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      Pathophysiologic Role of Autophagy 
in Human Airways                     

     Valentina     Sica     and     Valentina     Izzo    

    Abstract     Lung diseases are among the most common and widespread disorders 
worldwide. They refer to many different pathological conditions affecting the 
 pulmonary system in acute or chronic forms, such as asthma, chronic obstructive 
pulmonary disease, infections, cystic fi brosis, lung cancer and many other breath 
complications. Environmental, epigenetic and genetic co-factors are responsible for 
these pathologies that can lead to respiratory failure, and, even, ultimately death. 
Increasing evidences have highlighted the implication of the autophagic pathways 
in the pathogenesis of lung diseases and, in some cases, the deregulated molecular 
mechanisms underlying autophagy may be considered as potential new therapeutic 
targets. This chapter summarizes recent advances in understanding the pathophysi-
ological functions of autophagy and its possible roles in the causation and/or pre-
vention of human lung diseases.  

   Abbreviations 

  AAT    Alpha-1-antitrypsin   
  AATD    Alpha-1-antitrypsin defi ciency   
  ALI    Acute lung injury   

        V.   Sica    
  Ecole doctorale de Cancerologie ,  University of Paris SUD ,   Paris ,  France    

  “Apoptosis, Cancer & Immunity”, Team 11, INSERM U1138 Cordeliers Research Center , 
  15 rue Ecole de Médecine ,  75006   Paris ,  France    

  Cell Biology and Metabolomics Platform ,  Gustave Roussy Comprehensive Cancer Center , 
  Pavillon de Recherche 1, 114 rue Édouard-Vaillant ,  94805   Villejuif ,  France     

    V.   Izzo      (*) 
  “Apoptosis, Cancer & Immunity”, Team 11, INSERM U1138 Cordeliers Research Center , 
  15 rue Ecole de Médecine ,  75006   Paris ,  France    

  Cell Biology and Metabolomics Platform ,  Gustave Roussy Comprehensive Cancer Center , 
  Pavillon de Recherche 1, 114 rue Édouard-Vaillant ,  94805   Villejuif ,  France   
 e-mail: valentina.izzo@upmc.fr  

mailto:valentina.izzo@upmc.fr


346

  ALT-E    Alternaria-associated asthma   
  ARDS    Acute respiratory distress syndrome   
  Atg    Autophagy-related   
  ATP    Adenosine triphosphate   
  Bcl-2    B-cell lymphoma 2   
  BMP    Bone morphogenetic protein   
  BMPR2    BMP receptor type-II   
  BRAF    B-Raf proto-oncogene   
  CAV-1    Caveolin-1   
  CD274    Cluster of differentiation 274 (known as Programmed death- 

ligand 1, PD-L1 or B7 homolog 1, B7-H1)   
  CF    Cystic Fibrosis   
  CFTR    Cystic Fibrosis Transmembrane Conductance Regulator   
  COPD    Chronic obstructive pulmonary disease   
  CRC    Murine colorectal carcinoma   
  CS    Cigarette smoke   
  ECM    Extracellular matrix   
  EGFR    Epidermal growth factor receptor   
  Egr-1    Early growth response protein 1   
  EMT    Epithelial-to-mesenchymal transition   
  ER    Endoplasmic Reticulum   
  F508del-CFTR    Deletion of phenylalanine in position 508 of the CFTR   
  FEV1    Forced expiratory volume in 1 second   
  FF    Fibroblastic foci   
  FMD    Myofi broblast differentiation   
  FoxO3    Forkhead box O3   
  FOXP3    Forkhead box P3   
  H 2 O 2     Hydrogen peroxide   
  HDAC6    Histone deacetylase 6   
  HH    Hedgehog   
  HO-1    Heme oxygenase-1   
  IFN    Interferon   
  IFT20    Intrafl agellar transport protein 20 homolog   
  IL    Interleukin   
  ILD    Interstitial lung disease   
  IPF    Idiopathic pulmonary fi brosis   
  KRAS    Kirsten rat sarcoma viral oncogene homolog   
  LC3 (MAP1LC3)    Microtubule-associated protein 1 light chain 3*   
  LPS    Lipopolysaccharide   
  MCC    Mucociliary clearance   
  MMP    Matrix metalloproteinases   
  mTOR    Mammalian target of rapamycin   
  MUC5AC    Mucin 5AC   
  MyD88    Myeloid differentiation primary response gene 88   
  NK    Natural killer   
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  NO    Nitric oxide   
  NSCLC    Human non-small cell lung carcinoma   
  OFD1    Oral facial digital syndrome   
  p62/SQSTM1    Sequestosome 1   
  PAH    Pulmonary arterial hypertension   
  PARK2    Parkin RBR E3 ubiquitin protein ligase   
  PASMCs    Pulmonary artery smooth muscle cells   
  PH    Pulmonary hypertension   
  PI3K    Class III-phosphoinositide 3-kinase   
  PINK    PTEN-induced putative kinase   
  PTEN    Phosphatase and tensin homolog   
  ROS    Reactive oxygen species   
  Rtp801    Known as Redd1 (regulated in development and DNA damage 

responses 1)   
  SIRT6    Sirtuin 6   
  SNPs    Single Nucleotide Polymorphisms   
  STK11 (LKB1)    Serine/threonine kinase 11   
  TFEB    Transcription factor EB   
  TG2    Transglutaminase type 2   
  TGF-β1    Transforming growth factor-β1   
  Th    T helper   
  TLR4    Toll-like receptor 4   
  TSC    Tuberous sclerosis complex   
  WHO    World Health Organization   
  α-SMA    Smooth muscle-α actin   

1         Introduction 

 Lung diseases are some of the most common medical conditions in the world. The 
lung has the principal aim to mediate gas exchange [ 60 ]. For this reason, the lung can 
be subjected to several insults, belonging to the environment (inspiration of foreign 
matter, particles, smoke), reactive oxygen species (ROS) production,  biological 
 origins (e.g., viruses, bacteria), changes in O 2  tension, and mechanical stresses 
(e.g., mechanical ventilation). It is possible to discriminate between  diseases 
 affecting: (I) the airways (asthma, chronic obstructive pulmonary disease, chronic 
bronchitis, emphysema, acute bronchitis and cystic fi brosis); (II) the interstitium 
(sarcoidosis, idiopathic pulmonary fi brosis, autoimmune diseases, pneumonias and 
pulmonary edemas); (III) the blood vessels (pulmonary embolism and  hypertension); 
the pleura (pleural effusion, pneumothorax and mesothelioma); (IV) the chest wall 
(obesity hypoventilation syndrome and neuromuscular disorders). The development 
of lung diseases can be associated to both acute and chronic exposure to such insults. 
However, in most conditions, a favouring genetic is necessary [ 60 ]. Yet, the lung has 
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various inducible defence mechanisms to protect itself. First, constitutive and 
 inducible stress protein and antioxidant defences; second, innate immune responses; 
third, pro- and anti-apoptotic mechanisms [ 84 ,  85 ,  103 ]. Several studies have 
recently pinpointed the emerging role of macroautophagy (more often and hereby 
referred to as autophagy) in lung homeostasis and diseases. Autophagy is a catabolic 
process that involves the sequential sequestration of cytoplasmic material within 
double-membraned vesicles (autophagosomes), the fusion of autophagosomes with 
lysosomes, and the degradation of autophagosomal cargoes (as well as of structural 
autophagosomal components) by lysosomal hydrolases [ 26 ]. Autophagy is mediated 
by a genetically encoded, evolutionary conserved machinery that is connected to 
most, if not all, major biochemical processes of the cell, including core metabolic 
circuitries as well as signal transduction pathways initiated by plasma membrane 
receptors [ 18 ]. Basically, autophagy responds to three major organismal needs: (1) it 
preserves cellular homeostasis in physiological conditions; (2) it plays a key role in 
cellular adaptation to stressful stimuli; and (3) it participates in the communication 
of states of the danger to the whole organism [ 21 ]. Indeed, autophagy continuously 
operates to mediate the disposal of potentially dangerous structures that may other-
wise accumulate in the cytoplasm as a consequence of normal cellular activities, like 
old (and damaged) organelles or protein aggregates [ 64 ]. Moreover, the autophagic 
fl ux is highly responsive to situations in which intracellular or extracellular homeo-
stasis is perturbed, which generally involves either an increased offer of autophagic 
substrates (as it occurs in the course of viral infection) or an increased need for 
autophagic functions or products (as it occurs in response to nutrient deprivation) 
[ 90 ]. In both these settings, profi cient autophagic responses are required for the opti-
mal adaptation of cells to stress, as demonstrated in experiments involving pharma-
cological inhibitors of autophagy or the depletion of essential components of the 
autophagic machinery [ 46 ]. Finally, autophagy is required for cells experiencing 
so-called “oncogenic stress” (i.e., the boost of cellular functions driven by activating 
mutations in one oncogene or loss- of- function mutation in one tumor suppressor 
gene) to become senescent (a cell- intrinsic oncosuppressive mechanism) while 
secreting immunostimulatory cytokines and expressing on their surface ligands for 
activatory natural killer (NK)-cell receptors (hence triggering a cell-extrinsic mecha-
nism of tumor suppression) [ 55 ]. Along similar lines, cancer cells succumbing to a 
peculiar form of apoptosis known as “immunogenic cell death” are able to recruit 
antigen-presenting cells and hence trigger an adaptive immune response only if they 
secrete ATP as they die, a process that requires profi cient autophagic responses [ 42 , 
 45 ]. It should be noted that autophagy has also been causally implicated in some 
instances of cell death, especially in lower organisms like  Drosophila melanogaster  
[ 13 ,  17 ]. However, in mammals autophagy mainly mediates robust cytoprotective 
functions, and – when cellular homeostasis is irremediably compromised – contributes 
to the maintenance of organismal homeostasis by playing a role in danger signalling. 
In line with this notion, defects in the autophagic machinery have been associated 
with a wide panel of human pathologies, including (but not limited to) malignant 
diseases, neurodegenerative disorders, as well as cardiovascular, renal and  pulmonary 
conditions [ 86 ]. An accurate description of the autophagy pathway and its role in 
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immunity and infl ammation has been provided in several previous  chapters of this 
book; therefore, here we will focus on the impact of autophagic in the  etiology and 
treatment of human pulmonary diseases.  

2     Acute Lung Injury 

 Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) 
describe clinical syndromes of acute respiratory failure with substantial morbidity 
and mortality. ALI is characterised by acute infl ammation that causes disruption of 
the lung endothelial and epithelial barriers. The ALI cellular features include loss of 
alveolar–capillary membrane integrity, excessive transepithelial neutrophil migra-
tion, and release of pro-infl ammatory, cytotoxic mediators. The treatment of ALI is 
predominantly based on ventilatory strategies [ 35 ]. However, prolonged exposure to 
high oxygen therapy (hyperoxia) can result in lung injury [ 7 ]. Few studies are pres-
ent in the literature concerning the role of autophagy in ALI, even so these works 
support the hypothesis that activation of autophagy has a protective role in this dis-
ease. It has been demonstrated that prolonged hyperoxia, which causes characteris-
tic lung injury in mice, induced the increase of LC3II expression. Moreover, in 
pulmonary epithelial cells, the genetic depletion of LC3 sentitizes the cells to 
hyperoxia- induced cell death suggesting that LC3 activation confers cytoprotection 
in oxygen-dependent cytotoxicity [ 93 ]. Besides, the involvement of mitophagy has 
also been identifi ed. The ability to resist hyperoxia is proportional to PTEN-induced 
putative kinase 1 (PINK1) expression. In fact, the  Pink1   −/−   mice were more suscep-
tible to hyperoxia when compared to wild-type mice. Furthermore, genetic deletion 
of PINK1 or PINK1 silencing in the lung endothelium cells increased susceptibility 
to hyperoxia  via  alterations in autophagy/mitophagy, proteasome activation, apop-
tosis and oxidant generation [ 108 ].  

3     Chronic Obstructive Pulmonary Disease (COPD) 

 Chronic obstructive pulmonary disease (COPD) is a chronic infl ammatory lung 
 disease that causes breathing diffi culty, cough, sputum production and dyspnoea. 
Emphysema and chronic bronchitis can contribute to COPD development. 
Emphysema is a condition resulting from a severe damage of air sacs (the alveoli). 
Chronic bronchitis is due to infl ammation of the lining of the bronchial tubes. The 
lung damage that leads to COPD is caused by long-term exposure to irritating gases 
or particulate matter, most often from cigarette smoke (CS), air pollution or work-
place exposure to dust, smoke or fumes. However, a genetic susceptibility to the 
disease should be considered as an important cofactor. Patients with COPD present 
increased risk of developing other pathologies, such as heart disease or lung cancer 
[ 53 ]. Multiple molecular mechanisms, not fully understood, participate to the 
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COPD evolution and, among others, the involvement of the autophagic pathway has 
been pointed out [ 3 ,  86 ]. In lung tissue from COPD patients, an increase of autopha-
gic vacuoles as well as several autophagy markers (LC3, ATG4, ATG5/12, ATG7) 
expression has been detected [ 8 ]. These evidences are perhaps a result of defective 
autophagic fl ux. To corroborate this hypothesis, an increased accumulation of p62 
and ubiquitinated proteins and a decreased expression levels of sirtuin 6 (SIRT6) 
have been evaluated in lung homogenates from COPD patients [ 92 ]. Kuwano and 
colleagues hypothesize that the insuffi cient autophagic clearance is involved in the 
accelerated cell senescence observed in COPD [ 16 ,  92 ]. The CS induces mitochon-
drial damage, accompanied by increased ROS production  in vitro . The CS-induced 
mitophagy was inhibited by PINK1 and PARK2 knockdown, resulting in enhanced 
mitochondrial ROS production. Moreover, a decreased expression of PARK2 in 
COPD lungs compared with non-COPD lungs has been detected, suggesting that 
insuffi cient mitophagy is a part of the pathogenic sequence and cellular senescence 
of COPD [ 32 ]. In addition, a defective xenophagy has been observed in alveolar 
macrophages of smokers, suggesting that the deregulation of this selective process 
may contribute to recurrent infections [ 65 ]. In contrast, other fi ndings indicate that 
autophagy has an opposite role in COPD favouring the pathological environment. It 
has been shown that Rtp801 (also known as Redd1) expression is increased in 
human emphysematous lungs and in lungs of mice exposed to CS, whereas Rtp801 
knockout mice were protected against acute CS-induced lung injury. Rtp801 inhib-
its mammalian target of rapamycin (mTOR), by stabilizing the TSC1-TSC2 inhibi-
tory complex. The inhibition of mTOR is linked to autophagy induction, but Rtp801 
expression enhances oxidative stress-dependent cell death, amplifying the develop-
ment of CS-induced lung injury [ 105 ]. Furthermore, the higher expression of 
autophagy proteins has been linked to lung epithelial cell death, airway dysfunction 
and emphysema in response to CS. Genetic depletion of LC3B  in vivo  ( Map1lc3B   −/−   
mice) suppressed cell death and emphysematous airspace enlargement during 
chronic CS exposure compared to the wild type mice [ 9 ]. More recently, the same 
group demonstrated that mitophagy regulates necroptosis, which contributes to the 
COPD pathogenesis. Mice defi cient for  Pink1  were protected against mitochondrial 
dysfunction, airspace enlargement and mucociliary clearance (MCC) disruption 
during CS exposure [ 63 ]. Interestingly, they identifi ed the contribution of a novel 
selective autophagy-dependent pathway that regulates cilia length, “ciliophagy”, in 
the COPD pathophysiological evolution. Exposure to CS reduced cilia length and 
autophagy-impaired ( Beclin 1   +/−   or  Map1lc3B   −/−  ) mice resisted to the CS-induced 
cilia shortening  via  a mechanism involving histone deacetylase 6 (HDAC6) [ 48 ]. 
Accordingly, it has been shown that autophagy negatively regulate ciliogenesis by 
the degradation of the essential ciliary protein IFT20 [ 70 ]. Conversely, Hedgehog 
(HH) signalling from primary cilia promotes autophagy [ 70 ] and autophagy pro-
motes ciliogenesis by degrading OFD1 (oral facial digital syndrome) at centriolar 
satellites [ 95 ]. Further studies are necessary to clarify the dual relationship between 
these processes [ 101 ]. In conclusion, these studies illustrate that the contribution of 
autophagy in COPD pathophysiology is complex and show a context-specifi c role 
depending on the cell type and tissue as well as on the different stimuli involved.  
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4     Interstitial Lung Disease (ILD) 

 Interstitial lung disease (ILD) is a general category that includes all lung diseases 
affecting the interstitium, the tissue and space that extends throughout both lungs. 
Among them the most common are Sarcoidosis and Idiopathic pulmonary fi brosis 
(IPF). Sarcoidosis is a systemic infl ammatory disease caused by persistent reaction 
toward a stimulus (virus or antigens) that continues even when it is physiologically 
cleared from the body. Lung interstitium fi brosis is the fi rst symptom in patients 
with Sarcoidosis. Conversely, IPF is characterized by specifi c fi brosis at interstitial 
level due to the increased extracellular matrix (ECM) protein deposition and hyper 
activation of myofi broblasts [ 10 ]. 

 Recently, reduced LC3II expression and p62 accumulation has been found in 
lung tissue from IPF patients [ 72 ]. The reduced expression of the transcription fac-
tor FoxO3a in IPF fi broblasts could be the cause for the reduction in the levels of 
LC3 protein as the expression of this latter is positively stimulated by FoxO3a [ 30 ]. 

 Furthermore, in fi broblast of IPF patients, decreased expression in Beclin-1 pro-
tein and increased expression of the anti-apoptotic protein Bcl-2 have been found, 
confi rming a defect in the autophagy pathway at different level [ 81 ]. Moreover, 
fi broblastic foci (FF), that are the starting point for fi brogenesis, are enriched in 
ubiquitinated proteins and p62, confi rming the insuffi cient autophagy at the basis of 
IPF pathogenesis [ 3 ]. 

 Autophagy inhibition is able to induce acceleration of epithelial cell senescence 
and fi broblast to myofi broblast differentiation (FMD), which have a critical role in 
IPF development [ 3 ]. Transforming growth factor-β1 (TGF-β1) is one of the essen-
tial mediators of fi brosis since it stimulates fi broblasts to produce fi bronectin and 
the smooth muscle-α actin (α-SMA), which is a myofi broblast marker. Autophagy 
has been associated to fi brosis through TGF-β1. In fact, genetic deletion of LC3 or 
Beclin 1 increases TGF-β1 activity as well as  in vivo  treatment with Rapamycin can 
protect from fi brosis [ 72 ]. TGF-β1 expression seems to be dependent on IL-17A, a 
proinfl ammatory cytokine involved in chronic infl ammation and autoimmune dis-
ease. Blocking IL-17A might reduce the progression of fi brosis promoting the 
autophagic degradation of collagen [ 61 ]. 

 Recently, lacking of matrix metalloproteinases-19 (MMP-19) has been associ-
ated with exacerbated fi brosis in the hyperplastic alveolar epithelium of IPF lungs 
[ 106 ]. Additionally, MMP-19-defi cient mice exhibit diminished Atg4c protein 
expression, demonstrating a direct correlation between these two pathways [ 33 ]. 
Similar evidences from an independent group corroborate the role of autophagy in 
promoting FMD. In fact, Atg4b-defi cient mice exhibited reduction in autophagic 
activity in lungs, collagen accumulation and increased protein levels of the myofi -
broblast biomarker α-SMA [ 6 ]. 

 Pharmacological treatment with the alkaloid Barberine has been proposed for 
IPF monitoring because of its capacity to inhibit the activation of mTOR and to 
increase the expression of LC3 and Beclin 1 in an bleomycin  in vivo  model of 
airway- fi brosis [ 11 ]. Furthermore, the multiple tyrosine kinase inhibitor Nintedanib 
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has recently been approved for the treatment of IPS for its anti-fi brotic effect. It has 
been shown that Nintedanib is able to reduce the expression of ECM proteins, fi bro-
nectin and collagen as well as to induce a Beclin 1 dependent, ATG7 independent 
autophagy [ 76 ].  

5     Asthma 

 Asthma is a chronic respiratory disease affecting 300 million people worldwide. 
Asthma manifests through several symptoms including wheezing, breathlessness, 
and chest tightness. Asthmatic airways are characterized by chronic infl ammation, 
eosinophil infi ltration, epithelial fi brosis, mucus hyperproduction, and goblet cell 
hyperplasia [ 20 ]. 

 It is considered as chronic allergic infl ammatory disease, mostly mediated by a 
Th2 response, but an initial Th1-type immune response seems to be the trigger for 
the subsequent Th2-type response [ 82 ]. Thus, Th2 hyperactivation leads to persis-
tent airway infl ammation and the occurring of asthma phenotype [ 38 ]. 

 Emerging evidences suggest that activation of autophagy is associated with 
reduced lung function in asthmatic patients. In particular electron microscopy anal-
ysis of fi broblast and epithelial cells from asthmatic patients showed increased 
autophagic hallmarks “such as double membrane autophagosomes” compared to 
healthy patients [ 75 ]. Unfortunately, at present, the role of autophagy in asthma is 
still unclear. 

 A recent study demonstrated that two Single Nucleotide Polymorphisms (SNPs), 
namely rs12201458 and rs510432 were associated with childhood asthma. In par-
ticular rs510432 localises at the promoter of ATG5 gene and could increase its 
expression in nasal epithelium of acute asthmatics compared to stable asthmatics 
and non-asthmatic patients [ 58 ]. Another intronic SNP variant (rs12212740) in 
ATG5 gene was also shown to be associated with pre-bronchodilator forced expira-
tory volume in 1 second (FEV1) in asthmatic patients [ 75 ]. 

 ATG5 is an essential player in the initiation of autophagy, but its role in asthma 
pathogenesis is controversial. On one hand ATG5 could help viral elimination 
through the activation of Xenophagy, and on the other hand it negatively regulates 
the antiviral properties of type I interferon (IFN) inhibiting innate anti-virus immune 
responses [ 36 ,  90 ]. Together with these fi ndings, lungs from conditional  Atg7  
knockout mice manifest hyper-responsiveness to cholinergic stimuli, which is a 
common sign of asthma and chronic infl ammatory diseases [ 31 ]. Asthma severity 
has been directly correlated with the level of autophagic response in the sputum 
granulocytes, peripheral blood cells and peripheral blood eosinophils of severe and 
non-severe asthmatic patients [ 5 ]. 

 Autophagy is also involved in the maintenance of intracellular ROS homeostasis, 
and it has been well established that oxidative stress is associated with asthma so 
that exhaled levels of hydrogen peroxide (H 2 O 2 ) and nitric oxide (NO) are currently 
used as predictors of asthma severity [ 68 ]. 
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 Chronic asthma is characterized by excessive ECM deposition and proliferation 
of myofi broblasts, leading to fi brosis in the airway wall [ 79 ]. The accumulation of 
fi brotic tissue is mostly due to the production of collagen A1 and fi bronectin by the 
primary human airway smooth muscle through a mechanism autophagy-dependent 
that involves the TGFβ1. This response is reverted by the silencing of the major key 
autophagy-inducing gene Atg5 and Atg7 [ 104 ]. 

 As already mentioned, asthma is a pathology mostly driven by Th2-type cyto-
kines. Among them, IL-13 is extensively produced in activated CD4 +  Th2 lympho-
cytes and is overexpressed in the airway epithelium of asthmatic patients [ 47 ]. Here, 
IL-13 is thought to be responsible for epithelial hypertrophy, mucus hypersecretion, 
adventitial fi brosis and goblet cell hyperplasia [ 111 ]. It directly induces hypersecre-
tion of mucin 5AC, oligomeric mucus/gel forming (MUC5AC) in airway epithelial 
cell and oxidant stress through a mechanism that is autophagy-dependent, as dem-
onstrated  in vitro  by depletion of ATG5 or ATG14 in primary human tracheal- 
bronchial epithelial cells [ 15 ]. 

 Autophagy might be involved in the pathophysiology of Alternaria (ALT-E)-
associated asthma. ALT-E is an outdoor allergen able to activate autophagy, which 
in turn stimulates epithelial cells to release IL-18 [ 67 ]. This latter when produced is 
able to stimulate Th2 differentiation from naïve CD4 +  T-cells and IFN–γ production 
by Th1 cells. IL-18 level in serum of asthmatic patients might refl ect the degree of 
disease exacerbation [ 94 ].  

6     Cystic Fibrosis (CF) 

 Cystic Fibrosis (CF) is one of the most common lethal genetic diseases in Caucasian 
population. It is an autosomal recessive disease caused by mutation in the Cystic 
Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Approximately 1 
out of 20 Caucasians are carriers for mutation in this gene. Up to date over 2000 
types of different mutations have been discovered and classifi ed according to the 
degree of functional CFTR protein (  http://www.genet.sickkids.on.ca/StatisticsPage.
html    ; [ 27 ]). Among these, the most common one is the F508del-CFTR. Approximately 
90 % of CF patients have at least one F508del-CFTR allele, and about 70 % are 
homozygous for it. 

 The CFTR channel is located at the apical surface of epithelial cells and it is 
deputized to move out Cl  −   from the cell. Na +  passes through the membranes pas-
sively, increasing the movement of water by osmosis. Loss of functional CFTR 
expression is thought to alter this homeostatic balance through the epithelial layer, 
leading to net volume depletion of mucus, increased viscosity, and ineffective bacte-
rial clearance [ 43 ,  78 ]. Recurrent pulmonary infections in turn induce an increased 
infl ammatory response and signalling, thus starting a vicious cycle of mucus reten-
tion, infection, and infl ammation. Since the CFTR is localized in many organs, CF 
symptoms could go from malabsorption at pancreatic level and gastrointestinal 
obstruction to male infertility and liver disease. Nevertheless, the main cause of 
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death remains persistent and untreatable pulmonary  Pseudomonas aeruginosa  
infection. 

 Several recent studies have demonstrated an impairment of autophagy in CF. In 
fact, in epithelial cells, mutated/unfunctional CFTR causes increased ROS 
 production with consequent increase in tissue transglutaminase type 2 (TG2) levels. 
TG2, in turn, leads to crosslinking of several targets including Beclin 1 [ 54 ,  57 ]. 
Beclin 1 interactome displaces from the Endoplasmic Reticulum (ER) leading to the 
sequestration of class III-phosphoinositide 3-kinase (PI3K) complex, accumulation 
of p62 with consequent inhibition of autophagosomes formation. The resulting 
accumulation of aggresomes leads to proteasome overload and may promote the 
accumulation of mutated CFTR in intracellular aggregates [ 54 ]. Restoration of 
Beclin 1 activity, depletion of p62 by genetic manipulation or treatment with 
autophagy- stimulatory proteostasis regulators, such as cystamine, functionally res-
cue the CFTR mutated protein at the apical surface of epithelial cells both  in vitro  
and  in vivo  [ 54 ]. 

 Heme oxygenases are enzymes involved in the catabolism of the heme ring to 
generate carbon monoxide, biliverdin-IXα, and ferrous iron. The inducible isoform 
Heme oxygenase-1 (HO-1) is activated in response to stress such as oxidative stress, 
hypoxia, heavy metals exposure and cytokines. HO-1, together with its enzymatic 
products, is able to inhibit apoptosis and related cell death pathways, conferring tis-
sue protection in case of lung or vascular injury [ 66 ]. HO-1 could represent the link 
between CF and impaired autophagy since its expression is increased in human 
bronchial CF cells. This increase has been associated either to the reduction of 
apoptosis/injury during  P. aeruginosa  challenge either to the expression of infl am-
matory mediators [ 109 ]. Other evidences suggesting the cytoprotective role of 
HO-1 in CF showed that Lipopolysaccharide (LPS)-challenged CF macrophages 
fail to compartmentalize HO-1 to the cell surface and this mechanism seems to be 
dependent on the reduction in Caveolin-1 (CAV-1) expression [ 107 ]. In fact, when 
HO-1 localises at the plasma membrane, is able to form a complex with CAV-1, 
which in turn binds and detaches MyD88 from its complex with TLR4 thus termi-
nating the cell death signal [ 99 ]. 

 Autophagic clearance of bacteria (so-called Xenophagy) could also be impaired 
in case of disease, inducing increased bacterial infection that is one of the most 
frequent injuries in CF patients [ 90 ]. In fact it has been demonstrated that 
 Burkholderia cenocepacia  has the capacity to survive in F508del-CFTR macro-
phages since immediately after the engulfment, the bacteria resides on LC3-positive 
vacuoles that appear as arrested autophagosomes [ 98 ]. This capacity is directly cor-
related to the levels of p62, so that its depletion leads not only to a decreased bacte-
rial survival in macrophages but also to the release of Beclin 1 from aggresomes 
allowing its recruitment to the  B. cenocepacia  vacuole and bacterial clearance via 
autophagy [ 2 ].  B. cenocepacia  represents a serious threat for CF patients since the 
infection results in persistent lung infl ammation and the bacteria are resistant to 
most of all available antibiotics [ 1 ]. 

 Similar fi ndings showed that pharmacological or molecular inhibition of autoph-
agy reduces the clearance of intracellular  Pseudomonas aeruginosa  in vitro [ 37 ]. 
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Treatment of CF mice with the mTOR inhibitor Rapamycin decreases bacterial 
 burden in the lungs and drastically reduces signs of lung infl ammation [ 1 ]. 

 In a normal situation, autophagy can help not only removing polyubiquitinated 
protein but also controlling bacteria clearance; for these reasons novel strategies 
aimed at restoring autophagy are emerging as promising therapeutic approaches for 
CF patients [ 56 ].  

7     Alpha-1-Antitrypsin Defi ciency (AATD) 

 AATD is a hereditary disorder characterized by a low serum level of alpha-1- antitrypsin 
(AAT), a 52 kDa serine protease inhibitor, member of the serpin family [ 29 ]. AAT is 
essentially synthetized in the liver and secreted into the bloodstream, where it controls 
tissue degradation by the enzyme neutrophil elastase. The defi ciency in AAT is associ-
ated with liver and lung disease due to the loss of anti-infl ammatory and antiproteo-
lytic functions. The majority of patients with AAT defi ciency are homozygotes for a 
missense mutation (“PiZ mutation”: lysine replaces glutamic acid at position 342) that 
alters protein folding. Mutant AAT molecules polymerize and aggregate in the ER of 
hepatocytes, forming large intrahepatocytic globules, the characteristic features of this 
disease. The proteasome is responsible for degrading the soluble form of ATT by 
means of ER-associated degradation while autophagy is involved in disposal of insol-
uble ATT polymers and aggregates [ 74 ]. In fact, a signifi cant accumulation of autoph-
agic vacuoles was found  in vitro  and  in vivo  in liver cells from AATD patients as well 
as in PiZ mouse model [ 96 ,  97 ]. Whereas in absence of autophagy the degradation of 
AAT was retarded [ 39 ]. Moreover, it has been demonstrated that the stimulation of 
autophagy by carbamazepine or rapamycin treatment or by liver-directed gene transfer 
of transcription factor EB (TFEB), a gene regulating lysosomal function and autoph-
agy [ 89 ], reduce the hepatic amount of AAT as well as the hepatic fi brosis in mice 
expressing mutant AAT [ 28 ,  41 ,  71 ]. Although these results should be corroborated, 
altogether indicate that autophagy exerts a protective role in AATD and open a real 
possibility to treat AATD with pro- autophagic molecules.  

8     Pulmonary Hypertension (PH) 

 Pulmonary hypertension (PH) was fi rst identifi ed in 1891 by Ernst von Romberg. 
PH is a severe and progressive disease that consists in increased blood pressure of 
lung vasculature and, often, can be a complication of chronic lung disease [ 88 ]. 

 Since 2008 the pathology has been classifi ed, by the World Health Organization 
(WHO), in fi ve groups on the basis of mechanisms underlying the pathogenesis of 
the multiple types of PH. 

 The role of autophagy in pulmonary hypertension has mainly been described in 
correlation with pulmonary arterial hypertension (PAH), WHO Group I. 
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 Little is known about the aetiology of PH, one of the most frequent genetic muta-
tions causing idiopathic inherited form of PH is found in the gene encoding bone 
morphogenetic protein (BMP) receptor type-II (BMPR2). 

 In PAH, the pulmonary artery smooth muscle cells (PASMCs) proliferate 
 excessively and are resistant to apoptosis. Chloroquine, a known inhibitor of 
autophagy fl ux, has been described as a drug preventing experimental PAH 
 progression. The induction of PAH, by monocrotaline, in rat is associated with 
increased autophagy and decreased BMPR2 protein expression. The inhibition of 
autophagy by chloroquine ameliorates the level of BMPR2, inhibits the  proliferation 
and stimulates apoptosis of rat PASMCs [ 52 ]. A recent publication [ 50 ] confi rms 
that the inhibition of autophagy, by overexpressing mTOR, is a promising 
 therapeutic strategy against PAH. 

 However, the role of autophagy in PH is still unclear and controversial, in fact, 
its protective role has been described in the initial phase of the pathogenesis of 
PH. Histochemical analysis of samples obtained from human PH lungs and mouse 
exposed to chronic hypoxia, showed an increase in the lipidated form of LC3 and in 
Egr-1, which regulates LC3 expression. Moreover,  LC3   −/−   or  Egr-1   −/−  , but not 
 Beclin 1   +/−   mice are more susceptible to PH and  in vitro  LC3 knockdown cells 
showed an increase of hypoxic cell proliferation, suggesting a role for LC3 in the 
adaptation during vascular remodelling under hypoxia [ 49 ].  

9     Autophagy in the Etiology of Lung Cancer 

 In most organs, including the lung, autophagy robustly counteracts malignant trans-
formation,  i.e. , the conversion of a healthy cell into a (pre-)neoplastic cell, and sev-
eral mechanisms related to the ability of autophagy to preserve cellular or organismal 
homeostasis account for such a pronounced oncosuppressive activity [ 19 ]. Indeed, 
besides being required for oncogene-induced senescence and anticancer immuno-
surveillance (see above) [ 112 ], autophagy promotes the maintenance of genomic 
integrity by multiple mechanisms [ 25 ]. First, it mediates the degradation of damaged 
mitochondria, which are prone to overproduce genotoxic ROS and other redox active 
entities of endogenous and exogenous origin [ 22 ]. Second, profi cient autophagic 
responses appear to be required for optimal DNA damage responses [ 59 ]. Third, 
autophagy is involved in the disposal of potentially oncogenic retrotransposons and 
micronuclei [ 80 ]. Moreover, autophagy generally mediates anti- infl ammatory 
effects, and chronic infl ammation is known to accelerate oncogenesis (at least in 
some tissues, including the lung) [ 14 ]. Finally, it has been proposed that autophagy 
is required for the preservation of normal tissue architecture, in particular at the level 
of the stem-cell compartment [ 23 ]. Although little is known on the deregulation of 
stem cells in pulmonary carcinogenesis, it cannot be excluded that autophagic 
defects may promote malignant transformation in the lung also via this mechanism 
[ 69 ]. Conversely, the ability of autophagy to preserve genomic and redox homeosta-
sis seems very relevant in the context of lung tumorigenesis, which in a signifi cant 
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proportion of cases is associated with tobacco smoking or exposure to environmen-
tal nanoparticles like asbestos crystals [ 65 ]. Indeed, the oncogenic effects of both 
smoking and asbestos have been linked to their ability to cause ROS overgeneration 
along with genetic/genomic defects and chronic infl ammatory responses [ 12 ]. All 
these effects are limited, at least to some extent, by profi cient autophagic responses. 

 Irrespective of the precise mechanisms whereby autophagy counteracts malig-
nant transformation in the lung, various genetic interventions aimed at specifi cally 
disabling autophagy in the lungs have been shown to promote malignant transfor-
mation driven by several oncogenes, including mutated B-Raf proto-oncogene, ser-
ine/threonine kinase ( BRAF ) [ 91 ], epidermal growth factor receptor ( EGFR ) [ 100 ], 
Kirsten rat sarcoma viral oncogene homolog ( KRAS ) [ 24 ,  77 ]. Intriguingly enough, 
in one of these models, accelerated oncogenesis caused by the lung-specifi c inacti-
vation of ATG5 was linked to increased tumor-infi ltration by immunosuppressive 
CD4 + CD25 + FOXP3 +  regulatory T cells [ 77 ]. Moreover, the concomitant bi-allelic 
inactivation of serine/threonine kinase 11 (STK11, best known as LKB1) and phos-
phatase and tensin homolog (PTEN), two tumor suppressor genes that inhibit 
autophagy [ 34 ,  87 ], has been shown to cause the formation of pulmonary squamous 
cell carcinomas that express high levels of the immunosuppressive molecule CD274 
(best known as PD-L1) [ 102 ]. These latter observations strongly corroborate the 
notion that autophagy mediates not only cell-intrinsic, but also cell-extrinsic 
oncosuppression. 

9.1     Autophagy in the Progression of Lung Cancer 

 The capacity of autophagy to preserve cellular homeostasis is benefi cial to healthy 
cells, but also benefi cial to transformed cells. This implies that autophagy often (but 
not always) promotes tumor progression, i.e., the growth and evolution of a trans-
formed cells into an ever more malignant cancer [ 62 ]. Indeed, malignant cells are 
often exposed to relatively adverse microenvironmental conditions, including a 
shortage of nutrients and oxygen (especially in poorly vascularized tumor areas), 
and autophagy is instrumental for these cells (as it is for their non-transformed 
counterparts) to cope with stress and proliferate. Along similar lines, the ability of 
autophagy to preserve stemness is benefi cial for the host when it preserves normal 
tissue architecture, but detrimental when it sustains the malignant stem-cell com-
partment. Finally, autophagy supports the survival of malignant cells in key step of 
tumor progression, the so-called “epithelial-to-mesenchymal transition” (EMT). In 
this context, epithelial cancer cells “initially growing  in situ ” physically detach 
from ECM and become able to colonize surrounding tissues as well as distant 
organs. The EMT is required for all malignancies to become locally and distantly 
invasive, and critically relies on profi cient autophagic responses [ 4 ]. In the presence 
of autophagic defects or pharmacological inhibitors of autophagy, indeed, malig-
nant cells undergoing the EMT and detaching from the ECM, succumb to a form of 
regulated cell death often referred to as “anoikis” [ 73 ]. 
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 Corroborating these observations, the genetic and/or pharmacological inhibition 
of the autophagic machinery in established tumors has been shown to accelerate 
disease progression in various models of pulmonary oncogenesis, including (but not 
limited to)  BRAF - and  KRAS -driven tumorigenesis [ 24 ,  77 ,  91 ].  

9.2     Autophagy in the Treatment of Lung Cancer 

 Autophagy provides malignant cells with an increased resistance to various pertur-
bations of homeostasis, including the lack of nutrient and oxygen that cancer cells 
normally experience in poorly vascularized tumor areas, as well as the presence of 
xenobiotics like chemotherapeutic agents and physical stress conditions like irradia-
tion. An abundant amount of literature demonstrates indeed that chemical inhibitors 
of autophagy as well as genetic interventions that compromise autophagic responses 
accelerate (rather than inhibit) the demise of malignant cells exposed to a wide 
panel of chemotherapeutics or to irradiation, both  in vitro  and  in vivo . These obser-
vations provided a strong rationale to the development of combinatorial therapeutic 
strategies involving chemo- or radiotherapy given in combination with an inhibitor 
of autophagy [ 19 ]. 

 Clinical grade highly specifi c chemical inhibitors of autophagy, however, have 
not yet been developed, and currently available molecules that can be used in the 
clinic, like chloroquine (a widely employed antimalarial agent) often operate as 
lysosomal inhibitors, i.e., they target several processes other than autophagy [ 83 ]. 
Moreover, concerns have been raised that inhibiting autophagy at the whole-body 
level may  de facto  favor malignant transformation in healthy tissues, refl ecting the 
prominent oncosuppressive functions of autophagy in physiological conditions 
[ 51 ]. Finally, recent data highlight the differential role of autophagy in cancer ther-
apy in immunocompromised  versus  immunocompetent hosts [ 44 ]. In this setting, 
the response to radiotherapy of human non-small cell lung carcinoma (NSCLC) or 
murine colorectal carcinoma (CRC) cells xenografted in nude mice was signifi -
cantly improved when cells were rendered autophagy-defi cient by the stable deple-
tion of ATG5 or Beclin 1 [ 44 ]. However, when murine CRC cells were implanted in 
immunocompetent syngeneic mice, the stable knockdown of ATG5 compromised 
the therapeutic activity of irradiation, a defect that could be restored (at least in part) 
by the intratumoral administration of a chemical inhibitor of extracellular ATPases 
[ 44 ]. These fi ndings demonstrate that inhibiting autophagy in immunocompetent 
hosts may prevent the elicitation of a therapeutically relevant immune response 
against dying cancer cells. 

 In summary, although autophagy generally (but not always) promote the pro-
gression of pulmonary malignancies and increases the resistance of lung cancer 
cells to chemo- and radiotherapeutic regimens, additional experiments are required 
to understand whether combinatorial treatments involving autophagy inhibitors 
constitute a clinically viable approach against pulmonary neoplasms. Similarly, fur-
ther work is needed to clarify whether biomarkers of autophagy such as the expres-
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sion levels of Beclin 1 or the lipidation of LC3 have a positive or negative prognostic/
predictive value in patients with lung cancer, as preliminary results are rather con-
troversial [ 40 ,  110 ].   

10     Conclusions 

 Abundant evidences indicate that autophagy actively participates in a wide range of 
cellular responses to both physiologic- and pathologic-related events in the diverse 
tissues and cell types that constitute the lung system. Nevertheless, much is yet to 
be learnt about its biological relevance, functional targets, and role in development 
and disease. As described in this chapter, lungs are the fi rst line of defence against 
several insults and associated diseases are growing both in number and chronicisa-
tion. A clear deregulation of the autophagic machinery has been highlighted in most 
of the lung diseases, suggesting that this process mainly exerts a defensive role. 
However, in some pathological contexts, it has been reported that the activation of 
the autophagic process contributes to damage. As a consequence, a detailed knowl-
edge of the molecular mechanisms at the basis of autophagy in lung pathologies is 
required for the development of novel diagnostic tools and promising therapeutic 
strategies.     
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