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Abstract: Recent progress in real-time tracking of knee bone structures from fluoroscopic imaging
using CT templates has opened the door to studying knee kinematics to improve our understanding
of patellofemoral syndrome. The problem with CT imaging is that it exposes patients to extra ionising
radiation, which adds to fluoroscopic imaging. This can be solved by segmenting bone templates
from MRI instead of CT by using a deep neural network architecture called 2.5D U-Net. To train
the network, we used the SKI10 database from the MICCAI challenge; it contains 100 knee MRIs
with their corresponding annotated femur and tibia bones as the ground truth. Since patella tracking
is essential in our application, the SKI10 database was augmented with a new label named UofA
Patella. Using 70 MRIs from the database, a 2.5D U-Net was trained successfully after 75 epochs
with an excellent final Dice score of 98%, which compared favourably with the best state-of-the-art
algorithms. A test set of 30 MRIs were segmented using the trained 2.5D U-Net and then converted
into 3D mesh templates by using a marching cube algorithm. The resulting 3D mesh templates were
compared to the 3D mesh model extracted from the corresponding labelled data from the augmented
SKI10. Even though the final Dice score (98%) compared well with the state-of-the-art algorithms,
we initially found that the Euclidean distance between the segmented MRI and SKI10 meshes was
over 6 mm in many regions, which is unacceptable for our application. By optimising many of the
hyper-parameters of the 2.5D U-Net, we were able to find that, by changing the threshold used in
the last layer of the network, one can significantly improve the average accuracy to 0.2 mm with
a variance of 0.065 mm for most of the MRI mesh templates. These results illustrate that the Dice
score is not always a good predictor of the geometric accuracy of segmentation and that fine-tuning
hyper-parameters is critical for improving geometric accuracy.

Keywords: bone segmentation; neural networks; patellofemoral syndrome; MRI; CT

1. Introduction

Patellofemoral pain (PFP) is the most frequent cause of knee pain. It frequently occurs
in teenagers, manual labourers, and athletes. Patellofemoral pain syndrome may be caused
by overuse, injury, excess weight, a kneecap that is not aligned correctly (patellar tracking
disorder), or changes under the kneecap. Many researchers have shown that PFP is a
precursor to early osteoarthritis [1,2], the leading cause of disability in the North American
elderly population. Despite considerable efforts to improve the effectiveness of treatment
interventions, 70% of individuals with PFP had persistent or recurrent symptoms 5–20 years
after the intervention. Current interventions’ poor long-term outcomes highlight the
necessity of better understanding the causes of PFP and its contributing factors. Generally
speaking, patellar misalignment resulting in abnormal stress distribution is considered the
primary mechanism for PFP [3,4]. However, the exact cause is unknown. This is due to the
inability to evaluate in vivo three-dimensional (3D) patellofemoral joint (PFJ) motion during
dynamic activities. Motion tracking in clinical studies is commonly based on surface marker
video motion analysis, which suffers from measurement inaccuracy produced by soft tissue
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artefacts [5]. Therefore, researchers are investigating PFJ kinematics using 3D imaging
modalities instead. In a paper by Esfandiarpour et al. [6], a new technique for real-time
tracking of the knee bone structure using fluoroscopic imaging was proposed and tested.
The methodology combined a computed tomography (CT) scan and bi-planar fluoroscopy
techniques (see Figure 1a) to examine the knee motion with six degrees of freedom during
the squatting of individuals with the syndrome and without. The calibration target shown
in Figure 1b was used to correct the geometric distortion of the fluoroscopic images and
determine the two imagers’ relative projection geometries. The calibration target was placed
close to each image intensifier. A calibration algorithm compensated for radial distortions
by using a matrix of small stainless steel spheres located at known positions, as shown in
Figure 1c. Each image intensifier was independently corrected by using a radial distortion
model. Then, an orientation plate (Figure 1d) was placed in the shared image acquisition
area and imaged with two fluoroscopic sensors. One can compute the imaging sensors’
relative positions and orientations using the two images. Tracking the relative positions
and orientations of the bones in a knee (tibia, femur, and patella) over time requires that
a set of 3D mesh templates (one for each bone) must be extracted from CT imaging and
individually segmented by using a simple thresholding technique (see Figure 2). One must
track the projected image into the two by-plane fluoroscopic sensors to compute each
knee bone’s position and orientation relative to the X-ray source (see Figure 3). Knowing
the projective transform between the X-ray source and the two sensors from calibration,
one can then infer what position and orientation each bone must have to produce these
two images. The fluoroscopic imaging system captured two X-ray videos of the knee bones
during motion from orthogonal viewpoints; one can see the resulting video sequence in
Figure 4. Using an iterative re-projection software from Innomotion, Inc. (Shanghai, China)
(http://www.innomotion.biz/ (accessed on 20 June 2022)) called FluoMotion, one can infer
the three bones’ positions and orientations from the two orthogonal fluoroscopic image
sequences. In Figure 5, one can see the projection of the knee bones for one frame, and in
Figure 6, one can see a block diagram of the 3D-to-2D registration algorithm used, which is
very similar to the algorithm described in [7].

Figure 1. Experimental set-up for fluoroscopic imaging of the knee. (a) Bi-plane imaging system.
(b) Calibration jig made of small stainless steel spheres located at known positions. (c) Calibration
image. (d) An orientation plate was used to determine the common coordinate system between the
two imagers.

http://www.innomotion.biz/
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Figure 2. (a) Creation of 3D knee bone templates from a series of CT scans captured in the knee
extension position. (b) Definition of the coordinate systems of the femur, the tibia, and the patella
used to quantify the patellar tracking parameters and tibiofemoral joint angle: M, medial; L, lateral;
A, anterior; P, posterior; TEA, trans-epicondylar axis.

Figure 3. The virtual dual-orthogonal fluoroscopic system duplicates patellofemoral joint motion
using a 3D-to-2D registration technique.

Figure 4. Example of 3D knee templates re-projected into the fluoroscopic image sequence.
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Figure 5. Example of a 3D knee template re-projected into one fluoroscopic image. The red color
correspond to the tibia, the green color to the femur, and the blue color to the patella.

Figure 6. Block diagram of the 3D-to-2D re-projection algorithm.

The problem with creating knee models from CT imaging is that it exposes patients to
extra ionising radiation, which adds to fluoroscopic imaging. One possible solution is to
generate the templates from MR imaging (MRI) instead. Indeed, many automatic methods
have been proposed to create a knee model [8,9], but none can be as precise and robust
as manual or semi-automatic methods. Furthermore, MRIs are often very noisy, and the
contrast of the bones with their surroundings is frequently poor and dependent on the
imaging protocol. This paper presents the application of U-Net to the segmentation of MR
images to extract those bone templates automatically at an average accuracy of 0.2 mm for
use in fluoroscopic tracking applications. The accuracy of the 3D template was set based
on the results described in [6] and the limited resolution of MR images.

1.1. Contributions of the Paper

The first contribution of this paper is to demonstrate that, despite popular belief,
the Dice score is not always a good predictor of the geometric accuracy of segmentation.
The second contribution is that this accuracy can be significantly improved by changing
network hyper-parameters, such as the threshold used in the network’s last layer. Finally,
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accurate 3D knee bone templates (better than 0.5 mm) can be created without having to
expose patients to the extra ionising radiation produced by a CT imaging system.

1.2. Organization of the Paper

In Section 2, we will review the current state of the art of bone segmentation from
MRI. Section 3 will describe the 2.5D U-Net architecture used for segmenting the MRIs. We
used the SKI10 database from the MICCAI challenge, which contains 100 knee MR images
with the corresponding annotated femur and tibia segmentations produced by medical
experts to train the network parameters. Section 4 will describe the training process and
the geometric comparison of the U-Net segmentation results to the SKI10 label maps, and
it will present a geometric validation of the mesh using a gold standard. We will then
conclude in Section 5 by discussing the advantages of the proposed method.

2. Related Work

As discussed previously, the accurate segmentation of knee bones from MRI is imper-
ative for quantitatively assessing patellofemoral syndrome. What is essential is to create
3D knee bone templates that can be used to track knee motion in the fluoroscopic image
sequence. Current clinical practice requires a radiologist to perform manual segmentation
slice by slice by using manual or semi-automated tools [10]. The process is costly in terms
of time and money and can easily take 3–4 h for a single scan. Repeatability and accu-
racy are also an issue, as this process is observer-dependent [11]. Numerous papers have
evaluated segmentation accuracy by using public-domain MRI datasets, such as MICCAI
SKI10 accessed (https://ski10.grand-challenge.org/ (accessed on 20 June 2022)) and OAI
Imorphics (http://imorphics.com/ (accessed on 20 June 2022)), where bone and cartilage
boundaries have been manually segmented by radiologists, and these are used as a gold
standard to train and compare the results of automated algorithms. The most common
metric for comparing the segmentations produced by automated algorithms with the gold
standard is the Dice coefficient (DSC), which is defined as:

DSC(S, R) =
2 | S

⋂
R |

| S | + | R | × 100% (1)

where S is the bone’s surface segmented by the network and R is the ground truth. The
coefficient is 100% when the segmentation is perfect and 0% when it is false. The Dice
coefficient is more adapted to the segmentation of small objects because it is independent
of their size in the image instead of the pixel accuracy function, which depends on the
proportions between the foreground and the background. The other metrics used to
characterise the segmentation results are geometric, and they include the following:

• The average surface distance between the boundary ∂S and ∂R for one MRI n is
defined as:

Ŝn =
1

Ns

Ns

∑
i=1

inf
y∈∂R

‖si − y‖ (2)

• The root mean square surface distance for one MRI n is defined as:

R̂n =

√√√√ 1
Ns

Ns

∑
i=1

inf
y∈∂R

‖si − y‖2 (3)

where Ns is the number of 3D points located on the segmented bone surface boundary
∂S. The calculation of the distance between 3D points si and y ∈ ∂R corresponds
to the minimum distance between a 3D point si and a point y located on reference
surface boundary ∂R. Statistics are represented as ASD=avrM(Ŝn)± varM(Ŝn) and
RSD=avrM(R̂n)± varM(R̂n), where avrM(∗) is the average value and varM(∗) is the
variance for a group of M test MRIs.

https://ski10.grand-challenge.org/
http://imorphics.com/
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Other geometric metrics can be used to characterise the segmentation results of carti-
lages, such as volume difference (VD) and volume overlap error (VOE), which, in our case,
is not necessary.

Current segmentation techniques can be classified into two categories: semi-automatic
and automatic. Semi-automatic methods include thresholding [12], region growing [13],
deformable models [14,15], and clustering [16]. Most of these approaches reduce the
time for segmenting bone and cartilage in MRI, but are still heavily manual and time-
consuming. Fully automated algorithms include k-nearest neighbour voxel classification
by [17], which is used mainly for cartilage segmentation. In [18], one can find an excellent
review of automated bone and cartilage segmentation algorithms. Tamez et al. [19] and
Shan et al. [20] used approaches based on multi-atlas approaches. In these approaches,
human experts segmented MRI series that were used as reference atlases for a multi-atlas
segmentation algorithm. The methodology created good knee segmentation that was then
used to extract articular cartilage volume, surface area, thickness, and subchondral bone
plate curvature. Typically, these algorithms’ DSC values are 88% for the tibia bone and 89%
for the femur bone. The RSD values are 1.4 and 1.0 mm for the femur and tibia, respectively.
Liu et al. [21] used deep convolutional neural networks and a 3D deformable approach
to segment bones and cartilages. The segmentation results trained by the SKI10 database
for the femur bone were: DSC = 64.1%, ASD = 0.56± 0.12, and RSD = 1.08± 0.21. For
the tibia bone, the results were DSC = 64.1%, ASD = 0.50± 0.14, and RSD = 1.09± 0.28.
Numerous deep learning segmentation algorithms found in the recent literature were
compared by Ambellan et al. [22] with their algorithm based on statistical shape knowledge
and convolutional neural networks. For the femur bone, the results were DSC = 98%,
ASD = 0.43± 0.13, and RSD = 0.74± 0.27. For the tibia bone, the results were DSC = 98.5%,
ASD = 0.35± 0.07, and RSD = 0.59± 0.19. Almajalid et al. [23] used an approach similar
to the one proposed in this paper. The DSC values for the tibia were 96.83%, and those
for the femur were 97.92%. Unfortunately, no geometric distance metrics were provided.
Chen et al. [24] proposed a bone and cartilage segmentation algorithm based on a 3D DNN
using adversarial loss for a prior shape constraint. The DSC scores were 98% for the tibia
and femur bones. For the tibia, ASD = 0.38± 0.15 and RSD = 0.69± 0.37. For the femur,
ASD = 0.29± 0.07 and RSD = 0.52± 0.12.

3. Method
3.1. SKI10 Training Datasets

This paper used a 2.5D U-Net architecture to segment knee bones using the SKI10
database from the SKI10 MICCAI challenge containing 100 knee MRIs corresponding to
professionally annotated femur and tibia segmentation images. The SKI10 database is from
MRI images originating from Biomet, Inc. The data were acquired at over 80 different
centres in the USA using machines from all major vendors, i.e., General Electric, Siemens,
Philips, Toshiba, and Hitachi. All images were acquired in the sagittal plane with a
rectangular pixel spacing of 0.4 mm and a slice distance of 1 mm. No contrast agents were
used. The field strength was 1.5 Tesla in about 90% of the cases. The rest was acquired at
3 Tesla, with some images acquired at 1 Tesla. The MRI sequences show a considerable
variety: Most images used T1-weighting, but some were also obtained using T2-weighting.
In addition, many images used gradient echo or spoiled gradient echo sequences, and fat
suppression techniques were also standard. All MRI images were segmented interactively
by experts at Biomet, Inc. into four categories corresponding to the femur, femoral cartilage,
tibia, and tibial cartilage. Unfortunately, the SKI10 database did not provide a patella
category. To remediate this situation, we asked one of the radiologists at the University of
Alberta to add patella labels with the name UofA Patella to the database.

3.2. Segmenting Bone MRI Using 2.5D U-Net

The first use of a deep neural network for medical image segmentation was proposed
by Ciresan et al. [25] for the segmentation of electron microscopy images. This was a fully
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connected approach where a classifier was applied to each slice of pixels using a sliding
window around the pixel. A drawback of this approach is that there are too many overlaps
and redundant computations to be efficient. Ronneberger et al. [26] redesigned this fully
connected network by using convolutions instead and got better results by proposing a new
architecture called U-Net. U-Net is based on the notion of an encoder–decoder network in
which the input images are inputted into an encoder network to extract high-level features.
These features are then sent to a decoder network to restore the spatial information to
classify the pixels. The U-Net architecture has produced excellent results for many medical
image segmentation applications. The U-Net architecture was first proposed to deal with
2D images, but since MRIs are volume datasets, one has two possibilities to segment them.
First, one can use a generalization of U-Net called 3D U-Net [27] that can deal with native
volume data segmentation. Second, one can segment each slice independently by using a
2D U-Net and can then combine the labelled results to generate a 3D mesh model. These
2.5D approaches described in [28] are inspired by the fact that 2.5D has richer spatial
information of neighbouring pixels with lower computational and memory costs than those
of the 3D U-Net architecture. In this paper, we implemented the 2.5D U-Net approach for
the following reasons:

• Ease of implementation on a GPU with limited global memory;
• Significant reduction in training and prediction time;
• Leveraging of the higher spatial resolution in the axial direction.

In addition to training, the network weights when using back-propagation and other
networks’ hyper-parameters must also be optimised. Hyper-parameters are the variables
that determine the network structure and the variables that determine how the network is
trained. They include:

• Batch size: The mini-batch size is the number of sub-samples given to the network,
after which a parameter update happens.

• Learning rate: The learning rate defines how quickly a network updates its parameters.
• Momentum: Momentum helps to know the direction of the next step with the knowl-

edge of the previous steps.
• Loss/cost function: The loss function measures how wrong the model is.
• Activation function: Activation functions are used to introduce nonlinearity to models,

which allows deep learning models to learn nonlinear prediction boundaries.
• Optimiser: An optimization algorithm is used.
• Architecture: This indicates the number of hidden layers and units.
• Dropout: Dropout is a regularization technique for avoiding overfitting (increasing

the validation accuracy), thus increasing the generalization power.
• Initialiser: This is the network weight initialization.
• Validation split: This is the ratio of validation data.
• Test split: This is the ratio of test data.
• Epoch number: The number of epochs is the number of times the whole set of training

data is shown to the network while training.

One can see the network architecture in Figure 7 and a description of our implementa-
tion using the TensorFlow framework in Figure 8.

3.3. Geometric Validation of the Segmentation

The problem with the Dice score is that one does not measure the geometric differences
between a 3D mesh produced by 2.5D U-Net and its SKI10 ground truth for a score of 98%
instead of 90%. This is critical for our application, as we will use the geometry extracted
from the segmentation as a 3D template to be back-projected into the fluoroscopic image
sequences. Therefore, the geometric difference between the 3D mesh produced by the 2.5D
U-Net segmentation and the SKI10 ground truth will be computed as follows:

• Generate a 3D mesh template of one of the knee bone structures using a marching
cube algorithm from the SKI10 ground truth;
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• Generate a 3D mesh template of one of the knee bone structures using a marching
cube algorithm from the segmentation produced by 2.5D U-Net;

• Register the MRI and SKI10 3D mesh templates for each patient using a robust ICP
algorithm [29];

• Compute the Euclidean distance between the MRI and SKI10 3D mesh templates;
• Display colour-coded differences in the 3D rendering of the mesh geometry.

3.4. Pre-Processing the Training Datasets

The 100 SKI10 MRIs were randomly divided into a training set of 70 MRI volumes
with a corresponding label map and a test set of 30 MRI volumes. Since the segmenta-
tion algorithm used a 2.5D U-Net, it was necessary to re-sample the volume dataset to a
resolution of 128 × 128 pixels to deal with GPU memory limitations. We used a bi-cubic
interpolation algorithm provided by the ITK library. To train a 2.5D U-Net network, one
must give all training set input volumes and their corresponding labelled map. The total
combined number of slices for the training set was 7000. This conversion was a complex
task because the SKI10 data were far from being normalised to images of 128 × 128 pixels.
One can see the pre-processing pipeline in Figure 9. All volumes were of different sizes, and
volumes containing the labels were not binary because they included bone and cartilage
types. To process, each MRI training volume dataset must be combined into a large array
of sizes (S × m × m × 2 bytes) that combine all training volume MRI values with their
corresponding segmentation values. S is the total number of axial slices in the training set
equal to 7000. The variable m is the new resolution of each axial slice and is equal to 128,
where two values are attributed to each element of this large array. The first value is the
re-normalised value of each voxel between 0 and 255 based on the min–max of all volumes in
the training dataset. The second is the corresponding voxel classification as bone or cartilage,
and it is defined as the gold standard. Once the data were combined and pre-processed,
the network was ready to be trained using a back-propagation algorithm provided by the
TensorFlow (https://www.tensorflow.org/ (accessed on 20 June 2022)) software.

Figure 7. The 2.5D U-Net architecture.

https://www.tensorflow.org/
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Figure 8. TensorFlow definition of the 2D U-Net used three times in the 2.5D version.
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Figure 9. Segmentation pre-processing pipeline.

4. Experimental Results

First, pre-processing was applied to the 70 training set volumes with corresponding
label maps for the tibia and femur. During the training with cartilage, the labels were
discarded. Then, the TensorFlow back-projection algorithm set the weight using a mo-
mentum acceleration technique. All biases were initialised to 0, and the weight values
were initialised to random numbers. The network reached a plateau after about 70 epochs.
In general, stopping training at this point was better to avoid overfitting. One can see
the evolution of the Dice score relative to the number of epochs for the training set (blue
curve) in Figure 10. The Dice coefficient on the graph was calculated from an average
of thousands of images from the training set volumes. If one observes the segmentation
results volume by volume, important variations can be observed depending on the MRI
quality and the accuracy of the label map. By filtering the label map with a morphological
opening operator during pre-processing, we eliminated the labelled one-pixel regions that
interfered with the training process. With the filter, the training Dice coefficient converged
to an excellent value of 98%, which compared favourably with two of the best algorithms
reported in [23,24]. However, on more complicated volumes, the coefficient could fall to
90%. The validation set was composed of 30 MRI volumes. The data allowed us to judge
the segmentation quality at regular intervals without interfering with the training process.
One can see the evolution of the global Dice score (orange curve) relative to the number
of epochs in Figure 10. This Dice score closely followed the evolution of the training Dice
score, but converged instead to a value of 95%.

Figure 10. (Blue) Evolution of the Dice score for 70 volumes from the SKI10 database and (Orange)
evolution of the Dice score for the validation set relative to the number of epochs.

The training phase took 20 h on a GeForce 980 TI GPU and 5 h on a Geforce 1080 TI
GPU. A 3D mesh was generated using a marching cube algorithm following training. In
Figure 11a, one can see the mesh produced for one instance of the femur 3D mesh created
by the 2.5D U-Net, and in Figure 11b, one can see its corresponding mesh from the SKI10
label map. Likewise, one can see the 3D mesh produced by U-Net in Figure 12a and the
corresponding 3D mesh from the SKI-10 label map for the tibia in Figure 12b. In Figure 13a,
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one can see the mesh produced for one instance of the patella 3D mesh created by the 2.5D
U-Net, and in Figure 13b, one can see its corresponding mesh from the UofA label map.

Figure 11. Femur 3D mesh model produced by (a) U-net and (b) the SKI10 ground truth.

In Figures 14–16, one can see the signed difference map between the U-Net mesh and the
labelled meshes of the femur, tibia, and patella, respectively. A colour-coded scale displays
the differences in mesh geometry in both images. As one can see, even though the ASD value
was 1.5± 0.58 mm and RSD = 2.5± 0.8 mm for the tibia and femur, there were regions where
the differences exceeded 6.0 mm, which was unacceptable for our application. For the patella,
the ASD value was 0.56± 0.2 mm and RSD = 1.2± 0.54 mm. These significant differences
were due to areas where the MRI had more diffuse boundaries.

Figure 12. Tibia 3D mesh model produced by (a) U-Net and (b) the SKI10 ground truth.

Figure 13. Patella 3D mesh model produced by (a) U-Net and (b) the UofA ground truth.
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Figure 14. Two views of the colour-coded signed distance in mm between the U-Net 3D mesh and
the SKI10 3D mesh for the femur.

Figure 15. Two views of the colour-coded signed distance in mm between the U-Net 3D mesh and
the SKI10 3D mesh for the tibia.

Figure 16. Two views of the colour-coded signed distance in mm between the U-Net 3D mesh and
the UofA 3D mesh for the patella.

Improving Geometric Accuracy by Optimising Hyper-Parameters

Fortunately, by changing the classification threshold in the final layer of the U-Net
from the standard 0.5 to an optimal value of 0.42, we were able to reduce the ASD value to
0.2± 0.065 mm and RSD = 0.5± 0.14 for all tibia and femur models. For the patella, the ASD
value was 0.15± 0.07 mm and RSD = 0.6± 0.13 mm. As a result, in Figures 17–19, one can
see the new signed distance map for the femur, tibia, and patella, respectively. Therefore,
even though the Dice score was very high (98%), a geometric comparison was necessary
in order to assess the proper segmentation accuracy and help optimise the network’s
hyper-parameters.
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Figure 17. Two views of the colour-coded signed distance in mm between the U-Net mesh and the
SKI10 mesh for the femur with the optimal threshold.

Figure 18. Two views of the colour-coded signed distance in mm between the U-Net mesh and the
SKI10 mesh for the tibia with the optimal threshold.

Figure 19. Two views of the colour-coded signed distance in mm between the U-Net mesh and the
UofA mesh for the patella with the optimal threshold.

5. Conclusions

In this paper, we showed that it is possible to extract accurate enough (≤0.5 mm) 3D
bone templates that can be used to track knee motion using a fluoroscopic imaging system.
Our study found that, for most segmented bone templates (tibia, femur, and patella), the
DSC values were 98%. Additionally, ASD = 0.2± 0.065 mm and RSD = 0.5± 0.14; these
values for the tibia, femur, and patella were better than those obtained with most algorithms.
In fact, our approach is superior to the well-known SegNet algorithm [21] (DSC = 64% with
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ASD = 0.56 mm) and compares well with two of the best segmentation algorithms [23,24]
(DSC = 98.5%, ASD = 0.4 mm) found in the literature. As stated in [23], the 2.5D U-Net is
more cost-effective in terms of memory needs and calculation time. This paper also shows
that a good Dice score is not always a good indicator of geometric precision, and it can
be improved by optimising the network’s hyper-parameters. Even though the original
SKI10 database did not include patella labels, by adding extra manual segmentation for
the patella from one of our medical experts, we were able to get good segmentation results.
This is very encouraging, as this work shows that MRI scans can be used instead of CT to
create accurate bone templates and significantly reduce exposure to ionising radiation.
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