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ARTICLE INFO ABSTRACT

Keywords: In this article, we derive the Archimedean aggregation operators for complex intuitionistic fuzzy
Complex intuitionistic fuzzy sets sets, for this, first, we evaluate some Archimedean operational laws based on complex intui-
Heronian mean operators tionistic fuzzy values and then we discuss their special cases because the Archimedean norms are

Archimedean t-norm and t-conorm - . . . .
the general form of all existing norms, for instance, algebraic, Einstein, Hamacher, and Frank

operational laws. Furthermore, we present the complex intuitionistic fuzzy Archimedean Hero-
nian aggregation operator and complex intuitionistic fuzzy weighted Archimedean Heronian
aggregation operator. Several special cases and the basic properties of the above-proposed op-
erators are also diagnosed, because proposing the Heronian mean operators based on Archime-
dean norms are very challenging and complicated tasks, because of their features and structure.
Additionally, a decision-making process is developed under the identified operators by using
complex intuitionistic fuzzy information. Finally, we illustrate several examples to show the
multi-attribute decision-making technique is more flexible than the prevailing works with the
help of sensitive analysis between explored and certain prevailing works.

Decision-making techniques

1. Introduction

The decision-making procedure is a technique that contains a lot of types, for instance, MADM technique, MAGDM technique,
MCDM technique, and many others, which are used for addressing the best optimal among the collection of finite decisions. In some
cases, experts have lost a lot of data, if they use the classical information for evaluating the MADM procedure because in the case of
classical set theory, experts have only two opinions like zero or one. Zadeh [1] extended the range of the classical set and derived the
FS. The range of FS is unit interval instead of {0,1} and because of this reason, experts have a lot of space for taking their decision.

Abbreviations: TN, t-norm; TCN, t-conorm; CIF, complex intuitionistic fuzzy; CIFAHA, CIF Archimedean Heronian aggregation; CIFWAHA, CIF
weighted Archimedean Heronian aggregation; MADM, multi-attribute decision-making; FS, fuzzy sets; IFS, intuitionistic fuzzy sets; CFS, complex
fuzzy sets; CIFS, CIF sets; TD, truth degree; FD, falsity degree; SV, score value; AV, accuracy value; HM, Heronian mean; CIFN, CIF number; MAGDM,
multi-attribute group decision-making; MCDM, multi-criteria decision-making; IVIFS, interval-valued IFS.
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Adjust the grade of falsity is a very challenging task for scholars, because in many cases the falsity grade played an important role,
especially during the elections, For handling such kind of problems, Atanassov [2] computed the IFS with a well-known rule: 0 <
Wiztey, (mr) + Nege (#m1) < 1, where Nge, (+5) and My, (~z1) represents the TD and FD. Some extensions and implementations of
IFS are as follows: IVIFSs [3], Dombi aggregation operators for IFSs [4], entropy measures for IVIFSs [5], Bipolar soft sets [6], failure
mode and effects analysis [7], improved TODIM processes [8], operational laws for IFSs [9], aggregation and infinite chains for IFSs
[101, parameterized IVIFSs [11], telecom services providers under the IFSs [12], MABAC method for IFSs [13], and distance measures
for IVIFSs [14].

The TD in FS theory is computed in the form of a simple function that can easily deal with one-dimensional information, but in our
daily life problems, experts have faced a lot of problems that are present in the shape of two-dimensional information. For managing
such kinds of problems, we needed to find a structure that has computed in the shape of a complex number, where the complex number
can easily depict the two-dimensional problem. Therefore, we found a novel concept of complex FS (CFS), which was invented by
Ramot et al. [15]. The TD in CFS is arranged in the shape of polar coordinates. Furthermore, operation properties for CFS were
explored by Zhang et al. [16], complex fuzzy logic was explored by Ramot et al. [17], systematic view of CFS was presented by
Yazdanbakhsh and Disk [18], neuro-fuzzy architecture for CFSs was developed by Chan et al. [19], complex neuro-fuzzy ARIMA
forecasting was initiated by Li and Chiang [20], Distance measures for CFS was proposed by Hu et al. [21], periodic factor based on CFS
was investigated by Ma et al. [22], linguistic variable for CFS was explored by Alkouri and Salleh [23], cross-entropy measures for CFSs
was developed by Liu et al. [24], and distance measures for interval-valued CFSs were presented Dai et al. [25]. But sometimes the
principle of CFS is enabled to describe the ambiguity and inconsistency in genuine life dilemmas. For this, the principle of complex IFS
(CIFS) was initiated by Alkouri and Salleh [26] by putting the FD N_¢:,, (z5) = Vg, (g )2V () in the region of CFSs, which
covers only the TD Migs, (vgr) = Mg, (vpr )e? P m) with some well-known rules: 0 < Mgz, (var) + Nty (+m) <1 and 0 <
Mizgg, (w5r) + Nete, (251) < 1. CFSs are the specific part of the CIFSs, and numerous individuals have employed them in distinct regions.
For illustration, information measures [27], robust correlation coefficient [28], generalized geometric aggregation operators [29],
robust averaging/geometric aggregation operators [30], aggregation operators for generalized CIFSs [31], power aggregation oper-
ators [32], preference relation for CIFSs [33], and complex intuitionistic fuzzy soft sets [34].

The fundamental theory of Archimedean norms for IFS was proposed by Xia et al. [35], with the help of Archimedean norms, we
can easily derive any kind of operators and their special cases. Furthermore, Luo et al. [36] initiated the exponential laws for IFS. Garg
and Rani [37] elaborated on the generalized Bonferroni mean operators for IFSs. Moreover, Yu [38] initiated interval-valued multi-
plicative IFS based on Archimedean TN and TCN. Ma and Yang [39] presented the weighted mean operators using the Archimedean TN
and TCN for IFSs. Liu et al. [40] derived the Quasi-OWA operators. Liu and Chen [41] proposed to the HM operators. Seikh and Mandal
[42] evaluated the Frank operators for q-rung orthopair fuzzy sets and their application in decision-making. Recently, Seikh and

1. To derive different types of operational laws for complex intuitionistic fuzzy sets.

2. To evaluate the general from of CIF Archimedean Heronian aggregation operator.

3. To evaluate the general from of CIF weighted Archimedean Heronian aggregation operator.

4

5. To derive some special cases of the above proposed operators.

6. To discuss the MADM technique based on proposed operators.

7. To compare the proposed operators with some existing operators.

Fig. 1. Representation of the summery of the proposed approaches.
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Mandal [43] evaluated the Frank operators for picture fuzzy sets and their application in decision-making problems. After a brief
discussion, we noticed that all experts have the following major issues, such as:

1) How do we evaluate generalized operational laws for all t-norms and t-conorms?
2) How do we propose generalized aggregation operators for CIFSs?
3) How do we rank all the alternatives for evaluating the best optimal between a finite number of alternatives?

For dealing with the above three queries, we needed to develop the Archimedean Heronian mean operators for CIFSs because, with
the help of these investigations, we can easily derive any kind of operators. It is clear that many scholars have invented the Heronian
mean operators for FSs, and IFSs, but no one can derive it for CIFSs. Furthermore, the Archimedean operational laws for IFS have been
proposed, but no one can derive them for CIFSs. Combining the Archimedean operational laws and Heronian mean operators with CIFS
is very awkward and complicated because no one can derive it after the investigation of CIFS in 2012 up to yet. The proposed
techniques are very reliable and dominant because of their structure, where many advantages follow, for instance, Archimedean
aggregation operators, Heronian mean operators, Aggregation operators, Einstein aggregation operators, Hamacher aggregation op-
erators, Frank aggregation operators, Heronian Aggregation operators, Einstein Heronian aggregation operators, Hamacher Heronian
aggregation operators, and Frank Heronian aggregation operators for FSs, IFSs, CFSs, and CIFSs are exceptional cases of the derived
work. Similarly, we have a lot of possibilities to derive different types of operators from the invented Archimedean Heronian mean
operators based on CIFSs. Based on the above advantages, the major contributions of the derived operators are listed below:

1) To propose the Archimedean operational laws based on CIF values.

2) To derive the algebraic operational laws, Einstein operational laws, Hamacher operational laws, and Frank operational laws from
the Archimedean operational laws by using different values of the functions in Archimedean operational laws.

3) To evaluate the CIFAHA operator and CIFWAHA operator. Several special cases and the basic properties of the above-proposed
operators are also diagnosed.

4) To illustrate the MADM process is developed under the identified operators by using CIF information.

5) To discover several examples to show the MADM technique is massively more flexible than the prevailing works with the help of
sensitive analysis between explored and certain prevailing works. The major findings of the proposed theory are stated in Fig. 1.

The major objective of this analysis is reviewed in the subsequent approaches: In section 2, we revised the prevailing principles of
CIFSs and their algebraic laws. Moreover, the principle of HM operator, algebraic, Einstein, Hamacher, frank operational laws, and the
generalized form of TN and TCN are also revised in this study. In section 3, we elaborated on the algebraic, Einstein, Hamacher, and
Frank rules for the CIF setting. Numerous specific cases of the presented rules are also illustrated with the help of parameters. In section
4, we initiated the CIFAHA operator and the CIFWAHA operator. Several important properties and their related results are also
diagnosed. In section 5, we developed a MADM process under the identified operators by using CIF information. We illustrated several
examples to show the MADM technique is massive flexible than the prevailing works with the help of sensitive analysis between
explored and certain prevailing works. In section 6, we employed the assumption of this analysis.

2. Preliminaries

In this analysis, we revised the prevailing principles of CIFSs and their algebraic laws. Moreover, the principle of HM operator,
algebraic, Einstein, Hamacher, frank operational laws, and the generalized form of TN and TCN are also revised in this study. The term

Wete,, (rmn) = Mgy (o )e2 Ve m)) and Mgy, () = Vg, (o ) €2 V= (8) stated the TD and FD and the universal were invented by
X,

Definition 1. [26] An CIFS =f&¢ is invented by:
—teo = { (mm (o), i, uﬂ)) - %} )

where EU‘H@C, (.I?EL) = ED(),zfiR (xEL)eizn(M:fﬁ(’EL)) and 2)’(‘:}50 (JEL) = "Jf:fh (J'EL)eizﬂ(\J‘\:ffl ("EL)), with 0 < ED(\,:Q:R (J‘EL) + E)?:féR (-’EL) <1 and 0 <
ﬁR:f& (,z‘EL) + 9%:% (JEL) < 1. The structure R:fga = R:fg’R (eTEL>ei2”(mf;1(~’EL)) — (1 — (wagR (.z‘EL) + 91(=ng (WEL)))CQH(I_(EUL“I (JEL)-Pﬁﬁ;I(rEL))),
conveyed the neutral grade. The CIFNs are mentioned by: =féciv_p = (Wiigs, €2 Vo) Ny, 62 P=an)) 9 = 1,2, L,
Definition 2. [28] Choose any two CIFNs =fécy 1 = (Ve , €2 1) Npe, €2V~ 1)) and =y 2 = (Wicg, e Vta2),
9?=ffk—2 eiz”(ﬂ‘;féz,z ) ), then

i2r (zm:f;H Wiy, , Vg, W, )
N N - -
<§D‘:ffk—l + w":fik—z - 31)?':ﬂ:k—l S‘R:ffk—z) e ’

=ty @=técyn = 2

i2r <ﬂ€='51—1 Nete,_, >
N
9‘=ffk—| SJ’E=f51z—z €
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i2n (wcﬁgH Vg, )
9 9)
lR:fg,H .UL@,FZ e s

=ty @=téeyn = 3
) ) | N 0oty e, Nty
sR=f§1<4 + §h=f§k72 - sﬁ:‘éml}h#ikq

=rsc
=rsc i2n(17<17we=,;,71> ) i2n<92 ’gfl>
=ysc=técmn=|1- (1 - ED’E:Q:RH) e S NTE e ,=rsc >0 @
=rsc
i2n(‘.U(‘Z;§£]> N =7sc 127:(17<17u?:};,7|) )
=t = e:ZEL € 1= (1 - 92=f§:e71> e =rsc >0 (5)

For more simplification, we justify the data in Def. (2) with the help of some suitable examples, for this we consider any two CIFNs,
such as =fé¢y_1 = (0.5¢27(06) 0.3¢27(0-2)) and =f&cy_» = (0.7€2708) 0.2¢227(01) with =y5. = 2, then

0.5+ 0.7 — 0.5%0.7)H06+08-06708) 1.2 — 0.35)¢2(14-048). o o
=ty @=técyn = (( (0.3%0.2)e ,2,,02 *0.1) = ( (0. 06))'2”002 ((0 85)e” ©% , (0.06)e™ 002)

0.5%0.7) (06" 08) 0.35 61211048) 2 o
=ffcnv71®=ffcnvfz:((03+0£ 0.3% 2)2) 27(0.240.1-0.2%0.1) (05( 00)6) 25(03-0.02) ((0 35)e 2r048) (044) ol 028)

P (1 - O.S)ZeiZﬂ(l (1-06)?) ,(0.3)2e2702) ) (1

_ (0.5)28;2;[( (0.4)) ,(0.09)e ,21004) ((1 —025)e i27(1-0.16) (O 09)e 2 004) ((0 75)e i27(0.84) (O 09)e 2 004)

2
() = (037011 03707) (o2,

_ (0.7)2ei2”(1’(0‘8)2)> ((0 25) i27(0.36) ( 049) i2r(1— 064)) ((0 25)e i27(0.36) (0 51)e 12/[036))

Definition 3. [29] Choose any CIFN =fé¢y 1 = (Vs , €2 V1) Ny, | €27M=1)), then the score value (SV) is invented by:

=G <=ffcw71) ()ﬁ—fgk D, — Vi, — W:fg,,.) (6)

where =Ggy (=féan-1) € [— 1,1].

Definition 4. [30] Choose any GIFN =f¢gy 1 = (Vs €2 V=) Ny, €27 M=51)), then the accuracy value (AV) is invented by:

=9, (=f¢C,N,l> —% (mm D+ e, |+ i ) @

where =}HAV(=I;§CIN71) S [O 1]

Keeping in mind Egs. (1)-(5), we have the following notions.
Definition 5. [30] Choose any two CIFNs =féey 1 = (Wi, , €2 1) Npe, €2 P=a1)) and =feey 2 = (Wisgg, ,e2 Vera),
Netey , €27 2)), then by using Eq. (6) and Eq. (7), we initiate

1. ==Cgy(=téem-1) > =Ssv(=tan-—2)=>=técm-1 > =técm_2;
2. ==Cgy(=ttcn-1) < =Cgv(=técv-2)=>=Ftcw-1 < =tEcin-2;
3. ==0sy(=técn-1) ==Ssv(=tcv—2)=.
) ==NRav(=tcw-1) > =NRav(=ewv—2)=>=tcv—1 > =fcv—2;
il) ==NRav(=teewv-1) < =Nav(=tem-2)==tcm-1 < =fécv-2;
iif) ==Nav(=tem-1) = =Nav(=tem-2)=>=Fcv-1 = =tcv—2.

Definition 6. [40] Choose any group of integers (+ve) =f&p 4,0 = 1,2,...,%, thus
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UV

- 2 .
HM™ ™~ (=f§P1—17=I‘§PI—27 ~--7=f§.v172> = <2(2+1) Z

0=1 k=1

ff;{9=f§;7k> ®
Eq. (8) represents the HM operator, where =/',=, > 0. Furthermore, various valuable and well-known norms are stated below:

1. Algebraic norms [41]:

Tow (2£1,95) = #E195,—>t — norm (additive generator) : “ 17 (#) = — In(7) (©)]
Sin (251, 951) = 51 + 95, — @E195 —1 — conorm (additive generator) : B (7) = —In(1 —7) (10)
2. Einstein norms [41]:
A - A 2—7
Tow (it pm) = LELYEL t — norm (additive generator) : " () :ln< ) (€8]
T+ (= am)(1 = ) /
~~ p = 147
Stv (2eL, w51) :M—n — conorm (additive generator) : 8 (/) :ln( + ) (12)
’ L+ 2eryy 1=
3. Hamacher norms [41]:
Tow (2EL,p5) == _ TE e t — norm (additive generator) : "1 (/) =In <M> (13)
sc + (1 = 3sc)(er + s — wrrypy) ‘
— PRI  § R 0 . Sse +(1—dse)(1=7
St (2eL, w51) _retsm TRV ( sc) e t — conorm (additive generator) : B (7) :ln( s+ ( Sc)( ) )
1 — (1 = 8sc)zuryy, l—v
14
4. Frank norms [41]:
—~~ Sse — 1) (8sc?et — 1
Tow (ve,pp) =10gs;, (1 + (%sc /\)( 3¢ )> —>t — norm (additive generator)
) (8sc — 1)
- e o~ s Sse — 1
SIf S = 1,then "7 (7) = — In(7),if Gsc # 1,then 7 (7) = —1n<52?—1> (15)
SC/ -
= Ssc ! — 1) (85! rm — 1
Sov (5L g) =1 = log,... (1 + (9sc ,\)( 5 )> —t — conorm (additive generator)
(8sc = 1)
—~ oy e o~y Sse — 1
If Sc =1,then B (/)= —In(1 —7),if 8sc #1,then B (/)= 71n<j“f%/l> (16)
Osc " —
The modified and general form of TN and TCN is listed below in Eq. (17) and Eq. (18):
=~ D~ —~~
Ton (eoeogg) =1 (0 (om) +70 (rgr)) a7)
S = =
Stv (#51,95) =B ( B (rp) + B (/EL)) 18)

where 8 (/) ="n (1- 7).
3. Archimedean operational laws for CIFSs

In this section, we discover the well-known and famous theory of algebraic, Einstein, Hamacher, and Frank’s rules for CIF infor-
mation. These operations play an essential role in the construction of any kind of aggregation operator.
Definition 7. Choose any two CIFNs =ffey 1 = Vi, €2 W) N, e P=ar)) and =feoy o = (Vg ,e2 V),
Nete, , €27 2)), then
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)

~ =~
,zn(% ! ( B (wgf§[71)+ LB (zut:f5,7,>)>
Aszr'(s (JJ(_fg L)+ (waﬁ )) :
A~
(77 ! ( (\ﬂ=f51 1
=" 1< (R_fin 1> + (R_fin z))

= (19
~~
) (s2)))
= ~~
’2”<TTN (Em:f‘flfl‘sm:ﬁlfz>) =~ i2”<§TN (\JH:, | Nty 2))
=téen- @=fécv = ( w | Mgy, Wioge, a> » Sty (J‘ e 1> —tey Z)e )
() )
At (T (W )+ () ) ) ),
- YN ~~ (20
e (T ) o) (T L) T)
=tép-1 =t e
= ~~
~~ —~ m(%fl (=ysc B (wz:,glfl)))
=ysc=tecw1 = (231 (=Vsc 8 (SJE:QR 1))6
(7 () ”
= 2z N =rsc N w:ffH
? ’771 <=YSC/’7\<92=ER—|)>€ )
(7 (= (oe0)))
~= 2z| N =rsc N ‘U3=f, 1
5;11\1 1( B (=}’sc/’7\(§m=fém))e
(22)

(o () ’“(ﬂmﬂ%))))

To select the data in Eq. (9) and Eq. (10), then the data in Eq. (19) to Eq. (22) will be transformed to Eq. (2) to Eq. (5), called
algebraic laws, further, to select the data in Eq. (11) and Eq. (12), then the data in Eq. (19) to Eq. (22) will be transformed to Eq. (23) to

Eq. (26), called Einstein laws, such as
M g
(Em=f¢k,| + EDLQH> <1+1‘vfgl—‘ L 1‘1—‘:"51’ 2)

1+ 9)E=f5R4 ﬂR:ffRiz ’

=ftécw1 @=tcw o= ( .. ) (23)
i Tty Tty o
9?:&,(,1 m:th,z " (1—:'::&, 1 > ("‘"Zfél 2)

1+ (1 - m:m,,) <1 - Je%,z)

i2n ( Vs Yty )
wéf@,.‘!’hgm 1+ (17:113:,51 |) (17:11(‘:}5’ 2)

1+ (1 - wgﬁk,l> (1 - m,m>

Ve, g
i -1 1-2
(9?:“:,2 1 + Sk:f@k 2) L (IJfﬂ IJ*EI )

e
1+ 2),E=f§k—| 92=f5R—2

}

=fécw_1 @=fécw= 24)
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To select the data in Eq. (11) and Eq. (12), then the data in Eq. (19) to Eq. (22) will be transformed to Eq. (27) to Eq. (30), called

Hamacher laws, such as
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(1+ G- n(1-m )+ e - 0w,
=fE7sc —

CIN-1 = : sc »=sc >0

=rsc =rsc
('*(aft"‘)”tﬂf,q) ,<|—‘.h‘4517|)
2n =7sC =Tsc
(‘ (05 =1) Mg, 1) Hosc=1) (' gy 1)

- =7sc =rsc
<1 + (5SC - 1)%:&,(7]) - (1 — 9?:;51‘,7])

_— =rsc —
(1 + (5SC - 1)m:‘5R—l) + (55C - 1)<1 - gz:fﬁk—l)

=rsc ¢
(30)

To choose the value of E/S\c = 1inEq. (27) to Eq. (30), we will get the data in Eq. (2) to Eq. (5), when we select the value of 6/5\0 =2in
Eq. (27) to Eq. (30), thus we will derive the data in Eq. (23) to Eq. (26). To consider the data in Eq. (13) and Eq. (14), then the data in
Eq. (19) to Eq. (22) will be transformed to Eq. (31) to Eq. (34), called Frank laws, such as

H( SNty 1>
2 =1

H —~_m 2 | 1-log,. | 14 _
(5“1—%:@70 - 1) B -

1 —logs | 1+ el = e ,
sc —
=fécw_1 @=fécw= ) (31
H Ssctir0 — 1)
2 7 ; . 6=1 (
H < ooty 1) i2r [ togse | 1+ P
9=1
logégc 1 +—g\ | e
sc —
2 ~
H <5scwe:f5'*5 — 1)
2~ a | gy | 1HEE oo~
H 5SC —ter g — ] Nel SC—
-1
logéb;c 1+ = e
s —
=téen-1 @=técivr = s (32)
H<5;C]79t=f§’ 6 — 1)
2 ~ |, ir | 1-tog,. | 1421 —
H Ssc =tgo — ] SC SC™
1 —logs [ 1+ o=l = e
sc —
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(g;j _ 1)=/sc*1

= - 1-0 =g, _ -
— sc
<g\1*w€=f;k L 1) 2z | 1-log,. | 1+ -

Nel - 3sc (5“,1)*73'5*‘
1 —log,.. (1 + )e

=yt = e ,=Ysc >0 (33)
=rsc <'7§cm:f5”' 1
(636‘1‘;:&*7' — 1) 2z logﬁs'(_ I+W
g \ 1 e e )¢
—~ =rsc
(65Cll=}5R7I _ 1) i2n 10g5$C 14 e
log c 1+ - = ]€
dsc ((sSC _ 1)—/55—1
=t = e =rsc >0 (34)
=rsc (‘55’(' ety
< §Sclf\ﬂzf§k,| — 1) i2r | 1-log,. . 1+4(5g(771)=r.vc"
1 —logs: 1+ — — e
bsc (55 — 1)7&71

4. Proposed archimedean operators for CIFSs
In this section, we discovered the CIFAHA operator, CIFWAHA operator, and their special cases with the help of some conditions.
Several important properties and their related results are also diagnosed.

Definition 8. Choose any group of CIFNs =f&cy_g = (Wigs, €2 Vo) N_p, €2 P=e0)) 9 =1,2,..., ¢, then the CIFAHA operator is
invented by:

7=
CIFAHAT =~ (=f§cnv717:f§cw—27 ~~~-,:f£fC1N—n) = ( Y Z Z ffcnv 0 =t A) (35)

0=1 k=1
where =/, =

Theorem 1.  Choose any group of CIFNs =féciy o = (Vicgs, €2V =0) Nys, €2 V=0)).0 =1,2,....L, then by using Eq. (35), we initiate

CIFAHA™ ™~ (=f§ cv—1=tcv—2,...~teciv_g )

. 1 —1 2 ST 9 9
- <=/+=;”\<A% (8(2+1)<ZZ v /"\(J&“'H)F’ (Ve )>>>>

= ¢ @
o <"'7/T (=/l=y/77\<%l <y(uz+l) (22? (=/f;7\ (\Ih_t g g> = N (‘UE::; & ) > ) ) ) )
B 0=1 k=0 (36)

- [ty . 2 LG~ ~~
— ]<=/+=¢ ¢ (A" ]<2<8+1> >3 ()4

. 0=1 k=0

Proof: Consider

A~ = 2
e T o TR
o (T () )
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= —~ /} PN
_ =~ - i2n<11’1 (=y n (\'D?:'fl—k>)> = ~ izﬂ(‘l? <=y by (\Jg,gH)))
257 (= (ﬂl (=7 (e ) )e 87 (5T (R ) )e )

then,
(7))
.y _ ~~ 2z\ N > N | Ve,
=t Oty = < ! (=//’1\ <9~R=P5R H) ) ¢ )
OV AE AN A~ -
=~ —~ i2n <‘J (=/ B (wszw) ) ) A~ 127[< 7! (=, n (»ﬁ.‘:,;,ik> > )
07 (5 (e ) e )@ (n‘ (= (e ) )e

~= =~

and,

OV RN L VAN =
i2n<% ! ;; by ('771 =1 (1U3=m g)+=7 n (‘l’f=f5/ k))))
e L

=f§?{1;/79 =ty = ¢ e )
o ((z (e (5T () +=ﬂ?(mk>))))

gt

5
I
=~

g
/N
&
|
/P\
£
A/~
M-
7=
%)
/>
S, >
A/~
\Q
=)
//~
=
&
<
~—
+
d
=
/N
=
g
N
~——
~—
~——
N———
~—

IS
Y

X =f§:{1;/—(} @=tgy =

P O 2 2 ”/\( 71(=/§,§\(5 ) =/}\(\ )))
Y <8(2+1)<01 =0 no( =Y 7 B Nt ) +57 B | N,

10



Z. Ali et al. Heliyon 10 (2024) e24767

e ) ’ 2 ¢ ¢ =
CIFAHA™ ™~ (zfé:CIN—ls:fgC[N—Z; ~~-7=f§cuvfss> (2(2+ 0 2 2 En_o ® =tEq)y A)
(o (w (B R T () ()
! B B (= N = N
! (—/ =" ( (8<8+ D (Z 2 8 (7 (M) 4= (e

1 1 ~ 1 2 L PN _//\ s . ~~ N
=~ <=/+=, bt </\;7 (53(53+1) (91 ; ) (—/ B (JE%H +=5 B (N,
=~ A~ ¢ e
[21(‘31 (/l/’i}\<’71 (L’(L'2+I)<Z /;1\<://§B\<~J::f¢]7”>+:,/?13\(Jqf, k)))))))
e =1 k=6

Under Eq. (35) and Eq. (36), we employed some properties like idempotency, monotonicity, and boundedness.

e Whiis) N_pe, @2 V00)) 0 = 1,2, .., L If =feaw g = =fay =

Property 1. Choose any group of CIFNs =fégn_g = (Wi, ,
(Sl}2=f5R eiZﬂ(EJﬁ:f5, ) , %=f§R eizﬂ(gl\:fgl ) ), then

CIFAHA™ ™~ <=ffcnv71 5 =f§CIN—2 [ =¥§C1N—£> = =ffcm (37)

Proof: By hypothesis =f¢cy g = =féay = (Vigs, €2V, Ny, e27=)), then

1
=

o 5 ¢ ¢ 7=
CIFAHA™ ™~ (=f§a~71~,=f§a~727 ---;=Y§C[N—L'> = (8(2 ) Z Z_ffcnv ®=f élN)
=1 =1

N
N
J

0=1 k=1

I - 7= ) 11 e
(e sa) (s )

Fis 1
<2—f§c{N+ 4 ) = (=tegy )7 = =f&a. This proves Eq. (37).
Property 2. Choose any group of CIFNs =fécy g = (Wi, , 2" =to) Nge €2 T=0)) 0 = 1,2, .. Q. If =féem—g < =Fopy g, then
CIFAHA™ =~ <=f§C1N—] s =tew-a, ~~~7=f§C1N—L'> < CIFAHA™ ™~ <=f§*c11v71 = o ~.~,=f§2[N,g> (38)

Proof: By hypothesis, we know that if =féqy ¢ < —féC,N o that's mean M, , < J)?_%R 0,))E=f;, , < 9)?;5' and N, , > JP_h:R o
Nege, , > J‘=f5H, then

=///l’]\ (we=ffk—/l> + =7’/]1\ <§'Ue=fﬁk—k> < =//’7\ <2D’E;f.§,g,g> + =y/7’]\ (we;f.fk,A >

thus,

then,

thus,

11
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=~ 2 LU,
1 S . _~~ N
(e (5 50 o) (o)
L
k=6

S ——

o~ 1 ~~ 2 LA~
;1’1 - =7/;1\<S3 ! (L(L T 1) ( &Y (=///'7\(we=fﬁkw> += ?(JR—QR k >>>>
6=1 *=6

gt 1~ 2 S AP
= <=/+=y”<l’l<x<x+1><zlm%(/ (9. ) + (e, )))

Similarly, we investigate for an unreal term, such that

)
?(z/i;;"\(g\< CE+1) (;1 k}’qj(:ﬁ(ﬁ)?:m) +=’/n\<m_ﬁ” ))))
e Ly )
)

Moreover, for real and unreal terms of FD, we have

N 1 ey e N 2 L ¥ P ~=~ A~
B! P R (p—— =% 4=, %
¢ <=/+=y ¢ (” (ss(ul)(gg T (/ ¢ (L‘f’*”) 7 (SR:”“ )))

(1 A~ 2 (o o
e (oG )

) ~ SES
=T (@ (B R T () =T (5)))))
> =1 =0
[ o~/ . A
O T e (FE T T )T (x)))
= 1 k=0

By using Eq. (6), we easily get the terms.
CIFAHA™ = (=fteiv_1,=fécin-a, ..., =fécv_u) < CIFAHAY = (=£6 . 1 =t os -, =fen_o)- This proves Eq. (38).

Property 3. Choose any group of CIFNs =féem g = (Wi, 2 Vo) Neg, eP=ao)) 0 = 1, 2, ..., & If =fegy =

i2n (m}nﬂ]?ﬁfliﬁ) i2n (maxJn_;sI e) N i2r (nl;\x?]?=,5[79> 27 (mé}“’-";fé;,g)
. m —f . EINNYY
rrgnﬁﬂzmiﬁ e , m;lxﬂtﬁgm e and =&y = m;lkaLf,fRiH e , mgmﬂcﬁfm e , then

=f&.,y < CIFAHA™ =~ (=ffcnv—1 =tecmv-a, ~~~,=ffCIN—E> < =&y (39)

Proof: To prove Eq. (39), we proceed as follows:

2z (mﬁingﬁ:ﬁ:’70) 27 (mf/lx‘ﬂ#gli”) 27 (m:lxtmzfil?u)
By hypothesis =fégy = | mindig, e smaxlge, € and =f&,y = maxiigs, € ,
) i2r (mﬂln)14f€’7’)>
mgin‘J?=f5He , then by using Property 2, we initiate

CIFAHA:/‘:V (=f§a1v71 ) =f§EIN—27 ] =f§E1an> < CIFAHA:/":'V (=f§CIN—1 ) =f§C1N—27 ceey =f§ClN—L‘>
< CIFAHA™ "~ <=f¢g,N71 = g =f¢g,M>

where CIFAHA™ ™ (=fey 1, =tem_2» -+ =teey_g) = =écy and CIFAHA™ 7~ (=f§glN 15 fé:CIN 25000 _fgcm o) = =f§::ruva then

12
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=f¢ .,y < CIFAHAT =~ (:fﬁfcnv—l =tecmv-, --;:f§CIN—E> < =&
Where various realistic cases are stated below:

1. For =, = 0, Eq. (36) will be transformed to

CIFAHA™? <=Y§C[N—l =téem-a, ---7=f§c11v7£>
af L - . ety _ 9
7 <=/ " </\¥B <5$L+1 <( ](L+1 0B (—~~n'=1 (Wi,
AT~ (S (T /\
x| 7 SRS/ IR -0 B T D2=,5IH
e

= A A~ 2 2 /\
"2"<%1 (—% 8 ('11 ((_n( @si-0/7 (‘13’1=/ g
=1 k=0
e

Signified as a CIF generalized heavy-weighted averaging operator (CIFGHWAO).

2. For=/ =1, and =, = 0, Eq. (36) will be transformed to

2 L
B! L+1-0 M
(mm(,ﬂ( w10 @ (( ‘))))
= e g
ne| Q71 mu2+|)<z E(““ -0 B <<‘”!—f<, 0
e 0=1 k=0
CIFAHA' <=f§c1zv71,=f§cnv727 o=t x) =

)
! (ufﬂ) (;m o (e ))))
()

Signified as a CIF heavy-weighted averaging operator (CIFHWAO).

3. For =/ =0, Eq. (36) will be transformed to

CIFAHA"™ <=ffcnv71 =feowa, ., =g

—1 L/\ gl ; X ’/Q\\ “1_ (9
=1 (=y n (/\\) T 2 B | ~~n=/1 J)E=f5m/

Signified as a CIFGHWAO.

4. For=/ =0 and =, = 1, Eq. (36) will be transformed to

Heliyon 10 (2024) e24767

(40)

(41)

(42)
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CIFAHA*' (=f§c11v71 =tem-2, ~~~7=f§C1N—¥> =

5. By using Eq. (9) and Eq. (10), Eq. (36) will be transformed to

CIFAHAY =~ (:ff cv—1,=teciv-a, ..., =tE CIN—SJ)

(- (i

2 2
=/ =7
D?—fik ﬂﬁe—ffk k

2 1
T\ 7 i2n 1—
e

o=

=~

=0

U

=~

i2ﬂ<l<l( i (l - (1 — N, H)
e 0=1 k=0

Signified as a CIFHM operator.

6. By using Eq. (11) and Eq. (12), Eq. (36) will be transformed to

2

= =\ \ T
(9 (50 ))

CIFAHA™ ~ <=f§CIN—]7=f§CIN—27 ~~7=f§CIN—x’) =

' " 1 ' "o ——
(2r +32)7 77 + (2p + 20)7

Where
2
T
i L E 2 - Megs,, 2 — Mege, , i3
: 6=1 k=0 RUSSEN RUSTAN '
2
@ @ 2(¥+1)
. I:I I:I 2 — Mg, , 2 — Mige, 1
. 0=1 k=0 )?_ffk 0 mfé’x k ’
. and
¢ ¢ )
)/ :H 1+R—f§xe 1+9?=f§nk +3
K 6=1 k=0 1- R—féx 0 93—&‘;; K '
2
Q Q@ BE)
}/ T 1:[ 1+92:f5” 1+92_f§“ _1
e ek 1— Mg, , 1— Ve,

Signified as a CIF Einstein HM operator.

7. By using Eq. (13) and Eq. (14), Eq. (36) will be transformed to

14

2
6=1 k=
e
Y=
6=1 k=
e
Y=
0=1k
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(43)
L~
"1 (Jt_ffk 0) ) >
6=1
L AN
(7))
e g » Fugmy 7=
H H < yﬁ*fil H)R451 k) ) ) >
0=1 k=0 ,
. (44)
- 2 )/,
=\ \ W s
()Y
(G +5) 7
(45)
\',+3\~1)=/+=77(\‘, \'l)=/+=7
\”)=/1+=/+ \.’, ‘;)=/I+=y

\_/
N
W
u
|
—
\—/
g

2- SDLf«‘:H) 2- ED,‘H& K
gﬁ=f§1 0 m?=ffl—k
=
2- waé’H) 2- EIR=*51 K
e (=t Em=fé‘1 k
e
1+ Mg, , 1+,
1- \j?=f§l—0 1- S}=f51 k
e
149, | (149,
1- SJE=f5170 1- m=f51 k
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CIFAHAT =~ (=f§ eav—1,=teciv-a, ..., =t CIN—SJ)

1
—~ ., Y :/% i ”Sf(ll l)/k7 .
Ssc (3 = 2) 7~ o \Gri )77 e 0 0)7 )
B VAT 4 (B ) (r — AT ’ (46)
(zr + (sc 1)zg) + (8sc — 1)(zg — 2z)

Where
¢ g K4 T
. Sse + (1 — 850) Vs, , Ssc + (1 — 850) M, , —~> .
Zp = +05c” — 1 ) 2R
91 =0 ~1R=f§;e 0 ‘U"=f€fe4
. o _ = )
_ 5 + (1 — 55(; m—gfk 0 1 — 5_3'(;)9)’6:1‘5,?7A 1 y/
0=1 k=0 9ﬁ=*5n 0 ‘I),e=ffk—L R
2
¢ g Ssc + (1 5sc) Nt (-) 7 (8sc + (1= 8sc) (1 — Nty k) ~ . e
= + 8sc> — 1 Y
0=1 k=6 1- J?=f5;z 0 1- m=f5,z,k R
e g dsc + (1 — 5sc) PNtey. (-) 7 (b5 + (1 - sc) (1 - T‘ﬁém) ~ e
_ -1
=1 k=6 - SE—fIER 0 1- m=f§k4

and

¢ e —~ _ = b

Z’ _ Osc + (1 — 5SC lR_m 9 dsc + 1 — 55(')))2—55, . i 5/\2 | ZH

= sc” — )

0—1 k=0 'm:ffl 0 ‘D?Cffl—k !

e BN

_ dsc + (1 — Ssc )W, , (1- 55(')1)3—%5, . 1 y

0=1 k=0 Ry e=f§/ 0 ~m=f¢,,k e

— — = ot

¢ e bsc + (1 — §SC Jt—fﬁ, 0 dsc + (1 - &se) (1 - 9E=fém) ~ - s

= ~ +85c” — 1 )Y,

=1 k=0 1— Ny, , 1 — N, , !

— 2

¢ ¢ Ssc + (1 — 5sc Jt—fg, TN\ 5sc +(1— 5sc) (1 - 1n=f5,,k> ~ e

_ —1 .

0=1 k=0 1= P, 1=,

Signified as a CIF Hamacher HM operator.

8. By using Eq. (15) and Eq. (16), Eq. (36) is changed to

15
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"

(e + (85 = D)~

1 L 1
o [ g [ Lt sc )T = wbose 0 4) 7=
. ¥ (¢ +G3c-1) 7=
’

CIFAHA™ =~ (=f§cnv717:f§cm—27 ~~~7=f§CIN—¥) = . _ i (47)
Ssc (Ve + (Bsc — Dyp) ™~ )

/ —~ = — . N
1 ((ZR + (656' — I)ZR)_/ 7+ (53(‘ — 1)(ZR — ZR) 7+ 7)
0g5§5 T

10g5§c ( ) — " # — ) ;
(g + (8sc = D)yg) T+ (8sc = D)r —yr)7~

L
, asc (3 +ose=1), ) 7=
(224 ]og{s‘gc - (’; ’) —T—
e (551, )7+ (s5c-1) (5, ) 7+

Where
Y Faah 7 e ~ T
, L —~ oMo — 1 dsc s — 1 !
R = L+ (6sc — 1) = =~ 2
91 k=6 sc — 1 dsc — 1
2
2 2 — - 9 - e
[ 5SCJ)2:,5R79 1 S5 CILng,k -1 ,
= 1-— — = YR
=1 k=0 Osc — 1 Osc — 1
—~ N 7~ B ~ H(‘+I)
[ . 5‘“71—*)&:@’?79 1 5SC17*JA=Q=R7,( —1 B
= 1 + (55(‘ - 1) — o 7yR
D=1 k=0 dsc — 1 dsc =1
—~ 7 EAN S
¢ e . 5SC]*\JA:ER79 1 5SC]*\Jl:f§R7k —1
= 1+ (85c — 1) = 5
=1 k=0 dsc — 1 dsc =1
and
2
IS —~ 7 [~ AR
, —~ Sge M0 — 1 Osc™ -k — 1 g
7= 1+ (8sc — 1) = = "l
=1 k=6 dsc =1 osc — 1
/ 2
. = = T
[ 5SC9)2=,5,79 | S C‘l‘?=f;, P —1 .
- 1 — = 2V
0=1 k=6 Osc — 1 dsc — 1
= = ﬁ
o _ Gt Peie 1\ [ M — 1 ~
= H 1+ (6sc — 1) o — R
ity Osc — 1 Osc — 1
o AV =, L’(L’2< D)
2 2 g 5SC1*9‘=f;,,H —1 55(']7\)(#5”‘ —1
— 1+ (8s¢c — 1) — —
=1 k=6 Gsc — 1 Osc =1

Signified as a CIF Frank HM operator.

Definition 9. Choose any group of CIFNs =f¢cy_g = (Wizgy, ,e 2 Vteo) N_p, €2 P0)) 9 =1,2,..., &, then the CIFWAHA operator
is invented by:

! g

o 2 LN = =\ =
CIFWAHA™ ™~ (=f§cuv71 =t ..., =f§C1N—8) = (E(Si-i-l) Z <2=a)g=f§cm79) ® (2=Wk=Y§C[N—k) ) (48)
=1 t=1

Observed that =/,=, > 0, with =0 = (=w;,=w,, ...7=a)g)T, Z;f:l=w(; =1, called weight vectors

Theorem 2. Choose any group of CIFNs =f&cy—g = (Digz, €2 W=t10) Ny, €2 T=0)),0 =1,2,....8, then by using Eq. (48), we initiate

16
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CIFWAHA™ ™~ (=f§ClN—1 ,=técv-a, ---7:f§ClN—L’>

o =//,7\<A2r‘<2=wm=fm +
B 1~ . 2 SN -1
AN o= | A e e
=/ +=y LR+ | = = 1
- < o~ (x_w,{wqg“
o~ RIS —_
iz”<]11 </1+—/ (B 1 ( 71,<Z B ( -1 (/ (%’1 (Qq)ﬁtvi:fs,fe>>+:¢/l1\<0‘ (xﬂuw?ﬂ&, A) )))))))
e =1 k= k)
~~
. . =/, N < (L—a)gﬂ=f5k ”) +
o 1 _ 2 — = -1
% = Jr—is o~ v+l 91; [ i
=y % (/‘\1771 <L—wk’ﬁ—f5k k)
= P Lathn [ ~ (7
(P A O () (=)
0=1 k=0
e

49
Proof: Skipped.

5. Decision-making procedure for derived operators

In this section, we concentrate on evaluating the MADM procedure in the presence of the invented operators for CIFSs. For this, we
used the special cases of the proposed operators and tried to evaluate their decision matrix to enhance the stability and worth of the
invented operators.

5.1. The procedure of the MADM technique

Consider the finite collection of alternatives =féa;, = {=téar_1,=féar—2, ..., =féar_m} and & number of attributes =féar = {=féar_1,
=féar_2,...,=féar_o} with weight vector =0 = (=w1,=w2, ...,=wg)T with a rule Z§:1=wH = 1. For the above information, we
compute the matrix by including their values in the shape of CIFNs, such as =fécyv_gc = (Wizgz, ,, 2 (Wetey_ ),\j?=f§R4)k €2 =00y 9 = 1,

. Q, k = 1, 2, e.,m, where ,EUE=f§C, (-’EL) = Elye=f§1z (.z’EL)eiZII(M:f’;I('EL)) and 9?=f,5a (.I‘EL) = })'E=ffk (fEL)eiZ”(gtzfQ('E’“)), with 0 < §U€=f€—R (I‘EL)+
Nepzp (#0) <1 and 0 < Mg, (2p1) + Nt (#51) < 1. For simplification of some numerical examples, we evaluate the procedure of
decision-making techniques, such as

Stage 1: To select the CIFNs, we construct the matrix, if the matrix covers the cost type of data, then we normalize the matrix, such
as

i2n (ﬂ”:};,im‘ > ) i2n <*J«:f517/# )
Wtz p€ Y for benefit types data

i (\J::ffk " ) ix (wg; - >
(9?:@(7“ e Mg, e ) for cost types data

But in the case of benefit types of data, we are not required to normalize the data.

Stage 2: We aggregate the information in the matrix.

Stage 3: Derive or discover the score value (SV) of the above aggregated information.

Stage 4: For discovering the most preferable decision, based on the score values, we rank alternatives. The graphical representation
of the proposed decision-making procedure is listed in Fig. 2.

Finally, we analyze some examples based on the invented theory for evaluating the consistency and validity of the proposed op-
erators as well as the decision-making procedure.

=Dpy =

5.2. Analysis of best madia communications

Media communication covers numerous techniques and technologies for transmitting or showing information, data, material, or
messages with the help of different sources like the internet, mobile phones, television, and different channels. All these channels are
categorized into different kinds based on the medium or platform exploited for communications. The major influence of this appli-
cation is to find the best kind of media communications among the five best, such as:

17
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Compute
decision
matrix

Rank all

the

alternatives

Evaluate
the score
values

Normalize
the matrix,

Fig. 2. Geometrical representation of the proposed decision-making procedure.

1) Print Media “=féx;_1”7.

2) Broadcast Media “=f£a;_»”.
3) Digital Media “=f£s;_3”.

4) Social Media “=f&éa;_4”.

5) Telecommunications “=f£4; 5.

Heliyon 10 (2024) e24767

To address the best one, we use some features as an attribute’s values, such as =f&4r_1: Growing analysis, =fé,r_»: Community-
governmental impact, =f£47_3: Ecological impact, and =f£41_4: others. To achieve our target, we consider the weight vectors, such
as 0.3,0.3,0.3, and 0.1. For simplification of some numerical examples, we evaluate the procedure of decision-making techniques,

such as

Stage 1: To select the CIFNs, we construct the matrix, see Tables 1 and If the matrix covers the cost type of data, then we normalize

the matrix, such as

=Dpy =

i2n (m=f5179k ) i2r (T‘=1517€k )
Wizgz, e Nty for benefit types data

i2n (me:fgl—ﬂk )
e for cost types data

(R=f51 ok
<9E=f§h’—0k

=fCr-ok

But in the case of benefit types of data, we are not required to normalize the data. Anyhow the data in Table 1 is not required to be

normalized.

Stage 2: To consider the data in Eq. (36) for =/

==, =1, the aggregation values are listed below:

Table 1
The original matrix is given by the decision-maker.
=kéar—1 =kéar 2
=kéar—1 (0.7¢i27(08) (.2¢i27(01)) (0.71€27(081) ,21¢22#(0-11))
=kEsr—2 (0.8¢127(05) |0.1¢127(03)) (0.81¢27(0:51) 0.11¢12#(0:31))
=kéar—3 (0.5¢127(04) |0.3¢i27(04)) (0.51€27(0:41) 0.31¢2#(0:41))
=kéar—4 (0.8¢i27(08) (.1¢i27(01)) (0.81€227(081) 0,11¢2#(011))
=k&sr_s (0.6€27(07) (1¢i27(0:2)) (© 61ezzn(o.71),0‘11e12a(0 21))
=féar 3 =féar-a
=k€ar—1 (0.72¢127(082) (. 22¢i27(012)) (0.73¢127(0.83) (0 23¢i27(013))
=k€ap 2 (0A82e"2"(°'52) 0.12¢i27(0- 32)) (0.83ei2"(°'53),0.13e’2”( 3))
=kEaL-3 (0.52¢27(042) 0,32¢127(0:42)) (0.53¢127(043) 0.33¢i27(0-43))
=k&ar-a (0.82¢27(082) 0.12¢127(012)) (0.83¢27(083) 0,13¢127(013))
=kéqp_s (0.628i2”(0'72) 0.12¢i27(0- 22)) (0.638i2”(0'73) , 0.13¢i27(0- 23))
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Table 2
The original matrix is given by the decision-maker.
=k€xr-1 =kéar 2 =k€sr3 =kéar4

=k€s 1 (0.7,0.2) (0.71,0.21) (0.72,0.22) (0.73,0.23)
=kEsp > (0.8,0.1) (0.81,0.11) (0.82,0.12) (0.83,0.13)
=k&sp 3 (0.5,0.3) (0.51,0.31) (0.52,0.32) (0.53,0.33)
=kEsp_4 (0.8,0.1) (0.81,0.11) (0.82,0.12) (0.83,0.13)
=k&sp s (0.6,0.1) (0.61,0.11) (0.62,0.12) (0.63,0.13)

=t = (0. 5909¢2706932) () 3388 ei2n(0.2249)) =fE = (0.6932 £i27(0:4109) 10.2249 eier(U.4377)) ey = (O. 4109¢i27(0:3274)

Stage 3: For ranking values, we expose the score values, such as

=f£y 1 =0.3602,=f&,,_» = 0.2207,=f&,, 5 = —0.114,=f£,, 4 = 0.4683,=f£,, 5 = 0.2626

Stage 4: The ranking information is listed below:

=ty 4 > =tla 1 > =t s >=feu > > =t 3

i 0.437781'21[(().5286)) =y .= (0.693261'21!(0.6932) , 0.2249‘3;2”(0.2249)) =tEa 5= (0.49816'2”(0'5909), 0'224961'21:(03388))

Seen that =f&,; 4 is the best one. Further, to eliminate the phase term from the data in Table 1, we obtained the simple IFS, see
Table 2.
To consider the data in Eq. (36) for =/ ==, = 1, the aggregated values are listed below:

=&, = (0.5909,0.3388), =f£4;_» = (0.6932,0.2249), =f£,; 5 = (0.4109,0.4377),=f&4, 4 = (0.6932,0.2249), =F£,, s
= (0.4981,0.2249)

For ranking values, we expose the score values, such as

=f&y-1 =0.1261, =ty » = 0.2341, =, 5

The ranking information is listed below:

=t >=tEy o >=tea s >=f&y | >=tEs 3

0.013,=f&4; 4 = 0.2341,=f&,;_5s = 0.1366

Seen that =f&,; 4 is the best one. Moreover, we derive the comparison between proposed and existing operators to improve the
worth of the derived theory.

5.3. Sensitive analysis

In this section, we compare the discovered operators with some prevailing operators based on the data in Table 1 with phase term
and without phase term. For comparing the invented techniques with existing techniques, we consider some valuable and dominant
techniques to improve the worth of the invented theory. For this, we consider the following existing techniques, such as Garg and Rani
[37] elaborated generalized Bonferroni mean operators for CIFSs, Liu, and Chen [41] initiated the HM operators for IFSs, and proposed
works based on CIFSs. To consider the data in Table 1, the comparative analysis is listed in Table 3.

Seen that =f£4; 4 is the best one according to some operators and see that =f&4; 1 is the best one according to some operators. The
geometrical interpretation of the data in Table 3 is listed in Fig. 3.

Furthermore, we state the influence of the parameters =/ and =,. For this, first, we fixed the value of =/ = 1, then for different
values of =y, the ranking values are stated in Table 4.

We fixed the value of =/ = 1, then the influence of the =, stated in Table 5.

Table 3
Sensitive analysis (Table 1).

Methods

Score Values

Ranking Values

Garg and Rani [37]

Liu and Chen [41]
Eq.
Eq.
Eq.
Eq.
Eq.
Eq.
Eq.
Eq.
Eq.

(40)
(41)
(42)
(43)
44
(45)
(46)
47)
(49)

0.3593,0.2195,

—0.121,0.4769,0.2593

Cannot be Calculated

0.2492,0.1094,
0.2492,0.1094,
0.2475,0.1077,
0.2475,0.1077,
0.3602,0.2207,
0.4713,0.3318,
0.5413,0.4118,
0.2501,0.1106,

— 0.231,0.3658,0.1492
— 0.231,0.3658,0.1492
— 0.232,0.3635,0.1465
— 0.232,0.3635,0.1465
— 0.114,0.4683,0.2626
— 0.225,0.5794,0.3737
— 0.3051,0.6584,0.4527
— 0.003,0.3572,0.1515

0.6695,0.6273,0.6061,0.6654,0.6128

=tear-4 > =téar1 > =téar-

5 > =féar2 > =tlar-3

Cannot be Calculated

=fear-a > =ftlar1 > =téar-
=tear-a > =tlar1 > =téar-
=feara > =ftéar1 >=tar-
=fear-a > =tlar1 > =téar-
=fear-a > =tlar1 > =féar-
=tear-4 > =téar1 > =téar-
=féarq > =téar1 >=tar-
=fear-a > =tlar1 > =téar-
=téar-1 > =téar—4 > =téar

5 > =far 2 >=far 3
5 > =far—2 > =far3
5 > =féar 2 >=far 3
5 > =far 2 >=far 3
5 > =far—2 > =far3
5 > =flar2 > =tlar-3
5 > =far 2 >=far 3
5 > =far2 > =far 3
2 > =féars >=tlar3
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0.8
0.6
0.4
0.2
0
Garg
arfd
20.2 Rani
[37]
-0.4

Table 4

Llivand Eq.40 Eq.41 Eq.42 Eq.43 Eq.44 Eq.45 Eq.46 EQ.47
Chen
[41]

Fig. 3. Geometrical representation of the data in Table

Influence of the parameter =4, if =/ = 1, (Table 1).

e Series]
e Series2
Series3
Series4

e Series5

Eq. 49

w

Heliyon 10 (2024) e24767

Parameter Score Values Ranking Values

= =1 0.3602,0.2207, — 0.114,0.4683,0.1641 =tar-4 > =tla1 > =tar > > =flar s > =lar 3
= =2 0.414,0.2744, — 0.0585,0.5181,0.2694 =tear-a > =tla1 > =tar > > =tla1 s > =lar3
= =3 0.447,0.307, — 0.0255,0.5489,0.3216 =feara > =tear 1 >=tar 5 > =far 2 > =Far 3
= =75 0.4867,0.3456,0.0123,0.5862,0.3763 =4 > =tea1 > =tears > =tear 2 > =fiar3
= =1 0.5102,0.3679,0.0331, 0.6086, 0.4055 =4 > =tep,1 > =tear5 > =tlay o > =Fia, 3
= =9 0.5258,0.3826,0.0463,0.6238,0.4238 =tear_4 > =tp1 > =tear5 > =Fla, o > =lia, 3
= =10 0.5318,0.3882,0.0513,0.6297,0.4306 =4 > =tp 1 > =tear 5 > =fla, o > =lén, 3

Table 5

Influence of the parameter =, if =/ = 1, (Table 1).

Score Values

Ranking Values

R
It

0.1261,0.234, — 0.0134,0.2341,0.0892
01549,0.2591,0.0153,0.2591,0.1396
0.1726,0.2745,0.0326,0.2745,0.1645
0.1936,0.2931,0.0525,0.2931,0.1905
0.2058,0.3043,0.0636,0.3043,0.2043
0.2139,0.3119,0.0707,0.3119,0.213
0.2170,0.3148,0.0734,0.3148,0.2162

=feara > =tlar 2 > =tar 1
=fear-a > =tlar 2 > =tar 1
=fear-a > =tlar2 > =tar1
=fear-a > =tlar 2 > =tar1
=fear-a > =tlar 2 > =tar 1
=fear-a > =tlar 2 > =tar1
=fear-a > =tlar2 > =tlar1

>=flar5 > =1 3
>=fla5 > =far 3
>=féar-5 > =far3
>=flar5 > =far 3
>=féa5 > =far 3
>=féar-5 > =far 3
>=féar-5 > =ar3

Table 6

Influence of the parameter =/ if =, = 1, (Table 1).
Parameter Score Values Ranking Values
= =1 0.3602,0.2207, — 0.114,0.4683,0.1641 =fep_q > =tEapq > =feap_n >=lea_5 > =fEs_3
= =2 0.4143,0.2747, — 0.0583,0.5186,0.3181 =féap-4 > =flar1 > =tlpr 2 > =tear 5 > =féar 3
= =3 0.4476,0.3076, — 0.0252,0.5496,0.3519 =féap-4 > =flar1 > =tlar 5 > =tlar o > =féar 3
= =35 0.4874,0.3463,0.0127,0.5871,0.3920 =féap-a > =flar1 > =tlar 5 >=tlar 2 > =féar 3
= =17 0.5109,0.3687,0.0338,0.6096,0.4153 =flar—4 > =féar—1 > =téar-5 > =féar_o > =féar 3
= =9 0.5267,0.3835,0.0472,0.6248,0.4307 =féap-q > =téar1 > =flar 5 >=téar o >=téar 3
= = 10 0.5328,0.3892,0.0523,0.6307,0.4366 =féar-q4 > =téar1 >=flar s >=téar_o >=téa; 3

Table 7

Influence of the parameter =/ if =,

=1, (Table 1).

Parameter

Score Values

Ranking Values

L
Il I

0.1261,0.2341, — 0.0134,0.2341,0.0892
0.1550,0.2593,0.0154,0.2593,0.1631
0.1727,0.2748,0.0327,0.2748,0.1791
0.1938,0.2936,0.0527,0.2936,0.1981
0.2062,0.3048,0.0639,0.3048,0.2092
0.2143,0.3124,0.0711,0.3124,0.2164
0.2174,0.3154,0.0738,0.3154,0.2192

=tear-4 > =féar—2 > =tear1
=fear 4 > =téar 2 >=far 1
=féar4 > =téar 2 >=far 1
=fear4 > =téar 2 >=tar 1
=fear-a > =tlar 2 >=tar 1
=fear-a > =tlar2 > =tar1
=fear-a > =tlar 2 > =tar 1

> =tar-5 >=far3
>=féar 5 > =1 3
> =far-5 > =féar3
> =far-5 >=far3
>=féar5 > =t 3
>=flar-5 > =3
>=féar5 > =far 3
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We fixed the value of =, = 1, then the influence of the =/, stated in Table 6.

We fixed the value of =, = 1, then the influence of the =/, stated in Table 7.

In the above investigation, we observed that for every value of parameters, we derive the same ranking results. The benefit of the
proposed theory is that, with the help of proposed operators we can derive the ranking values of the many operators like algebraic,
Einstein, Hamacher, and frank aggregation operators. Hence, the derived operator is more flexible and more dominant compared to
other existing techniques.

6. Conclusion

Archimedean aggregation operators and Heronian mean operators are two different types of operators used for aggregating the
collection of information into a singleton set. Keeping the advantages of the above operators, the major contributions of the derived
operators are listed below:

1. We proposed the Archimedean operational laws based on CIF values.

2. We derived the algebraic operational laws, Einstein operational laws, Hamacher operational laws, and Frank operational laws from
the Archimedean operational laws by using different values of the functions in Archimedean operational laws.

3. We evaluated the CIFAHA operator and CIFWAHA operator. Several special cases and the basic properties of the above-proposed
operators are also diagnosed.

4. We illustrated the MADM process developed under the identified operators by using CIF information.

5. We discovered several examples to show the MADM technique is massively more flexible than the prevailing works with the help of
sensitive analysis between explored and certain prevailing works.

6.1. Limitations of the proposed works

The proposed Archimedean Heronian mean operators based on CIFS are very flexible and dominant because of their structure and
features, but in complicated situations, these ideas have not worked properly, for instance, if we are faced the information in the shape
of yes, abstinence, no, and refusal, then the proposed operators based on CIFS have been failed. For this, we are required to compute
these operators based on complex T-spherical fuzzy sets and their extensions.

6.2. Future direction

In the upcoming time, the proposed operators based on CIFS will receive a lot of attraction because, with the help of these op-
erators, we can easily depict unreliable and vague information. Further, these operators will be utilized in the circumstances of
complex Pythagorean fuzzy sets and their extensions. With the help of the proposed work, we can easily evaluate the problem of
machine learning, medical diagnosis, artificial intelligence, neural networks, and many others if someone provides practical data.
Moreover, we will employ the principle of complex fuzzy sets [44-46] quasirung orthopair fuzzy sets [47,48], complex q-rung
orthopair fuzzy sets [49-51], complex spherical and T-spherical fuzzy sets [52,53], T-spherical fuzzy sets [54-56], and linear Diop-
hantine fuzzy sets [57-61] in the environment of medical diagnosis, pattern recognition, manufacturing science, and computer science
to grow the excellence of the explore mechanisms.
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