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Abstract
Rett syndrome is an extremely disabling X-linked nervous system disorder that
mainly affects girls in early childhood and causes autism-like behavior, severe
intellectual disability, seizures, sleep disturbances, autonomic instability, and
other disorders due to mutations in the MeCP2 (methyl CpG-binding protein 2)
transcription factor. The disorder targets synapses and synaptic plasticity and
has been shown to disrupt the balance between glutamate excitatory synapses
and GABAergic inhibitory synapses. In fact, it can be argued that Rett
syndrome is primarily a disorder of synaptic plasticity and that agents that can
correct this imbalance may have beneficial effects on brain development. This
review briefly summarizes the link between disrupted synaptic plasticity
mechanisms and Rett syndrome and early clinical trials that aim to target these
abnormalities to improve the outcome for these severely disabled children.
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Introduction
Rett syndrome (RTT) is characterized by severe neurodevelopmen-
tal delay in psychomotor development that occurs predominantly 
in girls and is due to mutations in the gene on the X chromo-
some that codes for the transcription factor methyl CpG-binding 
protein 2 (MECP2)1,2. MECP2 is a transcription factor and pleio-
tropic protein that regulates the expression of numerous genes, 
including brain-derived neurotrophic factor (BDNF)3, and can 
mediate transcriptional activation, mRNA splicing, and post- 
translational processing of microRNAs4,5. A phenotype similar 
to RTT has also been described in children with mutations in the 
CDKL5 and FOXG1 genes6,7. Girls with RTT often present with 
features similar to autism with little or no speech development, poor 
contact with others, and stereotyped movements, including charac-
teristic repetitive hand-wringing movements8. Girls with RTT typi-
cally undergo a postnatal regression phase during the first 3 years 
after birth in which hand wringing, seizures, loss of hand use, and 
loss of expressive language emerge9,10. Clinicians who have seen 
patients with RTT are usually able to identify others because of their 
unique combination of physical and neurologic features. In addition 
to autistic features and hand-wringing movements, the characteris-
tic behavioral abnormalities in RTT include severely erratic breath-
ing while awake with periods of alternating hyperventilation, cya-
nosis and apnea, severe seizures and autonomic instability in heart 
rate and blood pressure, and changes in the color of the extremities 
consistent with sympathetic instability11. The incidence of sudden 
death is increased in girls with RTT12. Developing synapses appear 
to be a special target of the disorder, and head circumference is usu-
ally normal at birth but then falls behind over the first year of life 
so that it falls into the microcephalic range9,13–16. Neuropathologic 
examination of brain tissue from older girls with RTT who have 
died has revealed that neurons are typically too close together, sug-
gesting a stunting of axonodendritic development17,18. This hypoth-
esis is supported by studies of nasal epithelium from girls with RTT 
compared with controls, which showed that the neurogenesis of 
olfactory receptor neurons is normal but their maturation is blocked 
at the point of formation of synapses with the olfactory bulb19.

Role of excitatory synapse abnormalities in Rett 
syndrome
Early studies of patients with RTT, including some who had not 
been tested for mutations in the MECP2 gene, suggested an abnor-
mality of glutamate excitatory synapses18. For example, Hamberger 
et al.20 and Lappalainen and Riikonen21 in the 1990s reported that 
cerebrospinal fluid from girls with RTT had concentrations of 
glutamate but not other amino acids that were more than twice as 
high as those of children without RTT. Blue et al. in 1999 reported 
the first autoradiographic study of glutamate and GABA receptors 
in postmortem brain tissue from nine girls with RTT and 10 female 
controls of different ages22. The authors reported that densities of 
N-methyl-D-aspartate (NMDA) were elevated in the frontal lobe 
cortex in girls younger than 8 years of age but were significantly 
lower in girls older than 8 years without RTT23. Similar age-related 
changes in glutamate receptors were observed in the basal ganglia. 
Horská et al.24 used magnetic resonance spectroscopy to demonstrate 
that glutamate was elevated in the cerebral cortex of younger girls 
(less than 8 years of age) with RTT, especially those with seizures, 
but reduced in older girls. These changes in levels of glutamate 

between younger and older girls correlate with the bi-phasic 
changes in the clinical condition of girls with RTT who have more 
clinical signs of excitatory activity, including seizures early in 
early childhood, but have reduced signs of excessive central nerv-
ous system activity later in childhood9. More recently, Blue et al. 
demonstrated similar age-related changes in the NMDA1 subtype 
in the Bird model of RTT in mice25. Taken together, the elevations 
in glutamate as well as in glutamate receptors in younger girls with 
RTT suggest that there is an abnormality of the normal homeostatic 
synaptic scaling by which post-synaptic receptors adjust upwards or 
downwards to maintain a stable level of neurotransmission26. This 
abnormality in synaptic function probably contributes to deficits in 
excitatory synaptic plasticity and enhanced excitability observed in 
mouse models of RTT27–30.

The pathophysiology of elevated glutamate in the face of elevated 
NMDA glutamate receptors in RTT is not clear. The major regula-
tor of glutamate levels in and outside the synapse is the activity 
of glial glutamate transporters, which normally are activated when 
glutamate is released into the synapse31. Intra-synaptic levels of 
glutamate are thought to provide trophic influences on post-synaptic 
neurons, but glutamate flooding outside the synapse can activate 
excitotoxicity mediated by extra-synaptic NMDA receptors32. 
Maezawa and Jin33 reported that conditioned media obtained from 
Mecp2-null microglia from Mecp2tm1.1Bird/+ mice34 contain toxic lev-
els of glutamate that is damaging to neural dendrites in vitro and 
this effect can be blocked by inhibiting glutaminase or glutamate 
receptors. Jin et al., using the same model of Mecp2 deficiency, 
reported that abnormal function of the SNAT1 glutamine trans-
porter in microglia is associated with NMDA receptor-mediated 
neurotoxicity, mitochondrial dysfunction, and decreased viability 
of microglia35. Okabe et al.36 reported that astroglia from Mecp2-
null mice (Mecp2tm1.1Bird/+) had downregulation of glutamate trans-
porters that could increase extracellular glutamate to toxic levels. 
Lioy et al.37 also reported that the restoration of wild-type MeCP2 
in astrocytes of MeCP2-deficient mice (Mecp2Stop) restored normal 
dendritic morphology and increased levels of the excitatory gluta-
mate transporter. We also found that cerebellar granule cells from 
Mecp2-null mice (Mecp2tm1.1Bird/+) are more sensitive to cell death 
from hypoxia-ischemia and glutamate excitotoxicity compared with 
neurons from wild-type mice, suggesting that they also have intrin-
sic vulnerability to cell death38. These findings are consistent with 
the above-cited evidence of abnormal homeostatic synaptic scaling, 
which is expected to degrade normal excitatory neurotransmission 
and activity-dependent neuronal plasticity needed for learning and 
memory in RTT.

Abnormal diurnal regulation of sleep and brain 
glutamate levels in MeCP2 deficiency
Recently, the circadian sleep cycle in rodents has been associated 
with alterations in brain glutamate levels, with higher glutamate 
levels associated with wakefulness and sleep associated with a 
reduction in glutamate39. We applied the relatively new technology 
that can measure 24-hour continuous electroencephalogram (EEG) 
markers of sleep cycles and correlated them with biosensor meas-
urement of in vivo glutamate concentrations40. We found that mice 
with a Mecp2 knockout mutation (Mecp2tm1.1Bird/+) had abnormal 
behaviors and remarkably abnormal sleep cycles with long periods 
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of sleeplessness associated with very high relative concentrations 
of brain glutamate. These Mecp2-deficient mice also had elevated 
baseline levels of cortical glutamate measured with a separate 
colorimetric method in postmortem tissue. These data suggest that 
periods of sleep disturbance that are common in girls with RTT 
could be associated with enhanced glutamate neurotoxicity.

Role of GABA-containing interneurons in Rett 
syndrome
GABA (gamma-amino butyric acid) is the predominant inhibi-
tory neurotransmitter in the brain and is used as a transmitter at 
approximately 15% of synapses, and there is ample evidence of its 
altered metabolism in the mice with Mecp2 deficiency. Chao et al.41 
reported that the selective deletion of MeCP2 in GABA interneurons 
(Viaat-Mecp22/y mice) led to a reduction in the pre-synaptic release 
of GABA as well as autism-like stereotypies and RTT phenotypes 
in mice. Kang et al.42 reported that there is a significant location-
specific downregulation of synaptic GABA transporters in Mecp2 
knockout mice (Mecp2tm1.1Bird/+), and El-Khoury et al.43 reported 
age- and region-specific reductions in function in GABAergic 
pathways in MeCP2-deficient mice (B6.129P2(c)-Mecp2.tm1–1Bird). 
These observations along with those from the glutamate system 
indicate that there is a shift in the balance between excitation and 
inhibition in favor of excitation, as has been suggested to occur in 
other autism spectrum disorders8,44.

One of the most interesting recent observations on the role of 
altered development in GABA and glutamate-containing neurons 
in mice with MeCP2 mutations relates to the link between MeCP2 
and visual cortical plasticity45. Visual cortical plasticity associated 
with the occlusion of vision in one eye can be measured precisely in 
the laboratory in immature mice, and GABAergic interneurons play 
a critical role in this process46. Durand et al. reported that MeCP2-
null mice (Mecp2tm1.1Bird/+) have normal visual function early in the 
postnatal period but that visual acuity regresses after postnatal day 
35–40 and the cortex fell silent by postnatal day 55–6047. Remark-
ably, this effect could be prevented by genetic deletion of the 
NMDA glutamate receptor subunit NR2A. He et al. also reported 
that the genetic conditional deletion of MeCP2 in GABAergic 
parvalbumin-expressing neurons prevented local circuit inhibi-
tory functions required for experience-dependent visual cortical 
plasticity48. Krishnan et al.45 reported that the MeCP2 regulates the 
timing of the critical period of plasticity in the primary visual cor-
tex. Kron et al.49 have also examined brain activity maps by using 
activation of the immediate early gene Fos and electrophysiology 
and found evidence of synaptic hyperexcitability in the cortical 
default mode network that was reduced by the administration of 
the NMDA channel blocking anesthetic ketamine. The results of 
these studies support the themes raised earlier in this discussion of 
RTT, namely that MeCP2 deficiency leads to excessive excitation 
versus inhibition and defective activity-dependent synaptic plastic-
ity. Although ketamine can cause damage to developing neurons by 
excessively blocking the activity of NMDA receptors50, its use in 
RTT is intended to reduce excessive activity of NMDA receptors 
found in RTT to normal levels. Both too little and too much activity 
at NMDA receptors can damage the developing brain51.

Potential new therapies based on advances in 
understanding Rett syndrome
Several clinical studies are examining potential therapies for girls 
with RTT on the basis of the basic science insights from experi-
ments on mice with MeCP2 deficiency. Naidu et al. launched a 
randomized open-label study of oral dextromethorphan, a competi-
tive NMDA antagonist, for seizures and cognitive function in girls 
with RTT from 2008 to 2014 (ClinicalTrials.gov: NCT00593957). 
Results of this study suggest a significant improvement in a sec-
ondary outcome of receptive speech by using the Mullen Scales 
of Early Learning over the course of’ 6 months but no change in 
seizures. Based on these promising preliminary data on cognition, 
Naidu et al. are carrying out a randomized double-blind study of 
dextromethorphan for girls with RTT which was started in January 
2012 (ClinicalTrials.gov: NCT01520363) with support from the 
US Food and Drug Administration, and this study is still seeking 
subjects for enrollment. Other blockers of the NMDA receptor, 
including memantine and ketamine as mentioned above, are under 
discussion but have not been registered in ClinicalTrials.gov.

Published data are available on the administration of an active pep-
tide of insulin-like growth factor 1 (IGF-1), which has been reported 
to be deficient in mice with Mecp2 deficiency52. IGF-1 activates 
tropomyosin receptor kinase B (TrkB) receptors and stimulates 
downstream signaling through the PI3K, AKT, and mTOR (mecha-
nistic target of rapamycin) signaling pathway to stimulate protein 
synthesis53. Recent evidence also indicates that the positive effect of 
Mecp2 on mTOR is mediated by post-transcriptional processing of 
microRNAs that enhance mTOR activity so that Mecp2 depletion 
leads to a reduction in mTOR activity4.

IGF-1 administration has been reported to improve behavioral 
functional recovery in Mecp2-deficient mice (Mecp21lox/+ females54) 
as well as spine density, synaptic amplitude, and PSD-95, a major 
constituent of the synaptic post-synaptic density in excitatory 
synapses55,56. Khwaja et al.52 recently reported a preliminary assess-
ment of the use of recombinant human IGF-1 (mecasermin) in 
girls with RTT. Some behavioral parameters, including anxiety and 
mood and an EEG parameter, seemed to improve, and the medica-
tion appeared to be safe and well tolerated52. Recent preclinical data 
suggest that fingolimod, a sphingosine-1 phosphate receptor modu-
lator that can increase levels of BDNF, can also reduce signs of 
disease in a mouse model of RTT57. Valproic acid has also recently 
been reported to have a positive behavioral effect on mice with Rett 
mutations and phenotype58.

Conclusions
Mice with Mecp2 deficiency display a variety of aberrant behaviors 
and synaptic abnormalities that correlate very well with those in 
human RTT. Girls with RTT and mice with Mecp2 deficiency dis-
play elevations in both glutamate and NMDA glutamate receptors 
and this is likely to produce abnormal homeostatic synaptic scaling 
and probably contributes to impaired activity-dependent synaptic 
plasticity. RTT appears to involve an imbalance between elevated 
glutamate levels and reduced GABA levels, similar to models of 
autism spectrum disorders. Chaotic sleep in mice with Mecp2 
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deficiency has been shown to correlate with elevated baseline gluta-
mate levels in the brain and very high elevations in glutamate asso-
ciated with prolonged wakening. Several clinical studies are under 
way to attempt to normalize synaptic abnormalities in RTT, includ-
ing the studies by Naidu et al. with dextromethorphan, a clinically 
approved competitive NMDA receptor blocker. A randomized 
un-blinded trial of dextromethorphan showed improvement in 
receptive language in girls with RTT, and a randomized trial of 
this drug is under way. Preclinical studies suggest that low-dose 
ketamine, a non-competitive NMDA blocker, might be useful for 
improving the connectivity of brain circuits affected in RTT and 
improving function. Human recombinant IGF-1 has also shown 

benefit in mice with Mecp2 deficiency, and a preliminary study in 
girls with RTT showed that it was well tolerated and may have some 
benefits.
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