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Abstract
Carcinogenesis is commonly described as a multistage process, in which stem cells are transformed
into cancer cells via a series of mutations. In this article, we consider extensions of the multistage
carcinogenesis model by mixture modeling. This approach allows us to describe population
heterogeneity in a biologically meaningful way. We focus on finite mixture models, for which we
prove identifiability. These models are applied to human lung cancer data from several birth
cohorts. Maximum likelihood estimation does not perform well in this application due to the heavy
censoring in our data. We thus use analytic graduation instead. Very good fits are achieved for
models that combine a small high risk group with a large group that is quasi immune.

Introduction
Cancers can arise in virtually any part of the body, and
although there are many tissue specific properties, a gen-
eral multistage framework for carcinogenesis holds for
most cancer types. More precisely, cells must undergo an
evolutionary process involving several stages and leading
finally to a cell that has completely lost proliferation con-
trol. In a first step, called initiation, mutations transform
stem cells into intermediate states. Such initiated cells
may give rise to pre-neoplastic lesions via accelerated
growth. Eventually, a cell out of such a clone may experi-
ence further mutations and be transformed into a malig-
nant tumor cell. This second step comprising clonal
expansion and final malignant transformation is com-
monly called promotion. This multistage scheme shows
the inherently random aspect of carcinogenesis: muta-
tions happen at random times and stochastic growth
processes are involved.

Mathematical models of carcinogenesis have been studied
for about fifty years. Some of the earliest attempts to build
biologically based quantitative descriptions are [1] and

[2], who explained cancer as the result of a sequence of
mutations. A widely accepted model was proposed in [3]
and [4]. Their two-stage clonal expansion (TSCE) model
was explicitly formulated in terms of an initiation stage
and a promotion stage. This approach stressed the impor-
tance of both mutations and clonal expansion in the proc-
ess leading to cancer. The TSCE model has found many
applications and extensions. One example is the multi-
stage model, which takes up the same structure but allows
for more than two stages. Due to this long and evolving
story, we should not have in mind a single model when
talking about the multistage model. We should rather
have in mind a cascade of nested models that starts from
a fundamental idea and incorporates through its evolu-
tion more and more biological detail. Excellent reviews of
stochastic carcinogenesis modeling can be found in [5]
and [6].

One part of the recent extensions tries to take population
heterogeneity into account. Such heterogeneity can result
from sources such as genetic variation, exposure to carcin-
ogens due to either changes in environment or occupa-
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tion, and differences in lifestyle (the most prominent
factors being smoking and diet). In [7] a mixture of a one
stage model and a two stage model was used to describe
the heritable and the sporadic form of Retinoblastoma, a
cancer of the eye caused by mutations in a single tumor
suppressor gene. Other approaches incorporate heteroge-
neity via standard frailty modeling, where the common
baseline hazard h0(t) is multiplied by a non-negative ran-
dom variable Z in order to model the individual hazard
hind(t) = Zh0(t), see for example [8], and [9] for such an
approach.

In this text, we take up the work by [10]. These authors
introduce two new population parameters to describe het-
erogeneity. The first one, called the fraction at risk F, is
used to distinguish between susceptibles and a postulated
group of immune individuals. The second one, called the
fraction of deaths due to cancer among all deaths due to
either cancer or related competing causes f, models com-
peting related risks. They fit their model to US lung cancer
incidence data from several birth cohorts. The parameters
F and f present an abstract way describe population heter-
ogeneity and are not linked to a specific biological proc-
ess. Therefore, the above mentioned authors state that
other modeling strategies could be tested. The present
work gives such an attempt. We take up the same multi-
stage model, but we will use mixture models to allow for
variability among individuals. This allows us to introduce
heterogeneity in a biologically meaningful way.

In the next section, we describe the multistage carcinogen-
esis model and introduce an extension by mixture. Then
we will give a series of identifiability results for both the
multistage model and some mixture models. Finally, we
apply the model to human incidence data before giving
some concluding remarks.

Mathematical Model Formulation
The Multistage Carcinogenesis Model
We will work with a simplified version of the multistage
model, but one that is general enough to incorporate the
two main features of the carcinogenesis process: the
sequence of mutations and the clonal expansion. We
make the following assumptions:

1. A cell must undergo n mutational events to get initi-
ated.

2. The number of cells at risk, N0, is constant over time.

3. The number of newly generated initiated cells is a (non-
homogeneous) Poisson process with intensity λI(t).

4. An initiated cell gives rise to a clonal expansion accord-
ing to a birth-and-death process with emigration, i.e. in a
short time interval (t, t + Δt) an initiated cell divides in two
initiated cells with rate β, dies or differentiates with rate
δ(<β), and divides into one initiated and one malignant
cell with rate μ.

5. Once a promoted cell is generated, its growth is deter-
ministic, and we neglect the time needed to grow to
detectable tumor size.

6. The system starts with all at risk cells in the normal state
and the different cells act independently of one another.

The model is shown schematically in Figure 1. Note that
the above assumptions are standard in carcinogenesis
modeling, and the possibility of generalization (for exam-
ple to time dependent N0) has been discussed by several
authors. However, we choose this simplified version in
order to limit the complexity of our baseline model. Note
also that for n = 1 we get the classical TSCE model.

The multistage carcinogenesis modelFigure 1
The multistage carcinogenesis model. N0 denotes the number of normal stem cells. To get initiated, a normal cell accu-
mulates n consecutive mutations, where ν denotes the mutation rate per cell per year for the gene in question. The number of 
cells having k mutations is noted Ik, 1 ≤ k ≤ n. The fully initiated cells, In, expand according to a birth-and-death process. These 
cells give rise to tumor cells T if a further event happens, and μ/(μ + β) can be interpreted as the probability of such a malignant 
transformation during a cell division.
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A detailed discussion and derivation of the survivor and
hazard functions of this multistage model can be found in
[11,12] and [10]. These authors show that the survivor
function for tumor onset can be represented as

In this expression

λI(x) = nνnN0xn-1 (2)

is the intensity of initiation. The function FP (x) is the cdf
for the waiting time for the first malignant transformation
within a clone starting with one initiated cell at time 0.
This cdf is improper since a clone of initiated cells dies out
with a probability greater than 0 if δ > 0. Its exact form is

where θ = β - δ - μ and .

Researchers have expressed concern about the approxima-
tions used in carcinogenesis models. This issue was raised
in a review paper by [13] and has inspired [11] and [14].
Our formula above is exact and uses the method based on
integration cited by [[11], top of p. 1080]. The remaining
simplifications in our model, in particular the constancy
of N, are for convenience and do not affect the conclu-
sions of the paper. As a general comment, it should be
noted that the term two-stage refers to different things in
different papers. It is, for example, possible to model
clones via compartments or via branching processes. Both
may employ the same parameter notation, but the inter-
pretation will be quite different. Care has to be taken, if
one wishes to stay close to biological reality. For further
comments, see [[13], section 2.1].

The hazard function can be easily calculated from the sur-
vivor function, h(t; n) = -d log S(t; n)/dt. In order to
deduce the asymptotic behavior of the hazard for several
n, we note that h(t; n) can be written in terms of a recur-

sion, h(t; 1) = νN0FP(t) and h(t; n) =  for

n ≥ 2. Therefore, when n = 1 the hazard levels off as t goes
to infinity. More precisely, the hazard of the TSCE model
goes to the finite asymptote

νN0·P(a clone of initiated cells does not die out).

But the hazard grows to infinity if n ≥ 2. In both cases h(t;
n) is strictly monotonic increasing with t. The unbound-
edness of the hazard is due to the simplifications in the
model. This may lead to appreciable differences at low
ages in some types of cancer or under hightened exposure.
It is typically of lesser importance in human studies.

The monotonicity properties of hazard curves are not in
agreement with observed incidence curves from human
population data. Such data typically shows very low inci-
dence up to about the age of fifty, a sudden and sharp
increase between about the ages of fifty and eighty, and a
subsequent leveling off and a decrease for the very old.
This behavior at old ages is not captured by the hazard
curves h(t; n). However, it can be modeled very easily by
incorporating a frailty effect as we will show in the appli-
cation later on.

Extension of the Model by the Use of Mixture 
Distributions
An observed human population is heterogeneous.
Though the process of cancer development is similar for
everyone, parameters may vary between individuals. Since
all parameters of the model are biologically meaningful,
we aim at modelling heterogeneity directly through these
parameters. We thus propose to consider some of the bio-
logical parameters – one at a time – as random variables.

Let θ be such a parameter and let G(θ) be a distribution
function for θ. Then, we will denote by S(t|θ) the survivor
function of the multistage model (1) for a given value θ,
whereas the population survivor function is

S(t) = ∫S(t|θ)dG(θ). (4)

Under certain regularity conditions an analogous repre-
sentation holds for the hazard function

The distribution function G must then be selected based

on the biological parameter θ chosen. If we consider for

example θ = n, the number of mutations needed for initi-

ation, it is natural to choose a finite distribution, i.e. P(θ
= ni) = πi for a fixed set {n1,...,ng} ⊂  such that .

This would correspond to g population subgroups having
inherited different numbers of initiating mutations. The
model could also be interpreted as a multiple pathway
model, where g pathways involving different numbers of
mutations can lead to cancer. Other interesting choices

focus on promotion, for example θ = β - δ, the growth

advantage of initiated cells, or θ = μ, the promotion rate.
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These two cases would be consistent with both a finite or
a continuous distribution as long as its support is con-
tained within biologically reasonable bounds.

Identifiability
Before fitting our mixture model to observed incidence
data, the identifyability issue has to be considered. The
parameters of the TSCE model cannot be uniquely deter-
mined based on incidence data. Some of the papers rele-
vant to this issue are [15,16], and [17].

Identifiability of the Multistage Model
The parameters of our base model (Eq. 1, 2, 3) are n, the
number of initiating mutations, and ψ = (N0, ν, β, δ, μ),
sizes and rates. When fitting S(t|n, ψ), the survivor func-
tion of the multistage model given in (1), these six param-
eters cannot all be fitted separately. We will show that n
and the follwing three combinations are, however,
uniquely determined

In order to deal with the discrepancy between the six
parameters and the four identifyable features, we will
hold the two parameters N0 and δ fixed (see also [18]). To
determine N0 = Number of stem cells in a given tissue some
preliminary biological estimate is needed. For the death
rate we mainly focus on the choice δ = 0, which implies γ
= β - δ = β, so that β simply describes the growth advantage
of initiated cells.

The Number of Mutations for Initiation
Is n identifiable in the multistage model or could a change
in n be compensated by some adjustment of the biologi-
cal parameters ψ so that finally the same survivor function
resulted? The answer to this question is no, because the
behavior of S(t|n, ψ) at the origin is enough to determine
n.

Proposition 1. If for two parameter choices (n, ψ), and ( ,

) we have S(t|n, ψ) ≡t S(t| , ), then n = .

Proof: Direct calculation shows that

for all n ∈ {1, 2,...}, where S(k) = dkS/dtk. The proposition
is a direct consequence.

This result is mainly of theoretical interest and cannot be
used to estimate n. In practice, for some tissues one can fix
n according to the available biological theory. For exam-
ple in colon cancer it is commonly assumed that two
mutations are necessary for initiation, followed by a third
one for malignant transformation (see [19]). In cases
where no biological reasoning is available, we suggest to
fit the model for several choices of n. The form of the
intensity of initiation given in expression (2) shows that
estimates for ν are highly sensitive to the choice of n.
Results within biologically reasonable limits will thus be
obtained only for very few values n.

Growth and Mutation Rates
For n = 1 it has been shown in [16] that three functions of
ψ are uniquely determined by S(t|n = 1, ψ). Their proof
can be generalized to n ≥ 1. This is intuitively plausible.
Given n, the intensity of initiation depends on the product
N0νn, but not on N0 and ν individually. And the speed at
which a clone of initiated cells grows depends only on the
difference β - δ, but not on the actual pair β, δ.

Lemma 2. Let (n, ψ) and ( , ) be two sets of parameters

such that S(t|n, ψ) ≡t S(t| , ). Then we have

Proof: Let us define the integral I(t; n, ψ) =

. This means that S(t|n, ψ) = exp{-I(t;

n, ψ)}. Note that by Proposition 1 we have n = . So we
must show that if

then

First, we transform I(t; n, ψ) via (n - 1) repeated integra-
tions by parts into a n-fold integral. Next, we differentiate
this expression n times with respect to t, to obtain

Application of these two steps to both sides of (5) proves
the result.

Identifiability of the Mixture Structure

Besides the parameters of the multistage model itself, we
must also investigate the identifiability of the newly intro-
duced mixture structure. Let  be a family of distribution

p N

q

r

n=
= − +

= + + −

⎧

⎨
⎪

⎩
⎪

β ν
δ β μ

β δ μ βδ

/( ),

,

( ) .

0

2 4

n

ψ n ψ n

S n k n

S n

k

n

( )

( )

( | , ) , ,..., ,

( | , ) ,

0 0 1 2

0 01

ψ

ψ

= =

≠+

for  and

n ψ

n ψ

ν ψ ν ψn
P t

n
PN F t N F t0 0( ; ) ( ; ).≡

λI
t

Pt x F x
0∫ −( ) ( )dx

n

I t n I t n( ; , ) ( ; , ),ψ ψ≡ (5)

ν ψ ν ψn
P

n
PN F t N F t0 0( ; ) ( ; ).≡

dn

dt n
I t n n N F tn

P( ; , ) ! ( ; ).ψ ν ψ= 0



Page 4 of 12
(page number not for citation purposes)



Theoretical Biology and Medical Modelling 2008, 5:13 http://www.tbiomed.com/content/5/1/13
functions for a certain parameter θ. Then,  induces the

family of mixture models

Family  is said to be identifiable with respect to , if

holds for all G1, G2 ∈ . In other words, the population

survivor function must uniquely determine the underly-
ing mixing distribution within a pre-specified family.

This condition turns out to be hard to verify in general set-
tings and we must focus on special cases. A very useful

result was given in [20] for finite mixtures. Let Θ be a set

of possible parameter values {θ1, θ2,...} such that θ1 <θ2 <

... . Then the finite mixture model  is

identifiable if

This condition ensures identifiability of all finite mixtures
of the survivor functions {S(t|θi); i = 1, 2,...} even without
specifying the number of components g. Teicher's result
requires additional regularity conditions, but these are
trivially satisfied in the case of the multistage model (1).

Initiation
The multistage model we consider here describes initia-
tion as a sequence of discrete events, namely rate limiting
mutations, which lead to a cell capable of accelerated
growth. A biological mechanism generating heterogeneity
at this stage are germ line mutations of the genes involved,
leading to individuals starting life with all cells in an inter-
mediate stage. Mathematically, this means that the popu-
lation survivor function is

The next proposition shows that such a mixture is identi-
fiable.

Proposition 3. The family of finite mixture models induced by
{S(t|n, ψ); n = 1, 2,...} is identifiable.

Proof: We show that condition (6) is satisfied. The initia-
tion incidence rates can be written recursively

Thus, for ,

Since S(t|n, ψ) → 0 for t → ∞, we have Λ (t) → ∞ for t →
∞. This implies

Promotion
Promotion is a complicated process and both genetic and
epigenetic factors seem to be involved. Therefore, hetero-
geneity can be due to many different mechanisms. In the
context of the multistage model, there are two main
parameters these agents can influence: the growth advan-
tage of initiated cells, γ, and the rate of malignant transfor-
mation, μ.

We can derive a result similar to the one in the previous
section. Let there be a discrete set of γ-values 0 <γ1 <γ2 < ...
. Note that we consider δ = γi - βi as fixed, i.e. we assume in
fact that there is an analogous sequence of βi. From now
on, we will write ψ for the parameter vector (n, N0, ν, δ, μ).

Proposition 4. The family of finite mixture models induced by
{S(t|γi, ψ); i = 1, 2,...} is identifiable.

Proof: We will first check condition (6) in the case δ > 0.
We have

and the assumption δ > 0 implies that FP is improper and
converges to a limit a(γ, δ) < 1 as t → ∞. The value 1 - a(γ,
δ) is the probability that a clone of initiated cells (gener-
ated by a single initiated cell at time t = 0) eventually dies
out without ever giving rise to a promoted cell. The
assumption γi+1 > γi implies that a(γi+1,δ) > a(γi, δ), and as
a consequence
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Let us next consider the case δ = 0, and thus γi = βi. The
function FP is in this case equal to

Using the mean value theorem we have

where  lies between βi and βi+1. A direct calculation

shows that

1.  = 0,

2.  is non-negative for all x ≥ 0, and

3.  asymptotically goes to 0 as x → ∞.

Let t0 be the (unique) maximum of . It fol-

lows that

This shows that

which completes the proof.

The same idea could be applied to parameter μ. Though
the biological interpretation of such a frailty model would
be different, technically no new issues arise, and similar
results can be established.

Fitting Mixture Models
We will now apply the proposed mixture model to the
human lung cancer incidence data from [10]. These

authors have studied mortalities due to lung cancer in dif-
ferent birth cohorts of European Americans, namely those
born in the 1880s, 1890s, 1900s and 1920s. The data
comes in form of a vector

(ri, oi), i = 1,...,N,

where ri counts the population at risk and oi counts the
observed cancer cases during the time interval [ti, ti+1). The
data is discussed in [21] and is publically available ([22]).
Additional information is given in [23].

In our case, the data is grouped into 5-year age groups:
0–4 years, 5–9 years, 10–14 years and so on. Figures 2 and
3 show the raw hazard estimates

As mentioned earlier, the observed hazard has a peak at
around 80 years and a decrease for the higher ages, while
the hazard of the multistage model given by (1) is strictly
monotonic increasing. Estimation of the parameters by
analytic graduation as described later on leads to
extremely poor fits, which for all ages above 30 and for all
birth cohorts give quite useless predictions. The fault
does, however, not lie with the methods of estimation but
rather with the model. Thus, using the inverse of the vari-
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Observed incidence (males)Figure 2
Observed incidence (males). Observed lung cancer inci-
dence rates in the United States for four birth cohorts. The 
population considered are the males of European descent.
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ance of the estimated incidence rates as weights leads to
almost the same poor fit. The unmixed multistage model
does not succeed in describing the incidence rates in Fig-
ures 2 and 3. We will come back to this failure.

Two component mixtures on the other hand are flexible
enough to provide good fits. We will illustrate this using
the γ-frailty model

S(t) = πlS(t|γl) + πuS(t|γu), (7)

where 0 ≤ πl ≤ 1, πl + πu = 1, 0 <γl <γu. To get identifiability,
we will fix N0 and δ. But in order to get stable estimates,
we fix also γl and n. Note that the parameters we estimate
have a restricted domain of definition,

(πl, ν, γu, μ) ∈ (0,1) × �+ × (γl, ∞) × �+.

We will use suitable transformations to respect these con-
straints.

Maximum Likelihood Estimation
We treat the failures from competing causes as right cen-
sorings. This means for each time interval [ti, ti+1) we
observe oi failures due to cancer and have ci = ri - ri+1 - oi cen-
sored individuals. Under the assumption of independent
and uninformative censoring, the likelihood function
L(πl, ν, γu, μ|N0, δ, n, γl) is given by

By numerically optimizing this likelihood, we observe a
strange behavior of the MLE. Figure 4 shows the data from
the males 1880s cohort along with the models corre-
sponding to the MLE, the least squares fit LSE, and the
starting value of the numerical optimization. As we can
see, the MLE fails completely to catch the behavior of the
observed incidence at old ages; only the first few data
points are well fitted. Convergence to this model seems
even more astonishing when we consider the initial
model. The chosen starting value is far away from the data
in terms of fit, but it is close to the observed hazard in
terms of shape. Furthermore, the model corresponding to
the LSE fits the observed hazard very closely. This shows
that the parametric family we apply to the data does
indeed contain models that can fit. But in this example,
likelihood and fit do not measure the same thing. The
huge discrepancy, however, is intriguing. The strange
behavior of the MLE is caused by several effects. One
aspect is model mis-specification in relation with the spe-
cial metric used in likelihood based inference. The data is
not really generated by our multistage model, while the
MLE corresponds to the survivor function that minimizes
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∏ 1
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ML and LS fitsFigure 4
ML and LS fits. Lung cancer incidence rates for the Euro-
pean American males born in the 1880s. The superposed 
curves show the fitted hazards of the carcinogenesis model 
(7) based on the MLE and least squares. In the fitting process, 
N0 = 1010, δ = 0, n = 2 γl = 10-4 were kept constant. The initial 
value for the remaining parameters were πl = 0.97, γu - γl = 
0.2, ν = 10-6.5 and μ = 10-5.
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the Kullback-Leibler distance to the observed empirical
survivor function. But this is a very special metric and can
produce obviously strange results in some cases.

In mechanistic modeling, likelihood based inference is
often difficult due to local maxima and/or low curvature
around the maxima. Both problems apply to our case.
Our likelihood-surface is multimodal because the differ-
ent biological parameters compete. This problem can be
avoided by extensive use of the available biological
knowledge. If we have good starting values and restrict
attention to biologically reasonable intervals, then the
likelihood surface is unimodal in that domain. The sec-
ond problem is more difficult to treat. Even for identifia-
ble parameters the likelihood surface is often extremely
flat around its maximum. Figure 5 gives the contour plot
of the log-likelihood for a reduced parameter space. That

is, we take model (7), but fix all parameters except ψ =

(logitπl, log10 μ). The log-likelihood essentially has a ridge

starting the upper-right corner and running downwards as
one moves to the left. This means that only a combination
of the two parameters can be estimated precisely, but not
both separately. The log-likelihood values of the estimates

in Figure 5 are l( ) = -1.338·106 and l( ) = -

1.355·106. While these values appear to be close, they are
in fact quite different in the likelihood metric, because

A 95% confidence region determined by a likelihood-
ratio test is shown in Figure 6. Note how small this confi-
dence set is. So, not only does the likelihood technology
give badly fitting hasard rates, it is also overly optimistic
about having found the right values.

The most important reason that leads to the failure of the
MLE in our application, however, is the heavy censoring.
We deal with human cancer incidence data. This means
we consider a rare event, and most members of the popu-
lation fail from competing causes. In the data set we are
considering there are tens of millions individuals at risk at
the first time points, but only some tens of thousands at
the last one. In order to illustrate the impact of censoring,
we will construct a sequence of artificial data sets that lead
to the same raw hazard estimates, but differ in the degree
of censoring. As before, we note by (ri, oi) the real data set.

Let us define the points ( , ) by

ψ̂ ML ψ̂ LS

2 32600 0 999 13 82
2( ( ) ( )) ( . ) . .l l qψ ψ χML LS− ≈

ri
k oi

k

r i k
oi
k

ri
k

oi
ri

i
k = − =10 106 4· , .and (8)

Log-likelihood surface (zoomed)Figure 6
Log-likelihood surface (zoomed). Contour plot of the 
log-likelihood surface as shown in Figure 5. The plot zooms 
in on the MLE and in addition contains a 95% confidence 
ellipsoid.
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That is we start with a population of size 106 and suppose
that during every time interval exactly k104 individuals die
– either due to cancer or due to competing causes. We
then fit model (7) by maximum likelihood as before (we

consider again the four parameters πl, ν, γu, μ as

unknown). Figure 7 gives the estimated models for k =
1,...,8. The MLE behaves better for small k than for large k.
In Figure 8 we calculated the residual sums of squares
(RSS) for these models, which seem to increase exponen-

tially with the coefficient of variation of the  sequence,

The above example shows that the MLE is dominated by
the points corresponding to large "at risk" sets. The LSE,
on the other hand, works fine, since it attributes equal
weight to all age intervals. This makes one wonder
whether a weighted least squares approach would suffer
from the same problem as the MLE. If we give for example
weights proportional to the population at risk, would the
LSE break down as well? The answer to this question is
clearly no. Considering Figure 4 once again, we realize
that there is a model that fits all the data points very accu-
rately. This model will be good even if we downweight the
contribution to the RSS of the points at high ages. Any

weighted least squares approach will select a model that is
very close to the standard LSE.

Analytic Graduation
The LS estimates shown in the previous figures were
obtained by analytic graduation, which is a standard pro-
cedure to fit continuous curves to discretized data. A
detailed discussion of the procedure and derivation of
asymptotic results can be found in [24,25].

Figures 9 and 10 show model (7) fitted to the different
cohorts. The model successfully reproduces the observed
data. Table 1 gives the corresponding parameter estimates.

Note that these values are conditional given N0, δ, γl and

n. The value N0 acts as a scale parameter. Changes in N0 are

compensated by ν such that the product N0 νn stays more

or less constant. The other parameters also remain quite

stable. The effect of δ is rather fuzzy, no clear conclusions
emerge. In all cases where enough data at old ages is avail-
able (i.e. all but the 1920s cohort), the estimated propor-

tion of the population at high risk, , is not sensitive to

changes in the fixed parameter values. The peak of the

observed hazard determines  quite accurately. Finally,

reasonable results can also be obtained for n = 3, while
other choices of n produce unrealistic estimates for at least
some of the parameters. Note that good fits can be

ri
k

cv
sd

mean
k

r k r k

r k r k
=

…

…

( , , )

( , , )
.0 12

0 12

π̂ u

π̂ u

RSS of ML fitsFigure 8
RSS of ML fits. The logarithm of the residual sums of 
squares of the various fits shown in Figure 7 as a function of 
the coefficient of variation of the size of the at risk set. Note 
that for the real data set we have cv(r0,...,r12) ≈ 0.77.
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achieved only as long as γl is small enough. We set γl = 10-

4 in the models given here.

The least squares estimates for a single unmixed multi-
stage model in which all the parameters except N and δ are
fitted, lead to curves ressembling the maximum likeli-
hood fit in Figure 3. The estimated parameters show that
the simple multistage model attempts to distinguish
between the earlier and later cohorts to a large extent by
increasing the initiation rate ν. The increase is three-fold
between 1880 and 1920 for the females and even six-fold
for the males. The other parameters remain more or less
constant across the cohorts. The incidence rates in females
is much lower than in males. While the mixture model
adjusts to this through an adjustment of the mixture
weights, the single multistage model explains it by very
different estimates of the promotion rate μ between the
sexes.

In order to assess the accuracy of the given estimates, we
use projections of a joint confidence region rather than
marginal confidence intervals. In other words, we deter-
mine a confidence region C ⊂ �4, and then we look at pro-
jections of C on the six parameter plains spanned by the
four parameter axis. The confidence region we get for the
EAMs 1880s cohort is shown in Figure 11. The confidence
region reveals the strong dependencies between the differ-
ent parameters. Though a parametrization with such
dependant parameters is unsatisfactory from a mathemat-
ical point of view, the dependencies might be interesting
in biological terms. Not the two mutation rates ν and μ
seem to compete, but rather the net growth rate γ and the
two mutation rates. So at the extremes of the confidence
region, we have models with high mutation rates but low
proliferation of initiated cells, or models with low muta-
tion rates but large cell growth. Note that the correspond-
ing hazard curves are markedly different.

Table 1: Conditional parameter estimates given the fixed values n = 2, N0 = 1010, δ = 0 and γl = 10-4.

Cohort Males Females

1880s 0.021 2.5 × 10-7 0.183 3.5 × 10-6 0.003 4.9 × 10-7 0.134 2.2 × 10-6

1890s 0.029 3.2 × 10-7 0.173 4.4 × 10-6 0.005 4.3 × 10-7 0.146 2.1 × 10-6

1900s 0.034 3.6 × 10-7 0.167 5.2 × 10-6 0.007 4.8 × 10-7 0.168 1.3 × 10-6

1920s 0.077 1.9 × 10-7 0.189 7.5 × 10-6 0.023 2.4 × 10-7 0.203 3.2 × 10-6

π̂ u ν̂ γ̂ u μ̂ π̂ u ν̂ γ̂ u μ̂

LS fits (males)Figure 9
LS fits (males). Observed (dashed lines) and modeled 
(solid lines) incidence rates for the data from Figure 2.
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LS fits (females)Figure 10
LS fits (females). Observed (dashed lines) and modeled 
(solid lines) incidence rates for the data from Figure 3.
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Discussion
The γ-frailty model we fitted to our data is such that only
one parameter involved in promotion is allowed to vary
between population subgroups. Such a model would sug-
gest a process where initiated cells are created in all indi-
viduals according to the same dynamics, but only in a
small subgroup of the population promotion and malig-
nant transformation happen. This is consistent with the
fact that promotion depends on stimuli that might be
present only in a fraction of the population. The propor-

tion of high risk individuals, estimated by , reflects the

change of the hazard curves between the 1880s and the

1920s cohorts. The sharp increase of maximal incidence
in a relatively short period of time must be due to environ-
mental factors such as occupational exposure and smok-
ing.

We got satisfactory fits only when we allowed for two
clearly separated population subgroups with a low risk
group that runs a risk close to zero. This is consistent with
the results reported by the other research groups that
introduced frailty into carcinogenesis modeling. In [10]
the estimated fraction at risk is very low. And also in [8]
the estimated proportion of susceptibles is lower thanπ̂ u

95% asymptotic confidence regionFigure 11
95% asymptotic confidence region. Projections of an asymptotic 95% confidence region (CR) for the parameters of the 
carcinogenesis model fit the the 1880s birth cohort of European American males. Note that we used the parametrization 
(logit(πl), log(γu - γl), log10 ν, log10 μ) in the fitting process.
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0.5%, though these authors worked with Scandinavian
data on testicular cancer.

Besides the γ-frailty model we considered here, one could
clearly build mixture models using other parameters. In
particular the number of mutations for initiation, n, the
rate of malignant transformation, μ, or the initiating
mutation rate ν would be natural choices. The increase in
lung cancer rates that was observed during the 20thcentury
coincides with an increase in the fraction of smokers.
Smoking might very well influence μ and ν. However,
when applying such models to our data, no new issues
arise, and we omit a detailed discussion here. Still, one
needs to realize that all the mentioned models can fit the
data equally well. This is not surprising, since we fit a rel-
atively complex model to a very simple data structure.
However, in all approaches we tested, the data suggested
two component mixtures with a small high risk group and
a large quasi immune group.

Conclusion
We have studied an extension of the multistage carcino-
genesis model by mixture. This allowed us to introduce
population heterogeneity. The multistage model is a
mechanistic model and all its parameters have a biologi-
cal interpretation. Therefore, it is natural to introduce the
notion of frailty in a biologically meaningful way. Such an
approach is given by our mixture models, which can
reproduce observed human lung cancer incidence data
very accurately. Very good fits are achieved with very sim-
ple, two component mixtures also in cases where a contin-
uous distribution might seem more adequate. However,
the peak observed in the population hazard rates can be
reproduced by continuous mixture models only when the
population is clearly separated into a high risk and a low
risk group. In other terms, the density of such a distribu-
tion would typically be bathtub shaped, closely resem-
bling two component mixtures. Biological systems are
often buffered. Small changes in the environment have no
significant effect, and only after passing over some thresh-
old value may abrupt changes in the system occur. Since
we consider a late end-point, namely cancer, in a very
complicated system, it is not surprising that we obtain in
Section 4 mixture models that reflect such a buffering. It
would be interesting to link the model with concrete bio-
logical mechanisms that are able to explain flip-flop proc-
esses. This would be an approach to understand how
heterogeneity acts upon human carcinogenesis.
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