
METHODS
published: 30 June 2020

doi: 10.3389/fbioe.2020.00669

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 June 2020 | Volume 8 | Article 669

Edited by:

Bing Wang,

Anhui University of Technology, China

Reviewed by:

Haibao Wang,

First Affiliated Hospital of Anhui

Medical University, China

Huaqing Zhu,

Anhui Medical University, China

*Correspondence:

Kai Bian

kbian92@163.com

Specialty section:

This article was submitted to

Computational Genomics,

a section of the journal

Frontiers in Bioengineering and

Biotechnology

Received: 17 April 2020

Accepted: 28 May 2020

Published: 30 June 2020

Citation:

Zhou M, Bian K, Hu F and Lai W

(2020) A New Method Based on

CEEMD Combined With Iterative

Feature Reduction for Aided Diagnosis

of Epileptic EEG.

Front. Bioeng. Biotechnol. 8:669.

doi: 10.3389/fbioe.2020.00669

A New Method Based on CEEMD
Combined With Iterative Feature
Reduction for Aided Diagnosis of
Epileptic EEG
Mengran Zhou 1,2, Kai Bian 1*, Feng Hu 1 and Wenhao Lai 1

1 School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, China, 2 State Key

Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and

Technology, Huainan, China

In the clinical diagnosis of epileptic diseases, the intelligent diagnosis of epileptic

electroencephalogram (EEG) signals has become a research focus in the field of brain

diseases. In order to solve the problem of time-consuming and easily influenced by

human subjective factors, artificial intelligence pattern recognition algorithm has been

applied to EEG signals recognition. However, at present, the common empirical mode

decomposition (EMD) signal decomposition algorithm does not consider the problem of

mode aliasing. The EEG features obtained by feature extraction may be mixed with some

unimportant features that affect the classification accuracy. In this paper, we proposed

a new method based on complementary ensemble empirical mode decomposition

(CEEMD) combined with iterative feature reduction for aided diagnosis of epileptic EEG.

First of all, the evaluation indexes of decomposing and reconstructing signals by several

methods were compared. The CEEMD was selected as the decomposition method of

the signals. Then, the support vector machine recursive elimination (SVM-RFE) was used

to reduce 9 features extracted from EEG data. The support vector classification of the

gray wolf optimizer (GWO-SVC) recognition model was established for different feature

subsets. By comparing the classification accuracy of training set and test set of different

feature subsets, and considering the complexity of the model reflected by the number of

features selected by SVM-RFE, the analysis showed that the 6 feature subsets with fewer

features and higher classification accuracy could reflect the key information of epileptic

EEG. The accuracy of the training set classification was 99.38% and the test set was

as high as 100%. The recognition time was only 1.6551 s. Finally, in order to verify the

reliability of the algorithm proposed in this paper, the proposed algorithm compared with

the classification model established by the raw EEG signals and the optimization model

established by other intelligent optimization algorithms. It is found that the algorithm

used in this paper has higher classification accuracy and faster recognition time than

other processing methods. The experimental results show that CEEMD combined with

SVM-RFE is feasible for rapid and accurate recognition of EEG signals, which provides

a theoretical basis for the aided diagnosis of epilepsy.

Keywords: intelligent diagnosis, EEG signals, complementary ensemble empirical mode decomposition, feature

reduction, gray wolf optimizer

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2020.00669
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2020.00669&domain=pdf&date_stamp=2020-06-30
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kbian92@163.com
https://doi.org/10.3389/fbioe.2020.00669
https://www.frontiersin.org/articles/10.3389/fbioe.2020.00669/full
http://loop.frontiersin.org/people/990754/overview
http://loop.frontiersin.org/people/908431/overview
http://loop.frontiersin.org/people/989501/overview
http://loop.frontiersin.org/people/956096/overview


Zhou et al. Aided Diagnosis of Epileptic EEG

INTRODUCTION

Epilepsy is a chronic disease of nervous system disorder caused
by abnormal discharge of brain neurons (Sheng et al., 2018).
Worldwide, the number of epileptics has exceeded 50 million
(Yang et al., 2011). The symptoms of epilepsy patients are usually
sudden loss of consciousness, muscle convulsions, etc., which
make epilepsy patients have a high mortality rate (Kobow et al.,
2012), so their daily life has been greatly troubled. If the epilepsy
of seizure type can be accurately identified and classified so
that doctors can take reasonable treatment plans, it can help
epileptics avoid the risk of disease in advance (Chen E. et al.,
2018). Therefore, it is of great significance to strengthen the early
diagnosis and late treatment of epilepsy.

The analysis of electroencephalogram (EEG) signals has the
characteristics of high efficiency, small damage, and low cost.
It has become the main clinical diagnosis method of epilepsy.
This method needs experienced doctors to observe the high
amplitude synchronous rhythms such as sharp wave and spike-
wave in EEG during the epileptic seizure for a long time with
the naked eye (Lévesque et al., 2017), which will not only
consume a lot of energy but also may get wrong diagnosis results
due to various uncertain factors. Therefore, it is necessary to
develop a method of automatic recognition of epileptic EEG.
In recent years, machine learning and deep learning algorithms
have been widely applied in the biomedical and health field
(Wang et al., 2019, 2020; Deng et al., 2020; Hu et al., 2020).
Artificial intelligence combined with EEG has achieved good
results in the diagnosis and prediction of epilepsy and other
diseases. For example, Bajaj and Pachori (2013) used empirical
mode decomposition (EMD) to decompose EEG signals and
improved the classification accuracy of epilepsy detection by
analyzing the first three natural mode function components.
Puspita et al. (2017) extracted the mean, standard deviation
and median statistical features of EEG data, and then used
the back-propagation neural network (BNN) to establish the
classification and recognition model of EEG data of epilepsy
patients and achieved the best classification results. Cao et al.
(2017) combined the short-time Fourier transform (STFT) with a
convolutional neural network (CNN) and used the deep learning
algorithm to avoid the process of manual feature selection in
EEG recognition. The analysis steps of EEG mainly include
preprocessing of raw signals, feature extraction, recognition, and
classification. EMD is often used as the decomposition method
of EEG signals. However, only one or some IMF components
selected by subjective experience are taken as the research object,
which cannot completely contain the useful information of the
original signals, so the accuracy of EEG obtained is low, and it
cannot effectively identify different types of EEG. Several typical
EEG feature indexes are extracted directly for classification and
recognition. This method cannot judge whether the extracted
EEG features are all effective EEG feature indexes, which not
only increases the recognition time but also affects the accuracy
of classification.

Complementary ensemble empirical mode decomposition
(CEEMD) is a signal decomposition method developed
on the basis of empirical mode decomposition (EMD)

(Muñoz-Gutiérrez et al., 2018), it has obvious advantages in
dealing with non-linear and non-stationary signals. Satija
et al. (2017) used a modified CEEMD algorithm to achieve
automatic detection and classification of ECG noise. Chen
and Hsiao (2018) used the CEEMD method to extract hidden
signals from the respiratory inductance plethysmography (RIP)
signals based on the frequency bands of different respiratory
muscles. Amezquita-Sanchez et al. (2016) combined CEEMD
with magnetoencephalography (MEG) to distinguish patients
with mild cognitive impairment (MCI). Support vector
machine recursive feature elimination (SVM-RFE) is a feature
selection method, it can eliminate the feature information of
low importance, and effectively remove the interference of
redundant information (Tapia et al., 2012), which is conducive
to the establishment of the classification model. SVM-RFE has
been widely used in biomedical research. Ding et al. (2015)
proposed a method of SVM-RFE combined with voxel-based
morphometry (VBM) to analyze MRI data and realized the
automatic classification of smokers and non-smokers. Anaissi
et al. (2016) used the ensemble SVM-RFE algorithm to select
the characteristic genes in the genomic data. Bisdas et al. (2018)
adopted the SVM-RFE method to select the most discriminative
diagnostic biomarkers. Gray wolf optimizer (GWO) is a new
swarm intelligent optimization algorithm (Yamany et al., 2015).
It can improve the performance of the SVM training model and
has the advantages of simplicity and efficiency. Ramakrishnan
and Sankaragomathi (2017) used the modified region growing
(MRG) and GWO to achieve the accurate segmentation of CT
brain tumor images. Shankar et al. (2018) proposed an improved
GWO to optimize the performance of multi-kernel SVM for
thyroid disease classification.

In this paper, CEEMD was used to decompose the raw
epileptic EEG signals into natural mode functions (IMF)
of different frequencies, then these component signals were
reconstructed and their linear and non-linear features were
extracted. SVM-RFE was used to eliminate non-key features
and reduce the influence of redundant features on recognition
accuracy. Finally, the GWO-SVC classification model based on
GWO optimized support vector classification (SVC) algorithm
was applied to classify the EEG signals, which provided a
theoretical basis for the aided diagnosis of epilepsy.

MATERIALS AND METHODS

Selection of Experimental Data
The experimental data in this paper were from the EEG database
of the epilepsy research center of the University of Bonn,
Germany (Andrzejak et al., 2001). The sampling frequency of
EEG signal acquisition system was 173.61Hz, and the range
of filtering bandwidth was 0.53–40Hz. EEG data have been
preprocessed to remove the artifacts and the data were widely
used in public, so the experimental results have high reliability
and contrast. The data set consists of five data subsets (denoted
A–E), each of which contains 100 single-channel signals with
a time of 23.6 s, and each single-channel signal contains 4,097
sampling points, and the bit of A/D conversion is 12 bits. The
band-pass filter with a bandwidth of 0.53–40Hz was used for
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filtering. Subsets A and B were EEG signals from the scalp surface
of 5 healthy volunteers when they opened and closed their eyes,
respectively. Subset C was the EEG signals of the hippocampal
formations in five epileptic patients. Subset D was the EEG signal
of the epileptogenic area with interictal epilepsy. Subset E was the
EEG signal of the epileptogenic area during the ictal epilepsy.

The hardware condition of the computer used in the
experiment was the Intel Core i7 processor, 4GB memory,
win7 system. Under the environment of MATLAB r2016b
(MathWorks, USA), the algorithm was used to simulate and test
the data. The support vector machine chose the libsvm-mat-3.1
toolkit (Chang and Lin, 2011) to run.

Complementary Ensemble Empirical Mode
Decomposition
CEEMD is an improved signal decomposition method for EEMD
proposed by Yeh et al. (2010). This method not only solves
the problems of residual white noise and complex processing in
EEMD (Wu and Huang, 2009) decomposition but also effectively
suppresses the modal aliasing in the EMD decomposition
method (Wu and Huang, 2010). The decomposition process
of the CEEMD algorithm is based on EMD, adding a pair of
auxiliary white noise with the same amplitude and opposite
sign to the raw signals. These raw signals are decomposed
into several intrinsic mode functions (IMFs) and residuals
with clearer physical meaning. As the number of added noise
increases, the residual amount of noise in reconstruction data will
decrease, and the final residual amount can be almost ignored
(Chen D. et al., 2018).

The decomposition steps of CEEMD are as follows:

Step 1: A pair of random Gaussian white noises with the same
amplitude and opposite signs are added to the signal to form
two new decomposition signals.

{

S+i(t) = S(t)+ N+
i (t)

S−i(t) = S(t)+ N−
i (t)

(1)

Where S(t) is the raw signal,Ni(t) is the white noise added for the
i time, S+i(t) is the signal obtained by adding the positive white
noise for the i time, and S−i(t) is the signal obtained by adding the
negative white noise for the i time. Generally, the value is 0.01–0.5
times of the standard deviation of the original signal.

Step 2: EMD algorithm is used to decompose S+i(t) and S−i(t)
to get their IMF components and residual terms.















S+i(t) =
m
∑

j = 1
I+ij(t)+ R+i(t)

S−i(t) =
m
∑

j = 1
I−ij(t)+ R−i(t)

(2)

Where I+ij(t) denotes the j IMF component from S+i(t)
decomposition, I−ij(t) denotes the j IMF component from S−i(t)
decomposition, R+i(t) and R−i(t) denote the corresponding
residual terms, respectively.

Step 3: Step 1 and step 2 are repeated form times, and random
white noise is added each time until the residual terms can no
longer be decomposed.
Step 4: Calculate the mean value of IMF components obtained
by decomposition, and take the mean value as the result of
IMF component.

Cj(t) =
1

2m

m
∑

i = 1

(I+ij(t)+ I−ij(t)) (3)

where Cj(t) denotes the first IMF component obtained
by CEEMD.

Support Vector Machine Recursive
Feature Elimination
Support vector machine recursive feature elimination (SVM-
RFE) is a feature selection method based on feature sorting
technology proposed by Guyon et al. (2002). The function of RFE
is to rank features by greedy strategy. Starting from the complete
set, the least relevant features are eliminated one by one to
complete the backward feature reduction, and finally, the optimal
feature subset is obtained. SVM-RFE is a combination of SVM
and RFE. In the process of SVM training, the weight of features
can reflect their contribution to classification decision-making.
Therefore, the weight of a classifier can be used as the basis
of feature ranking, and then the relatively unimportant features
are deleted one by one according to the weight of classifier
until a certain number of features with higher importance
are left. The combination of the SVM classification algorithm
and feature selection process can improve the effectiveness of
feature selection.

The steps of iterative reduction feature of SVM-RFE method
are as follows:

Step 1: Input training sample data D = {d1, d2, ..., d3}
T and

category label L = {l1, l2, ..., ln}
T

Step 2: Initialize feature set α = {λ1, λ2, ..., λn} and rearrange
feature set β = {}

Step 3: The SVM classifier is used to train the input data,
and the parameter information of the support vector is δ =

SVMtrain(D, L)
Step 4: Calculate the cost function of features

f (x) =
1

2
DTU(x)−

1

2
DTU(−x) (4)

WhereU(x) is amatrix with element aiajK(xi, xj),U(−x) is the
matrix after eliminating x features, and K denotes the kernel
function of correlation between xi and xj
Step 5: The weight coefficient w is used as the ranking criterion
of feature importance to reorder new features. Get a new
feature order set β = {β1,β2, ...,βn}, and remove the feature
with the smallest weight coefficient from the current order set,
repeat Step 3–Step 5, until enough features are deleted
Step 6: A set of nested feature subsets Z1 ⊂ Z2 · · ·Zn is
defined, Zi(i = 1, 2, · · · , n) represents a subset of the top
most important features selected from the feature set, and uses
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the recognition rate of the classifier as the evaluation index to
select the best subset.

Gray Wolf Optimizer Combine With
Support Vector Classification
Gray wolf optimizer (GWO) is an advanced heuristic group
intelligent optimization algorithm proposed by Mirjalili et al.
(2014). This algorithm is mainly an optimized search method
which simulates the social hierarchy of gray wolf and the way
of preying on its prey. It has strong convergence performance,
few parameters and easy to realize, and so on. SVM is originally
a two classification model and can be used to solve multi-
classification problems. It is a linear classifier with the largest
interval defined in the feature space, which makes it different
from the perceptron (Utkin et al., 2016). The learning strategy
of SVM is to maximize the interval. SVM is a non-linear classifier
in essence. SVM algorithm can be used for pattern classification
or nonlinear regression, and SVC is the algorithm used by
SVM to solve classification problems (Chen et al., 2010). The
classification performance of the SVC model is affected by the
penalty coefficient c and kernel function parameter g. Through
the GWO algorithm, the SVC parameters are optimized to find
the best classification parameters c and g, so as to obtain the
GWO-SVC model with good performance.

The specific parameter optimization steps are as follows:

Step 1: α, β , and γ are three different classes of primitive
wolves with the same scale generated from feasible
regionW = {w1,w2, · · · ,wn}

Step 2: Initialize the position of the original wolves, obtain the
fitness µ of gray wolf individuals in the population, and define
the optimal and suboptimal fitness as c and g, respectively
Step 3: Select the fitness of the top three, and set the
corresponding gray wolf to α, β , and γ in order
Step 4:Constantly move the position of gray wolf when it preys
on prey and updates the subordinate wolves. The updating
formula is as follows:







Qα =
∣

∣W(t)−H1Wα

∣

∣

Qβ =
∣

∣W(t)−H2Wβ

∣

∣

Qγ =
∣

∣W(t)−H3Wγ

∣

∣

(5)







W1 = Wα − K1Qα

W2 = Wβ − K2Qβ

W3 = Wγ − K3Qγ

(6)

W(t + 1) = 1
3 (W1 +W2 +W3) (7)

WhereWα ,Wβ , andWγ denote the location of the gray wolf,
and H1, H2, H3, K1, K2, and K3 are scale factors
Step 5: Update the values of α, H, and K. If the constraints are
not met, go to step 2
Step 6: Use output parameters c and g to build SVC model for
classification and recognition.

Evaluation Index
The effect of a signal processing method is determined by the
comparison of some digital evaluation indexes, such as pearson
correlation coefficient (Pr), signal to noise ratio (SNR), and mean

absolute error (MAE) (Ou-Yang et al., 2012). Generally, the larger
the Pr value is, the greater the linear correlation between signals
is. The larger the SNR value is, the more useful the restored signal
is and the less the distortion is. The smaller theMAE value is, the
better the effect of signal filtering is.

The expression of the Pr:

Pr =

m
∑

i = 1
(Xi − X)(Yi − Y)

√

m
∑

i = 1
(Xi − X)

2

√

m
∑

i = 1
(Yi − Y)

2

(8)

The expression of the SNR:

SNR = 10log10

m
∑

i = 1
X2
i

√

m
∑

i = 1
(Xi − Yi)

2

(9)

The expression of theMAE:

MAE =
1

m

m
∑

i = 1

|Xi − Yi| (10)

Where Xi is the original signal, Yi is the processed signal, X is
the average value of the signal, and Y is the standard deviation of
the signal.

Feature Extraction
Because the information contained in EEG is usually recessive,
it is difficult to find all the rules through observation, so it is
necessary to extract the features of EEG data. Because of its
unique characteristics, EEG is different from other physiological
signals, and the characteristics of different EEG are also different.
The purpose of EEG feature extraction is to extract relatively
effective feature indexes from many EEG features. At present,
there are many EEG characteristics studied in the literature,
such as mean, variance, standard deviation, range, fluctuation
coefficient (Yuan et al., 2012), variation coefficient (Vinton
et al., 2004), sample entropy (Arunkumar et al., 2018), kurtosis
(Javidi et al., 2011) and skewness (Gandhi et al., 2012). In this
paper, we extracted the above nine features from EEG signals
for analysis.

RESULTS AND ANALYSIS

Analysis of EEG Signal of Primary Epilepsy
One single-channel signal is selected from subset Dwith interictal
epilepsy and subset E with ictal epilepsy for waveform analysis.
The raw epileptic EEG signal is shown in Figure 1, and the single-
channel signal contains 4,097 sampling points. Figure 1A shows
the EEG signal during the interictal epilepsy. The waveform of
the signal is relatively stable with little fluctuation. The amplitude
range is −252∼123 µV. Figure 1B is the EEG signal during
the ictal epilepsy, which fluctuates violently and has regularity.
The amplitude range is −890∼1,367 µV. The amplitude of EEG
in the ictal period is obviously larger than that in the interval
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FIGURE 1 | Raw EEG signal of epilepsy. (A) EEG signal of interictal epilepsy and (B) EEG signal of ictal epilepsy.

period, and the fluctuation gap is obvious, which indicates that
the signal is excited and fluctuates violently in the ictal period.
This phenomenon is consistent with the state of EEG activity with
ictal epilepsy.

CEEMD Based on Signal Evaluation Index
EMD and CEEMD are used to decompose epileptic EEG
signals, and the Intrinsic Mode Function (IMF) components
of each order are obtained. Based on the MATLAB platform,
the standard deviation of the added white noise is set to 0.2
times of the raw signal of the standard deviation. The number
of iterations is set to 100, and the number of IMF is set to
9 (not including the trend). The signal decomposition of EEG
between interictal and ictal period are shown in Figure 2. The
raw EEG signal is decomposed into nine IMF and one residual
term. The decomposed IMF components are arranged in the
order of frequency from high to low, and each component has
its own amplitude and frequency. With the increase of IMF
component orders, themore stable the signal changes, the smaller
the corresponding energy. The signal changes during the ictal
period are more intense than during the interictal period. The
amplitudes of the first four orders are larger than those of other
orders. It can be seen from Figures 2A,C that the amplitude
of IMF in each stage of ictal EEG signal processed by EMD
is larger than that of the interictal EMD, and the difference is
obvious. High-frequency signals with small amplitude appear
in some sampling points of the first three IMF components,
that is to say, there are different degrees of mode aliasing,
which is more obvious in the ictal period. However, it can be
seen from Figures 2B,D that there is no small-amplitude and
high-frequency signals in the first three stages of EEG signals
and seizure signals processed by CEEMD, which indicates that
CEEMD can solve the problem of mode aliasing caused by EMD
decomposition. There are great differences in amplitude and
frequency between interictal EEG and ictal EEG.

EMD, EEMD, and CEEMD are used to decompose the IMF
component of the ictal period signals and conduct correlation
analysis with the original signals, as shown in Figure 3. It can
be concluded from the correlation property that the Pr of IMF2
and IMF3 decomposed by EMD is >0.5, which shows a strong
correlation. The Pr of IMF2 reaches a maximum value of 0.6932,
followed by a decreasing trend of IMF. The results of EEMD
and CEEMD show that the Pr of IMF2, IMF3, and IMF4 are
more than 0.5, which shows a strong correlation. The Pr of
the two decomposition methods reach the maximum at IMF3,
and their values are 0.8316 and 0.8300, respectively. The Pr
of the latter IMF shows a decreasing trend. In addition to the
first two IMF components, the Pr of the remaining eight IMF
components decomposed by EMD are smaller than the Pr of the
corresponding components decomposed by EEMD and CEEMD.
The evaluation indexes of 10 IMF decomposed by different
decomposition methods are shown in Table 1. The difference
between the average Pr of the IMF decomposed by CEEMD
and EEMD is very small and larger than that of EMD. The
average Pr of EMD and EEMD is close, and both are smaller
than the CEEMD decomposition method. CEEMD’s average
MAE is also smaller than the other two signal decomposition
methods. In general, the CEEMD has relatively good signal
evaluation indexes. However, from the signal evaluation index,
it can be seen that the average Pr of different IMF decomposed
by three methods is between 0.1 and 0.3, which shows weak
correlation, indicating that a single IMF cannot represent all
the information of the raw EEG signals. We need to select
some useful IMF components for signal reconstruction in order
to avoid the influence of distorted signals on the subsequent
EEG recognition.

Generally, it is considered that Pr has no correlation in
the range of 0–0.09. The threshold value is set to 0.1, IMF
components below the threshold value are deleted, and the
components above the threshold value are reserved for signal
reconstruction. As can be seen from Figure 3, the IMF1–IMF4
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FIGURE 2 | The signal decomposition of EEG between interictal and ictal period. (A) EMD decomposition during the interictal period, (B) CEEMD decomposition

during the interictal period, (C) EMD decomposition during the ictal period, and (D) CEEMD decomposition during the ictal period.

components decomposed by EMD, the Pr of the IMF1–IMF6
components decomposed by EEMD and CEEMD are all higher
than 0.1. We select these IMF components to reconstruct
the EEG signals. The evaluation indexes reconstructed by
different decomposition methods are shown in Table 2. After
reconstruction, the evaluation indexes of EEG signals are better
than those of a single IMF component signal. The Pr of
reconstructed signals and raw signals are all >0.9, showing a
strong correlation, which shows that signal reconstruction is a
necessary job. In conclusion, CEEMD is better than the other
two methods in decomposing and reconstructing the signals,

and CEEMD is chosen as the preprocessing method of the raw
EEG signals.

The above simulation experiment is to analyze the correlation
of one channel of epileptic EEG during the ictal period, and the
next is to analyze the correlation of two kinds of EEG signals
during the interictal and ictal period. Each type of signal has
100 channels. Here, one channel is selected from the two types
of signals for further correlation analysis. As shown in Figure 4,
the maximum correlation component of EEG signals during
the interictal period is IMF4, the maximum correlation IMF
component of EEG signals during the ictal period is IMF2, and
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FIGURE 3 | Correlation between IMF and raw signals in different stages of

ictal period signals.

TABLE 1 | Evaluation indexes of different decomposition methods.

Method Average Pr Average SNR Average MAE

EMD 0.1964 0.4946 296.4282

EEMD 0.2701 0.4233 296.5334

CEEMD 0.2745 0.7692 287.3643

Bold values indicate the best experimental results more intuitively.

TABLE 2 | Evaluation indexes reconstructed by different decomposition methods.

Method Pr SNR MAE

EMD 0.9856 12.4403 72.8892

EEMD 0.9954 5.5925 158.0966

CEEMD 0.9959 14.3365 67.1919

Bold values indicate the best experimental results more intuitively.

the maximum correlation IMF components of different types
of signals are different. The EEG samples of 200 channels are
decomposed by the CEEMD method, and the average Pr of IMF
components is used as the division basis of useful signals. The
threshold value is set to 0.1. As shown in Figure 5, the average Pr
of IMF1–IMF7 components is higher than 0.1. Finally, we select
these seven IMF components to reconstruct all EEG signals.

Feature Extraction of EEG Signals
The feature extraction of 200 single-channel signals
reconstructed from the interictal and ictal period is carried
out. The extracted 9 features, namely mean, variance, standard
deviation, range, fluctuation coefficient, variation coefficient,
sample entropy, kurtosis, and skewness will be used in the next
iterative feature reduction analysis. In the extraction of sample
entropy, m = 2, r = 0.2 std. Because 9 features will produce
many combinations of different feature subsets, it will lead to

FIGURE 4 | Correlation between IMF components of different channels and

raw signals.

FIGURE 5 | Correlation between IMF components of all channels and

raw signals.

low training efficiency and model performance degradation.
Therefore, the SVM-RFE algorithm should be used to rank the
epileptic EEG data according to the weight of feature importance
and select the combination of the optimal features.

Reduction of Secondary Features and
Establishment of Classification Models
When SVM-RFE is used to reduce the secondary features of data,
it is necessary to normalize the data to [0,1] interval first to
avoid the adverse effect of a too large difference between different
features of data on the experimental results. Gaussian radial basis
function (RBF) is used as a kernel function of SVM. The weight
values of different features are shown in Figure 6. The sequence
numbers 1–9 correspond to the nine features extracted from
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FIGURE 6 | Weight values of different features.

the EEG signals, respectively. This figure fully reflects that there
are obvious differences in the importance of each feature of the
EEG signals. It can be seen that the weight value of the standard
deviation feature is the largest, indicating that the feature covers
a lot of useful information on the EEG data. The weight of
mean value, fluctuation coefficient, and variation coefficient is
very small, which shows that the importance of these three
characteristics is relatively low. According to the weight values of
different features, the new features are sorted as {3,4,8,2,7,9,5,1,6}.

Because the first feature is the last one to be eliminated, it is
also the most important feature. Therefore, based on all feature
combinations in the new feature sorting, the features with the
lowest importance in the current feature set are eliminated one
by one feature at a time, and the number of features is reduced
iteratively until it is reduced to the most important standard
deviation feature. There are nine different feature sets. 80% (160)
of 200 epileptic EEG signals are divided into training sets and
the remaining 20% (40) into test sets. The data of different
feature combinations in EEG signals are input to the GWO-SVC
classification models in turn. The accuracy of the training set and
test set obtained by a training classifier is used as the evaluation
index of secondary feature reduction to select the optimal subset.
In order to ensure the accuracy of classification results and the
efficiency of recognition process at the same time, the initial
number of the gray wolf is set to 20, the maximum number of
iterations is set to 50, and the search interval of penalty coefficient
and kernel function parameter is [0,100].

The classification accuracy of different feature subsets is
shown in Table 3. The accuracy of the training set is on the
decline, while the accuracy of the test set is on the rise and then
on the decline. When the number of features in the feature subset
is reduced from 9 to 8, the accuracy of the test set reaches the
maximum of 100% for the first time, and only one channel EEG
signal in the training set is misclassified. When the number of
features is reduced to 6, the accuracy of the training set and the

TABLE 3 | Classification accuracy of different feature subsets.

Feature subset Feature

numbers

Best c Best g Training set/% Test set/%

{3,4,8,2,7,9,5,1,6} 9 60.1100 6.9761 100 (160/160) 97.5 (39/40)

{3,4,8,2,7,9,5,1} 8 33.9487 8.6581 99.38 (159/160) 100 (40/40)

{3,4,8,2,7,9,5} 7 70.2355 5.2786 99.38 (159/160) 100 (40/40)

{3,4,8,2,7,9} 6 79.1905 7.7580 99.38 (159/160) 100 (40/40)

{3,4,8,2,7} 5 72.8569 9.2752 98.75 (158/160) 97.5 (39/40)

{3,4,8,2} 4 1.1068 70.1738 98.13 (157/160) 97.5 (39/40)

{3,4,8} 3 15.0708 12.2651 97.5 (156/160) 97.5 (39/40)

{3,4} 2 9.8490 88.9158 96.25 (154/160) 95 (38/40)

{3} 1 24.4377 39.4796 93.13 (149/160) 95 (38/40)

Bold values indicate the best experimental results more intuitively.

test set begins to decline. There are eight iterations until there is
only one feature left. The purpose of secondary feature reduction
is to improve the classification accuracy by filtering features or
to reduce the dimension of feature set without reducing the
classification accuracy. Although the accuracy of the training
set of the full feature set is 100%, there are EEG signals in the
test set which are misclassified, and the number of features is
the most, which results in the low efficiency of model training.
Finally, the subset {3,4,8,2,7,9} of six features with fewer features
and higher classification accuracy is selected as the result of the
SVM-RFE algorithm.

Based on the 9 features extracted from the raw EEG data,
the SVC model without parameter optimization is established,
and RBF is chosen as the kernel function. In libsvm-mat-3.1
toolkit, the default value of a penalty coefficient c is 1, and the
default value of a kernel function parameter g is the reciprocal
of feature number (1/features). In order to clearly express the
difference between the test category and the actual category, the
blue “◦” in the figure is the actual category of the input sample,
and the red “∗” is the predicted result of the classification model.
If “◦” and “∗” coincide, the sample is correctly classified. The
classification results of the raw EEG signals by SVC are shown
in Figure 7. In the training set, 23 EEG signals were identified
incorrectly, including three EEG signals in the interictal period
and 20 EEG signals in the ictal period. A total of four EEG signals
in the test set were identified incorrectly, and they were all EEG
signals during the ictal period. The EEG signals processed by
CEEMD are classified by GWO-SVC as shown in Figure 8. Only
one EEG signal in the training set is identified incorrectly, which
was the 73rd EEG signal in the interictal period. All the EEG
signals in the test set are correctly identified. It can be seen that
the training and test set of the GWO-SVC model established by
the EEG signal after CEEMD processing has significantly better
recognition results than the SVC classification model established
by the unprocessed raw EEG signals. It shows that the method in
this paper is applicable to the aided diagnosis of epileptic EEG,
and it realizes the precise identification of EEG signals.

Comparison With Other Methods
In order to verify the classification effect and superiority of the
proposed method for epilepsy EEG recognition, the algorithm

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 June 2020 | Volume 8 | Article 669

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Zhou et al. Aided Diagnosis of Epileptic EEG

FIGURE 7 | The classification results of the raw EEG signals by SVC. (A) Classification diagram of training set and (B) Classification diagram of test set.

FIGURE 8 | The EEG signals processed by CEEMD are classified by GWO-SVC. (A) Classification diagram of training set and (B) Classification diagram of test set.

in this paper not only performs longitudinal comparative
analysis and research with the SVC classification results of the
unoptimized parameters of the raw EEG data but also compares
with the classification results of grid search (GS), genetic
algorithm (GA), particle swarm optimization (PSO), artificial
bee colony (ABC), cuckoo search (CS), and firefly algorithm
(FA) intelligent optimization algorithms. Other classifiers are
similar to the GWO algorithm. The number of initial population
is set to 20, the maximum number of iterations is set to 50,
the search interval of penalty coefficient and kernel function
parameters is [0,100], and the EEG data are normalized to [0,1]
interval. Through such work, the unity of initial conditions can
be ensured. Table 4 shows the classification results of different
processing methods. It can be seen that the number of features
selected by the model without parameter optimization and
parameter optimization is different. The modeling time of SVC
without parameter optimization is short, but the accuracy of

the training set is low. It takes less time to establish the SVC
model without parameter optimization, but the accuracy of the
training set is low. CEEMD has little effect on the accuracy of
the SVC model without parameter optimization. The accuracy of
the training set and test set of GWO-SVC model is significantly
higher than that of SVC. Compared with the raw EEG signals, the
training set and test set accuracy of the model is improved after
the signal is processed by CEEMD and SVM-RFE. Compared
with the SVC model based on the raw EEG signals, the accuracy
of training set classification and test set classification of the
optimization model based on the algorithm in this paper is
improved by 13.755 and 10%, respectively.

The classification results of different optimization algorithms
are shown in Table 5. The training set classification accuracy
of the GS algorithm optimization model is the lowest, and the
recognition time is long. Although the FA algorithm can make
the classification accuracy of the training set reach 100%, the
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TABLE 4 | Classification results of different treatment methods.

Processing method Feature numbers Best c Best g Training set/% Test set/% Time (s)

Raw+SVC 9 1 0.1111 85.625 (137/160) 90 (36/40) 0.0739

Raw+GWO-SVC 9 47.9615 34.1838 100 (160/160) 95 (38/40) 2.6507

Raw+SVM-RFE+SVC 5 1 0.2 86.875 (139/160) 95 (38/40) 0.0731

CEEMD+SVC 9 1 0.1111 85.625 (137/160) 90 (36/40) 0.0503

CEEMD+GWO-SVC 9 60.1100 6.9761 100 (160/160) 97.5 (39/40) 1.7907

CEEMD+SVM-RFE+ SVC 5 1 0.2 87.5 (140/160) 95 (38/40) 0.0443

CEEMD+SVM-RFE+GWO-SVC 6 79.1905 7.758 99.38 (159/160) 100 (40/40) 1.6551

Bold values indicate the best experimental results more intuitively.

TABLE 5 | Classification results of different optimization algorithms.

Modeling method Feature numbers Best c Best g Training set/% Test set/% Time (s)

GS-SVC 6 5.6569 8 97.5 (156/160) 97.5 (39/40) 4.0977

GA-SVC 6 43.9056 3.1953 98.75 (158/160) 97.5 (39/40) 3.2152

PSO-SVC 6 5.3156 8.7895 98.13 (157/160) 97.5 (39/40) 4.4063

ABC-SVC 6 85.5963 6.0455 99.38 (159/160) 100 (40/40) 3.5328

CS-SVC 6 72.2167 8.4386 99.38 (159/160) 100 (40/40) 3.1746

FA-SVC 6 82.2227 20.4157 100 (160/160) 97.5 (39/40) 1.8642

GWO-SVC 6 79.1905 7.758 99.38 (159/160) 100 (40/40) 1.6551

Bold values indicate the best experimental results more intuitively.

classification accuracy of the test set is less than GWO and ABC,
and the recognition time is longer than GWO. The accuracy of
the test set of GWO, ABC, and CS algorithm is 100%, and all
EEG signals are recognized correctly. However, the recognition
time of the GWO-SVCmodel is only 1.6551 s, which is obviously
faster than that of ABC-SVC, and CS-SVC model, and 2.7512 s
faster than PSO-SVC model which has the slowest recognition
speed. Compared with other heuristic intelligent optimization
algorithms, the GWO algorithm is more effective and reliable in
parameter optimization of the SVC model, where c is 79.1905,
g = 7.758.

DISCUSSION AND CONCLUSIONS

In this study, we have proposed a new method based on
CEEMD combined with iterative feature elimination for EEG
of epilepsy aided diagnosis. The CEEMD signal decomposition
algorithm was used to decompose the raw EEG signals into the
IMF of different orders, and then feature extraction is carried
out for the reconstructed signals. The SVM-RFE algorithm
was used to reduce secondary features. Finally, the GWO-
SVC classification and recognition model was established to
realize the accurate and fast identification of Epileptic EEG.
From the experimental analysis process and results, we can
see that:

(1) CEEMD algorithm based on correlation analysis can make
the non-stationary EEG data stable, decompose the complex
EEG signals into IMF components with practical physical
significance, and solve the problems of mode aliasing. This

algorithm is superior to the traditional EMD algorithm in
various evaluation indexes.

(2) SVM-RFE is used to filter the features of EEG signals,
which can reduce the redundant information acquisition
in the EEG data that has no internal relationship with
the classification. The useful information of epileptic EEG
signals is reflected by fewer features. The complexity of a
training model is reduced, and the recognition efficiency and
reliability of the classification model are improved.

(3) The normalized data get rid of the influence of the big
difference of sample data, speed up the optimal solution
process, and improve the classification accuracy. The
GWO-SVC epileptic EEG recognition model has a good
classification accuracy. Combining CEEMD and SVM-RFE
algorithm, it can make the classification accuracy higher
than the recognition model of all features, and improve the
performance and generalization ability of the model.

(4) The algorithm in this paper can be applied to the aided
diagnosis of epileptic EEG. This method can accurately
and quickly identify the types of epileptic seizures. It has
a certain theoretical guidance and promotion value for
doctors to achieve the early diagnosis of epileptic diseases
and take a reasonable epileptic treatment plan in the
later stage.

The EEG data of epilepsy in the experiment were collected in the
laboratory. The collection conditions are better than the actual
clinical diagnosis conditions, and the interference is relatively
small, but there may be many uncertain factors in the actual
EEG analysis. In this study, 200 groups of sample data were
tested and analyzed, but the actual clinical diagnosis needs to
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analyze a large number of data, which brings many challenges
to the auxiliary diagnosis of Epilepsy EEG. The results show
that although the method proposed in this paper has achieved
high recognition accuracy, there are still wrong samples. How
to overcome these difficulties will become the focus of the next
research, and also the key to improving the recognition rate of
epilepsy. We are going to add the disadvantageous factors in
the experimental analysis to the future research work, expand
the sample size of training data, and constantly improve and
optimize the intelligent analysis algorithm to achieve perfect
recognition accuracy.
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