JR, Kelly KA, Mahmood U, et al. (2006). In vivo selection of phage
for the optical imaging of PC-3 human prostate carcinoma in mice.
Neoplasia 8:772–80.

Ngweniform P, Abbineni G, Cao B, et al. (2009). Self-assembly of drug-
loaded liposomes on genetically engineered target-recognizing M13
phage: a novel nanocarrier for targeted drug delivery. Small 5:1963–9.

Nicolas J, Mura S, Brambilla D, et al. (2013). Design, functionalization
strategies and biomedical applications of targeted biodegradable/bio-
compatible polymer-based nanocarriers for drug delivery. Chem Soc
Rev 42:1147–235.

1906 Z. JU AND W. SUN



Noble GT, Stefanick JF, Ashley JD, et al. (2014). Ligand-targeted liposome
design: challenges and fundamental considerations. Trends Biotechnol
32:32–45.

Oh D, Qi J, Han B, et al. (2014). M13 virus-directed synthesis of nano-
structured metal oxides for lithium-oxygen batteries. Nano Lett
14:4837–45.

Osdol W, Fujimori K, Weinstein J. (1991). An analysis of monoclonal anti-
body distribution in microscopic tumor nodules: consequences of a
“binding site barrier”. Cancer Res 51:9.

Pasqualini R, Ruoslahti E. (1996). Organ targeting in vivo using phage dis-
play peptide libraries. Nature 380:364–6.

Pastorino F, Brignole C, Di Paolo D, et al. (2006). Targeting liposomal
chemotherapy via both tumor cell-specific and tumor vasculature-spe-
cific ligands potentiates therapeutic efficacy . Cancer Res 66:10073–82.

Pearce TR, Shroff K, Kokkoli E. (2012). Peptide targeted lipid nanoparticles
for anticancer drug delivery. Adv Mater Weinheim 24:3803–22.

Peer D, Karp JM, Hong S, et al. (2007). Nanocarriers as an emerging plat-
form for cancer therapy. Nat Nanotechnol 2:751–60.

Petrenko VA, Jayanna P. (2014). Phage protein-targeted cancer nanome-
dicines. FEBS Lett 588:341–9.

Petrenko VA, Gillespie JW. 2017. Self-navigating drug delivery nanove-
hicles driven by polyvalent multifunctional phages and their promis-
cuous proteins. Techconnect World Innovation Conference and Expo
Techconnect Briefs, 14–17 May 2017. Washington, DC, Maryland:
TechConnect.org, 134–137.

Pires DP, Cleto S, Sillankorva S, et al. (2016). Genetically engineered
phages: a review of advances over the last decade. Microbiol Mol Biol
Rev 80:523–43.

Poul MA, Marks JD. (1999). Targeted gene delivery to mammalian cells
by filamentous bacteriophage. J Mol Biol 288:203–11.

Prausnitz MR, Langer R. (2008). Transdermal drug delivery.
Nat Biotechnol 26:1261–8.

Qadir MI. (2015). Review: phage therapy: a modern tool to control bac-
terial infections. Pak J Pharm Sci 28:265–70.

Qiu P, Qu X, Brackett DJ, et al. (2013). Silica-based branched hollow
microfibers as a biomimetic extracellular matrix for promoting tumor
cell growth in vitro and in vivo. Adv Mater Weinheim 25:2492–6.

Qiu P, Mao C. (2010). Biomimetic branched hollow fibers templated by
self-assembled fibrous polyvinylpyrrolidone structures in aqueous
solution. ACS Nano 4:1573–9.

Rajala A, Wang Y, Zhu Y, et al. (2014). Nanoparticle-assisted targeted
delivery of eye-specific genes to eyes significantly improves the vision
of blind mice in vivo. Nano Lett 14:5257–63.

Rakover IS, Zabavnik N, Kopel R, et al. (2010). Antigen-specific therapy of
EAE via intranasal delivery of filamentous phage displaying a myelin
immunodominant epitope. J Neuroimmunol 225:68–76.

Redrejo-Rodr�ıguez M, Mu~noz-Esp�ın D, Holguera I, et al. (2012). Functional
eukaryotic nuclear localization signals are widespread in terminal pro-
teins of bacteriophages. Proc Natl Acad Sci USA 109:18482–7.

Redrejo-Rodr�ıguez M, Mu~noz-Esp�ın D, Holguera I, et al. (2013). Nuclear
localization signals in phage terminal proteins provide a novel gene
delivery tool in mammalian cells. Commun Integr Biol 6:e22829.

Redrejo-Rodr�ıguez M, Salas M. (2014). Multiple roles of genome-attached
bacteriophage terminal proteins. Virology 468-470:322–9.

Reichert JM. (2008). Monoclonal antibodies as innovative therapeutics.
Curr Pharm Biotechnol 9:423–30.

Ruoslahti E. (2012). Peptides as targeting elements and tissue penetra-
tion devices for nanoparticles. Adv Mater Weinheim 24:3747–56.

Ryvolova M, Drbohlavova J, Smerkova K, et al. (2013). Nanoparticles-
based carriers for gene therapy and drug delivery. In: Mishra AK, ed.
Nanomedicine for drug delivery and therapeutics. Hoboken (NJ):
Wiley, 471–92.

Scott JK, Smith GP. (1990). Searching for peptide ligands with an epitope
library. Science 249:386–90.

Sergeeva A, Kolonin MG, Molldrem JJ, et al. (2006). Display technologies:
application for the discovery of drug and gene delivery agents. Adv
Drug Deliv Rev 58:1622–54.

Shukla S, Ablack AL, Wen AM, et al. (2013). Increased tumor homing and
tissue penetration of the filamentous plant viral nanoparticle Potato
virus X. Mol Pharm 10:33–42.

Sievers EL, Senter PD. (2013). Antibody-drug conjugates in cancer ther-
apy. Annu Rev Med 64:15–29.

Skurnik M, Strauch E. (2006). Phage therapy: facts and fiction. Int J Med
Microbiol 296:5–14.

Slopek S, Durlakowa I, Weber-Dabrowska B, et al. (1982). Results of bac-
teriophage treatment of suppurative bacterial infections. I. General
evaluation of the results. Arch Immunol Ther Ex 31:267–91.

Smith GP. (1985). Filamentous fusion phage: novel expression vectors
that display cloned antigens on the virion surface. Science
228:1315–17.

Smith GP, Petrenko VA. (1997). Phage display. Chem Rev 97:391–410.
Staquicini DI, Rangel R, Guzman-Rojas L, et al. (2017). Intracellular target-

ing of annexin A2 inhibits tumor cell adhesion, migration, and in vivo
grafting. Sci Rep 7:4243.

Stefanick JF, Ashley JD, Kiziltepe T, et al. (2013). A systematic
analysis of peptide linker length and liposomal polyethylene glycol
coating on cellular uptake of peptide-targeted liposomes. ACS Nano
7:2935–47.

Stoneham CA, Hollinshead M, Hajitou A. (2012). Clathrin-mediated endo-
cytosis and subsequent endo-lysosomal trafficking of adeno-associ-
ated virus/phage. J Biol Chem 287:35849–59.

Stopar D, Spruijt RB, Wolfs CJ, et al. (2003). Protein-lipid interactions of
bacteriophage M13 major coat protein. Biochim Biophys Acta
1611:5–15.

Strebhardt K, Ullrich A. (2008). Paul Ehrlich's magic bullet concept: 100
years of progress. Nat Rev Cancer 8:473–80.

Suthiwangcharoen N, Li T, Li K, et al. (2011). M13 bacteriophage-
polymer nanoassemblies as drug delivery vehicles. Nano Res
4:483–93.

Svensen N, Walton JG, Bradley M. (2012). Peptides for cell-selective drug
delivery. Trends Pharmacol Sci 33:186–92.

Tandle A, Hanna E, Lorang D, et al. (2009). Tumor vasculature-targeted
delivery of tumor necrosis factor-alpha. Cancer 115:128–39.

Torchilin VP. (2005). Recent advances with liposomes as pharmaceutical
carriers. Nat Rev Drug Discov 4:145–60.

Trepel M, Stoneham CA, Eleftherohorinou H, et al. (2009). A heterotypic
bystander effect for tumor cell killing after adeno-associated virus/
phage-mediated, vascular-targeted suicide gene transfer. Mol Cancer
Ther 8:2383–91.

Tsafa E, Al-Bahrani M, Bentayebi K, et al. (2016). The natural dietary gen-
istein boosts bacteriophage-mediated cancer cell killing by improving
phage-targeted tumor cell transduction. Oncotarget 7:52135–49.

Umlauf BJ, Mercedes JS, Chung CY, et al. (2014). Identification of a
novel lysosomal trafficking peptide using phage display biopanning
coupled with endocytic selection pressure. Bioconjugate Chem
25:1829–37.

Vigevani L, Valc�arcel J. (2014). Molecular biology. A splicing magic bullet.
Science 345:624–5.

Vladimir P. (2012). Optimization of landscape phage fusion protein-modi-
fied polymeric Peg-Pe micelles for improved breast cancer cell target-
ing. J Nanomed Nanotechnol Suppl 4:008.

Wang AZ, Langer R, Farokhzad OC. (2012). Nanoparticle delivery of can-
cer drugs. Annu Rev Med 63:185–98.

Wang J, Wang L, Li X, et al. (2013). Virus activated artificial ECM induces
the osteoblastic differentiation of mesenchymal stem cells without
osteogenic supplements. Sci Rep 3:1242.

Wang J, Yang M, Zhu Y, et al. (2014). Phage nanofibers induce vascular-
ized osteogenesis in 3D printed bone scaffolds. Adv Mater Weinheim
26:4961–6.

Wang LF, Yu M. (2004). Epitope identification and discovery using phage
display libraries: applications in vaccine development and diagnostics.
Curr Drug Targets 5:1–15.

Wang L, Hu Y, Li W, et al. (2016). Identification of a peptide specifically
targeting ovarian cancer by the screening of a phage display peptide
library. Oncol Lett 11:4022–6.

Wang T, Petrenko VA, Torchilin VP. (2010). Paclitaxel-loaded polymeric
micelles modified with MCF-7 cell-specific phage protein: enhanced
binding to target cancer cells and increased cytotoxicity. Mol Pharm
7:1007–14.

DRUG DELIVERY 1907



Wen AM, Rambhia PH, French RH, et al. (2013). Design rules
for nanomedical engineering: from physical virology to the applica-
tions of virus-based materials in medicine. J Biol Phys 39:301–25.

Westwater C, Kasman LM, Schofield DA, et al. (2003). Use of genetically
engineered phage to deliver antimicrobial agents to bacteria: an alter-
native therapy for treatment of bacterial infections. Antimicrob
Agents Chemother 47:1301–7.

Yacoby I, Bar H, Benhar I. (2007). Targeted drug-carrying bacteriophages
as antibacterial nanomedicines. Antimicrob Agents Chemother
51:2156–63.

Yacoby I, Shamis M, Bar H, et al. (2006). Targeting antibacterial agents by
using drug-carrying filamentous bacteriophages. Antimicrob Agents
Chemother 50:2087–97.

Yao VJ, Ozawa MG, Trepel M, et al. (2005). Targeting pancreatic islets
with phage display assisted by laser pressure catapult microdissection.
Am J Pathol 166:625–36.

Yata T, Lee KY, Dharakul T, et al. (2014). Hybrid nanomaterial complexes
for advanced phage-guided gene delivery. Mol Ther Nucleic Acids
3:e185.

Yokoyama-Kobayashi M, Kato S. (1993). Recombinant f1 phage particles
can transfect monkey COS-7 cells by DEAE dextran method. Biochem
Biophys Res Commun 192:935–9.

Yokoyama-Kobayashi M, Kato S. (1994). Recombinant f1 phage-mediated
transfection of mammalian cells using lipopolyamine technique. Anal
Biochem 223:130–4.

Yoo SY, Jin HE, Choi DS, et al. (2016). M13 bacteriophage and adeno-
associated virus hybrid for novel tissue engineering material with
gene delivery functions. Adv Healthc Mater 5:88–93.

Zhu H, Cao B, Zhen Z, et al. (2011). Controlled growth and differentiation
of MSCs on grooved films assembled from monodisperse biological
nanofibers with genetically tunable surface chemistries. Biomaterials
32:4744–52.

1908 Z. JU AND W. SUN


	Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles
	Introduction
	Mass production of phage nanofibers by infecting bacteria
	Identification of targeting using phage libraries
	Cell-binding peptide
	Cell-penetrating peptide
	Nuclear location peptide

	Filamentous phage-mediated delivery
	Targeted gene delivery by filamentous phage
	Targeted drug delivery by filamentous phage
	Phage-liposome complex for drug and gene delivery

	Phage-mimetic nanoparticles-mediated delivery
	Integrating targeting peptide/protein into liposome for targeted drug and gene delivery
	Transferring phage protein/peptide to nanoparticles for targeted drug and gene delivery

	In vivo applications of phage and phage-mimetic nanoparticles
	Conclusion
	Disclosure statement
	References



<<
	/CompressObjects /Tags
	/ParseDSCCommentsForDocInfo true
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 150
	/GrayImageResolution 150
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (sRGB IEC61966-2.1)
	/MonoImageMinResolutionPolicy /OK
	/ImageMemory 1048576
	/LockDistillerParams true
	/AllowPSXObjects true
	/DownsampleMonoImages true
	/PassThroughJPEGImages false
	/ColorSettingsFile (None)
	/AutoRotatePages /All
	/Optimize true
	/MonoImageDepth -1
	/ParseDSCComments true
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 600
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness true
	/CompressPages true
	/GrayImageMinResolution 150
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/AutoFilterGrayImages true
	/EncodeColorImages true
	/AlwaysEmbed [
	]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/CompatibilityLevel 1.6
	/MonoImageResolution 600
	/NeverEmbed [
	]
	/CannotEmbedFontPolicy /Warning
	/AutoPositionEPSFiles true
	/PreserveOPIComments false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile ()
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/EmbedJobOptions true
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EncodeGrayImages true
	/ColorImageDownsampleType /Bicubic
	/EmitDSCWarnings false
	/AutoFilterColorImages true
	/DownsampleGrayImages true
	/GrayImageDict <<
		/HSamples [
			1.0
			1.0
			1.0
			1.0
		]
		/QFactor 0.4
		/VSamples [
			1.0
			1.0
			1.0
			1.0
		]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/HSamples [
			1.0
			1.0
			1.0
			1.0
		]
		/QFactor 0.4
		/VSamples [
			1.0
			1.0
			1.0
			1.0
		]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 150
	/PDFXRegistryName ()
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Gray Gamma 2.2)
	/ColorImageMinDownsampleDepth 1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ColorImageDepth -1
	/DetectCurves 0.1
	/PDFXTrapped /False
	/ColorImageFilter /DCTEncode
	/TransferFunctionInfo /Preserve
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/ColorACSImageDict <<
		/HSamples [
			1.0
			1.0
			1.0
			1.0
		]
		/QFactor 0.4
		/VSamples [
			1.0
			1.0
			1.0
			1.0
		]
	>>
	/DSCReportingLevel 0
	/PDFXOutputConditionIdentifier ()
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/PreserveCopyPage true
	/UsePrologue false
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
	]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Remove
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
		/PTB <>
		/FRA <>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/NOR <>
		/DEU <>
		/SVE <>
		/DAN <>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
		/JPN <>
		/SUO <>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ESP <>
	>>
	/CropMonoImages true
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo false
	/ColorImageDict <<
		/HSamples [
			1.0
			1.0
			1.0
			1.0
		]
		/QFactor 0.4
		/VSamples [
			1.0
			1.0
			1.0
			1.0
		]
	>>
	/CropGrayImages true
	/PDFXOutputCondition ()
	/SubsetFonts true
	/EncodeMonoImages true
	/CropColorImages true
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
	]
	/HWResolution [
		600
		600
	]
>>
setpagedevice


