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Abstract
Genomic selection increases accuracy and decreases generation interval, speeding up genetic changes in the populations. 
However, intensive changes caused by selection can reduce the genetic variation and can strengthen undesirable genetic 
correlations. The purpose of this study was to investigate changes in genetic parameters for fitness traits related with 
prolificacy (FT1) and litter survival (FT2 and FT3), and for growth (GT1 and GT2) traits in pigs over time. The data set 
contained 21,269 (FT1), 23,246 (FT2), 23,246 (FT3), 150,492 (GT1), and 150,493 (GT2) phenotypic records obtained from 2009 
to 2018. The pedigree file included 369,776 animals born between 2001 and 2018, of which 39,103 were genotyped. Genetic 
parameters were estimated with bivariate models (FT1-GT1, FT1-GT2, FT2-GT1, FT2-GT2, FT3-GT1, and FT3-GT2) using 3-yr 
sliding subsets. With a Bayesian implementation using the GIBBS3F90 program computations were performed as genomic 
analysis (GEN) or pedigree-based analysis (PED), that is, with or without genotypes, respectively.  For GEN (PED), the changes 
in heritability from the first to the last year interval, that is, from 2009–2011 to 2015–2018 were 8.6 to 5.6 (7.9 to 8.8) for 
FT1, 7.8 to 7.2 (7.7 to 10.8) for FT2, 11.4 to 7.6 (10.1 to 7.5) for FT3, 35.1 to 16.5 (32.5 to 23.7) for GT1, and 35.9 to 16.5 (32.6 to 
24.1) for GT2. Differences were also observed for genetic correlations as they changed from −0.31 to −0.58 (−0.28 to −0.73) 
for FT1-GT1, −0.32 to −0.50 (−0.29 to −0.74) for FT1-GT2, −0.27 to −0.45 (−0.30 to −0.65) for FT2-GT1, −0.28 to −0.45 (−0.32 
to −0.66) for FT2-GT2, 0.14 to 0.17 (0.11 to 0.04) for FT3-GT1, and 0.14 to 0.18 (0.11 to 0.05) for FT3-GT2. Strong selection in 
pigs reduced heritabilities and emphasized the antagonistic genetic relationships between fitness and growth traits. With 
genotypes considered, heritability estimates were smaller and genetic correlations were greater than estimates with only 
pedigree and phenotypes. When selection is based on genomic information, genetic parameters estimated without this 
information can be biased because preselection is not accounted for by the model.
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Introduction
The main purpose of genomic selection is to accelerate the 
genetic progress. This is accomplished by increasing the 
accuracy of selection and decreasing the generation interval. 

However, the breeder’s equation includes the genetic variance, 
and accuracies in multi-trait selection depend on genetic 
correlations (Walsh and Lynch, 2018). If genetic parameters 
change as a result of strong selection, the genetic gain as 
predicted using old parameters may not be realized.
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In general, heritability and genetic correlations are expected 
to change under selection, with the amount of change 
dependent on the intensity of selection and initial genetic 
variance (Falconer and Mackay, 1996; Walsh and Lynch, 2018). 
Under directional selection, negative linkage disequilibrium 
(LD) is created introducing a negative correlation between 
pairs of loci, which decreases genetic variance, heritability, 
and selection response. Conversely, under disruptive selection, 
positive LD is generated introducing a positive correlation 
between pairs of loci (Bulmer, 1971; Walsh and Lynch, 2018). Two 
different genetic mechanisms contribute to genetic covariances, 
LD, and pleiotropy, and both can change over time. Selection 
creates LD, and alleles at different loci affecting single traits are 
co-inherited, creating a correlation between pairs of loci. With 
pleiotropy, 1 allele influences 2 or more traits.

The distribution of allelic effects is critical to predict medium- 
to long-term selection response in covariances. Changes in 
genetic covariances are likely to be more unpredictable than 
changes in genetic variances (Walsh and Lynch, 2018). Under 
directional selection, ignoring the reduction in genetic variance 
leads to an overestimation of the accuracy of selection (Bijma, 
2012; Gorjanc et  al., 2015). In the multi-trait selection, the 
genetic covariances also play an important role and appropriate 
estimates have to be used to calculate correct accuracies. 
Additionally, genetic covariances can evolve away from the 
direction favored by selection as a result of the introduced 
correlation between pairs of loci, making it harder to realize 
genetic changes in the desirable direction for each trait.

Estimation of genetic parameters over time is complex, 
especially under genomic selection. A  general method would 
be to use a random regression model over time (Tsuruta et al., 
2004). However, such a model is computationally expensive, 
especially with a large number of genotyped animals, and its 
ability to model complex changes is limited by the type and 
order of the regression functions. Another option is to use time 
intervals (i.e., slices) so that only a fraction of the data is utilized 
in each analysis. However, changes inside the intervals are 

averaged, and intervals need to be large enough to avoid biases 
due to earlier selection (Cesarani et al., 2019).

The objective of this study was to investigate changes in 
genetic parameters for fitness and growth traits in pigs under 
genomic selection using data in time intervals. We defined 3-yr 
intervals to have enough data and the subsequent intervals 
overlapped 2 yr, that is, the first interval included data from 2009 
to 2011, the next included data from 2010 to 2012 and so on, and 
the last interval included 4 yr (2015 to 2018) because the last year 
contained few data points.

Materials and methods
Animal Care and Use Committee approval was not needed as 
data were obtained from preexisting databases.

Data

Data for fitness traits related to prolificacy (FT1) and litter 
survival (FT2 and FT3), and for classical growth traits (GT1 and 
GT2), recorded from 2009 to 2018, were provided by Smithfield 
Premium Genetics (Roanoke Rapids, North Carolina, USA). 
Initial pedigree consisted of 369,776 animals from one line born 
between 2001 and 2018, of which 39,103 were genotyped. The 
objective of the breeding program is to increase growth traits FT1 
and FT2, and decrease FT3. Numbers of animals with genotypes, 
phenotypes, and in the pedigree per year and interval are shown 
in Table 1 and Table 2, respectively.

Analyses and computations

Variance components were estimated using a Bayesian 
approach via the Gibbs sampling algorithm as implemented 
in the GIBBS3F90 program (Misztal et  al., 2014) with genomic 
analysis (GEN) or without genotypes pedigree-based analysis 
(PED). The analyses were separately performed in each interval. 
A  single Gibbs chain of a total length of 100,000 rounds was 
initially generated. After discarding the initial 10,000 samples as 
burn-in, 1 in every 10 samples was stored to compute means 
and standard deviations of the posterior distributions. The 
means were used as estimates of the (co)variance components, 
and their posterior standard deviations were considered to be a 
measurement of their estimation errors.

The bivariate model could be expressed in matrix notation as:
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Abbreviations

BLUP	 best linear unbiased prediction 
FT	 fitness trait
GEN	 genomic analysis
GT	 growth trait
LD	 linkage disequilibrium
PED 	 pedigree-based analysis

Table 1.  Number of animals with genotypes, phenotypes, and in the pedigree for fitness (FT1, FT2, and FT3) and growth traits (GT1 and GT2) 
per year 

Year Pedigree Genotypes

Fitness traits Growth traits

FT1 FT2 FT3 GT1 GT2

2009 12,154 65 1,183 2,016 2,016 5,775 5,775
2010 16,474 923 2,182 2,237 2,237 7,858 7,858
2011 17,669 1,654 3,301 3,377 3,377 10,417 10,417
2012 26,177 1,455 2,506 2,579 2,579 14,656 14,656
2013 29,917 1,492 2,692 2,856 2,856 19,331 19,331
2014 27,947 1,957 3,438 3,620 3,620 18,391 18,392
2015 34,313 8,496 3,339 3,463 3,463 22,393 22,393
2016 39,536 10,881 2,018 2,203 2,203 24,783 24,783
2017 32,722 9,338 610 895 895 23,382 23,382
2018 13,309 2,842 — — — 3,506 3,506
Total 250,218 39,103 21,269 23,246 23,246 150,492 150,493
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where f and g stand for fitness (FT1, FT2, and FT3) and growth traits 
(GT1 and GT2), respectively; y is the vector of observations; b is a 
vector of systematic effects (as stated below); a is the vector of direct 
additive genetic effects; pe is the vector of permanent environment 
effects; cl is the vector for common litter environment effects; e is 
the vector for random residual effects; X, Z, W, and C are incidence 
matrices relating the elements of y to elements of b, a, pe, and cl, 
respectively. The covariance matrix was assumed to be:

Var
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where σ2
af , σ

2
ag, and σaf ,ag are variances for direct additive genetic 

effects for fitness traits, direct additive genetic effects for growth 
traits, and their covariances, respectively; σ2

pef is the variance 

for permanent environment effects for fitness traits; σ2
clg

 is the 
variance for common litter environment effects for growth traits; 
and σ2

ef  and σ2
eg are variances of residual effects for fitness and 

growth traits, respectively; I is the identity matrix; T is equal 
to A when only pedigree information is used as the covariance 
structure for the direct additive genetic effects, or H when 
genomic and pedigree information are jointly used to compute 
relationships. According to Aguilar et al. (2010), the inverse of H is:

H−1 = A−1 +

ñ
0 0
0 G−1 −A−1

22

ô
,

where A−1 is the inverse of a pedigree-based relationship matrix 
for all animals included in the analysis, A−1

22  is the inverse of the 
pedigree-based relationship matrix for genotyped animals only, 
and G−1 is the inverse of a genomic relationship matrix. The 
systematic effects included in b were farm, year of farrowing, 
month of farrowing, age at measurement, and sex (included 
only for growth traits).

Results and discussion

Heritability

The changes in heritability estimated by GEN (PED) from the first 
to the last year interval, that is, from 2009–20011 to 2015–2018 
were 8.6 to 5.6 (7.9 to 8.8) for FT1, 7.8 to 7.2 (7.7 to 10.8) for FT2, 

11.4 to 7.6 (10.1 to 7.5) for FT3, 35.1 to 16.5 (32.5 to 23.7) for GT1, 
and 35.9 to 16.5 (32.6 to 24.1) for GT2. The posterior means and 
standard deviations for heritabilities estimated by GEN and 
PED are shown in Figure  1. The evolution of the heritabilities 
over time was similar with and without genomic information. 
Heritabilities for FT1 and FT2 were nearly stable, whereas 
heritabilities for FT3 and growth traits decreased over time. 
According to Walsh and Lynch (2018), the stronger the intensity 
of selection and the greater the heritability, the larger the LD and 
the stronger the reduction in the genetic variance.

In this population, the reduction in heritabilities was greater 
for growth traits, explained by their greater heritability and 
the stronger intensity of selection on these traits (evidenced 
by genetic trends; Figure  7). The reduction in the heritability 
for FT3 was observed in the first 3 intervals, accompanied by 
an undesirable slight increase in the genetic trend (Figure  7), 
suggesting that an unfavorable correlated response was the 
main cause.

Heritability for FT3 showed minor changes from 2012 to 
2014, possibly as a result of weak selection (Figure 7).  Another 
possible explanation is that this trait reached the equilibrium. 
Assuming an infinitesimal model and infinite population size 
with repeated cycles of selection, Bulmer (1971) showed that 
an equilibrium is eventually achieved in which the genetic 
variance lost by selection is regenerated by recombination. 
Villanueva and Kennedy (1990) studied the effect of selection 
in 2 traits. When selecting for 1 trait, variances of the directly 
and indirectly selected traits were reduced, and equilibrium 
values were reached in approximately 4 rounds of directional 
selection. Holm et al. (2004) reported constant heritability values 
for number born alive at first and second parities (0.10 ± 0.01) in 
a pig population under selection.

In a research related to survival in dairy cattle, van Pelt et al. 
(2016) found that the mean survival increased over time, whereas 
genetic and residual variances and heritability decreased. The 
heritability changed from 0.06 ± 0.07 (1989–1993) to 0.01 ± 0.06 
(2009–2013). In a related study, the heritabilities for a productive 
life in dairy cattle (Tsuruta et al., 2004) were constant over time, 
most likely because of the lack of directional selection in this 
trait, which was evidenced by genetic trends. Haile-Mariam and 
Pryce (2015) reported a reduction in heritabilities for survival 
from 0.07 (1993–1994) to 0.03 (2007–2008) and for calving interval 
from 0.06 (1993–1994) to 0.03 (2007–2008). They stated that the 
observed decrease was related to a reduction in the genetic 
variance and an increase in the residual variance for calving 
interval.

Table 2.  Number of animals with genotypes, phenotypes, and in the pedigree for fitness traits (FT1, FT2, and FT3) and growth traits (GT1 and 
GT2) per interval

Interval Pedigree1 Genotypes

Fitness traits Growth traits

FT12 FT22 FT32 GT12 GT22

2009–2011 46,297 (24,479) 2,642 6,666 (2,151) 7,630 (2,195) 7,630 (2,195) 24,050 (2,582) 24,050 (2,582)
2010–2012 60,320 (35,131) 4,032 7,989 (3,334) 8,193 (3,400) 8,193 (3,400) 32,931 (3,971) 32,931 (3,971)
2011–2013 73,763 (47,075) 4,601 8,499 (3,821) 8,812 (3,915) 8,812 (3,915) 44,404 (4,597) 44,404 (4,597)
2012–2014 80,041 (56,168) 4,904 8,636 (3,943) 9,055 (4,055) 9,055 (4,055) 52,378 (4,894) 52,379 (4,894)
2013–2015 92,177 (65,098) 11,945 9,469 (4,238) 9,939 (4,351) 9,939 (4,351) 60,115 (10,851) 60,116 (10,851)
2014–2016 101,796 (72,249) 21,334 8,795 (4,087) 9,286 (4,177) 9,286 (4,177) 65,567 (4,177) 65,568 (4,177)
2015–2018 119,880 (84,171) 28,715 5,967 (3,112) 6,561 (3,358) 6,561 (3,358) 70,558 (25,892) 70,558 (25,892)

1Total number of animals in the interval (number of animals used in the analyses after tracing back all animals with phenotypes or 
genotypes up to 3 generations of their ancestors).
2Number of animals with phenotypes (number of genotyped animals with phenotypes).
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In this research, we found similar results, where the 
reduction in heritabilities was associated with a decrease in 
genetic variance and an increase in residual variance. Posterior 
means and standard deviations for additive genetic variance, 
environmental variance (permanent environment for fitness 
traits and common litter environment for growth traits), and 

residual variance are shown in Figure 2, Figure 3, and Figure 4, 
respectively. Genetic variance was nearly flat for FT1 and FT2, 
whereas for FT3 and growth traits it decreased. Environmental 
variance was stable for all the traits, except for FT3 where a 
reduction was observed. The residual variance increased over 
time for FT1, FT2, and growth traits, but was stable for FT3. The 

Figure 1.  Posterior means and standard deviations for heritabilities of fitness (FT1, FT2, and FT3) and growth traits (GT1 and GT2) estimated with (GEN) or without (PED) 

genotypes. Heritabilities for FT1 and FT2 were nearly stable, while heritabilities for FT3 and growth traits decreased over time; estimates for FT2 increased in the last 

interval (2015–2018); and estimates for FT3 showed minor changes since 2012–2014. 
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increase in the residual variance could be due to the scaling 
effect. As the means for FT1, FT2, and growth traits increased 
(improved), those residual variances increased, but mean for 
FT3 showed minor changes, tending to decrease (improve) as 
the residual variance for this trait. 

In summary, the reduction in heritability for FT3 was 
associated with a reduction in the additive genetic variance, 

and the reduction in heritabilities of growth traits was due to 
the combination of a decrease in additive genetic variance and 
an increase in residual variance. However, it is important to 
highlight that the reduction in additive genetic variance played 
a key role in the observed changes, explaining an important 
part of it. Thus, breeding programs should take this into 
consideration.

Figure 2.  Posterior means and standard deviations for additive genetic variances of fitness (FT1, FT2, and FT3) and growth traits (GT1 and GT2) estimated with (GEN) 

or without (PED) genotypes. Genetic variance was nearly flat for FT1 and FT2, while for FT3 and growth traits it decreased.
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Genetic correlations

The changes in genetic correlations estimated by GEN (PED) 
from the first to the last year interval, that is, from 2009–2011 to 
2015–2018 were −0.31 to −0.58 (−0.28 to −0.73) for FT1-GT1, −0.32 
to −0.50 (−0.29 to −0.74) for FT1-GT2, −0.27 to −0.45 (−0.30 to −0.65) 
for FT2-GT1, −0.28 to −0.45 (−0.32 to −0.66) for FT2-GT2, 0.14 to 
0.17 (0.11 to 0.04) for FT3-GT1, and 0.14 to 0.18 (0.11 to 0.05) for 

FT3-GT2. Posterior means and standard deviations for genetic 
correlations computed by GEN and PED are shown in Figure 5. 
The genetic correlations between FT3 and growth traits were 
roughly stable over time, whereas the genetic correlations of FT1 
and FT2 with growth traits decreased. A possible explanation for 
the constant correlation between FT3 and growth traits is that 
the LD between these 2 traits has stabilized.

Figure 3.  Posterior means and standard deviations for permanent environment (pe) variances of fitness traits (FT1, FT2, and FT3) and for common litter (cl) environment 

variances of growth traits (GT1 and GT2) estimated with (GEN) or without (PED) genotypes. Environmental variance was stable for all the traits, with exception for FT3 

showing a reduction.



Copyedited by: SU

Hidalgo et al.  |  7

McMillan et  al. (1995) studied the effects of simultaneous 
selection on the genetic correlation. They used selection index 
and concluded that positive and negative genetic correlations 
tended to decline. However, unequal heritabilities and unequal 
relative economic weights reduced the rate of change with 
the greatest imbalance tending to hold the genetic correlation 
constant or move it toward zero. In a study about selection in a 
single trait, Villanueva and Kennedy (1990) found that the genetic 
correlation between the trait under direct selection and the trait 
indirectly selected always decrease in absolute value, whereas 

genetic correlations between 2 traits indirectly selected can either 
decrease or increase in absolute value, depending not only on the 
signs but also on the magnitudes of the parameters involved.

Strandén et al. (1993) studied how the genetic correlation 
changes under selection on either single or both traits in a 
dairy breeding program using simulations. They simulated 
directional selection by truncation to increase 2 traits and 
reported that the absolute value of the genetic correlation 
usually decreased with single trait selection. However, when 
the initial genetic correlation was low and the residual 

Figure 4.  Posterior means and standard deviations for residual variances of fitness (FT1, FT2, and FT3) and growth traits (GT1 and GT2) estimated with (GEN) or without 

(PED) genotypes. Residual variance increased over time for all the traits, with exception for FT3 showing a stable value.
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correlation had the same sign and was high, the genetic 
correlation increased. With selection on both traits, the 
change in genetic correlation was always negative, that is, the 
traits became less positively correlated or more negatively 
correlated after selection, in agreement with the results found 
by McMillan et al. (1995).

Itoh (1991) theoretically demonstrated that multi-trait 
selection changes the genetic correlation always in an 
undesirable direction. These results agree with the ones found 
in the present study involving multi-trait selection. In fact, the 
genetic correlations of FT1 and FT2 with growth traits became 
more antagonistic and the remaining genetic variation upon 

Figure 5.  Posterior means and standard deviations for genetic correlations among fitness (FT1, FT2, and FT3) and growth traits (GT1 and GT2) estimated with (GEN) or 

without (PED) genotypes. The genetic correlations between FT3 and growth traits were roughly stable over time, whereas the genetic correlations of FT1 and FT2 with 

growth traits decreased.
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which future selection must act for response will face a more 
undesirable genetic covariance. It is important to consider these 
changes in the breeding program, and genetic parameters need 
to be updated regularly. It is important to investigate the trends 
for the genetic variances and covariances and also for the mean 
breeding values to detect directional selection.

Holm et al. (2004) studied the effect of selection for production 
traits in pigs. They estimated genetic correlations for number born 
alive at first and second parities with adjusted age at 100 kg live 
weight (0.60 and 0.42), individual feed consumption from 25 to 
100 kg (0.23 and 0.20), and percentage of lean meat content (−0.12 

and −0.24). The authors concluded that directional selection for 
production traits resulted in more unfavorable genetic correlations 
in the second parity compared to the first parity.

In a study of dairy cattle, Haile-Mariam and Pryce (2015) 
reported that genetic correlations of survival with milk yield 
declined from 0.45 at the beginning of the study (1993–1994) to 
−0.15 at the end (2009–2010), whereas the genetic correlation 
between calving interval and milk yield became more 
unfavorable and increased from 0.31 to 0.50 over the same period. 
The genetic correlation between survival and calving interval 
also became more antagonistic, declining from −0.67 to −0.87. 

Figure 6.  Posterior means and standard deviations for additive genetic covariances among fitness (FT1, FT2, and FT3) and growth traits (GT1 and GT2) estimated with 

(GEN) or without (PED) genotypes. The additive genetic covariances of FT1 and FT2 with growth traits were stable with GEN, whereas they decreased with PED.
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Similar results were found by Lawlor et  al. (2002): the genetic 
correlation between milk yield and productive life decreased 
from 0.26 (1981) to −0.08 (1996). Another study reported changes 
in genetic correlations between somatic cell scores and milk 
yield from positive (0.25) to negative (−0.15) from first to later 
lactations (Banos and Shook, 1990). It is important to state that 
in dairy cattle, changes in genetic parameters could be affected 
by management practices.

According to McMillan et  al. (1995), changes in the genetic 
parameters over time can affect selection decisions. The genetic 
covariance changes more rapidly than genetic variances. The 
use of initial genetic parameter estimates without considering 
the changes and unchanging selection weights for the traits in 
the selection index could have potentially negative effects on 
the overall genetic gain. In an example provided by Cheverud 
(1984), selection to increase 2 traits, with a genetic correlation of 
−0.80, was 5 times slower than if the genetic correlation was 0.0.

The posterior means and standard deviations estimated for 
additive genetic covariances are shown in Figure 6. The additive 
genetic covariances among FT3 and growth traits were stable. 
The additive genetic covariances of FT1 and FT2 with growth 
traits were stable with genomic information but decreased 
if only pedigree and phenotypes were used. The genetic 
correlations of FT1 and FT2 with growth traits decreased both 
with and without genomic information. Therefore, the changes 
observed in genetic correlations in our study are mainly due to 

the fluctuations in the additive genetic variances as they were 
stronger than in the genetic covariances.

Genomic vs. pedigree-based analyses

Heritability estimates were similar for fitness traits with GEN 
and PED, whereas for both growth traits, the heritabilities 
calculated with GEN were initially larger but declined faster 
(Figure  1). These greater initial heritabilities could be because 
genomic relationships in the limited interval were possibly more 
informative than the pedigree ones, and because the genomic 
selection effectively started around 2014, which was evidenced 
by genetic trends (Figure  7). The steeper decline past 2014 is 
likely because the analyses with the genomic information 
account for genomic preselection, which avoids estimation bias 
(Patry and Ducrocq, 2011b).

Using genomic data before the implementation of genomic 
selection, Forni et  al. (2011) studying a pig population and 
Veerkamp et al. (2011) studying a dairy cattle population found 
similar genetic parameter estimates between genomic and 
pedigree-based analyses. These results are in agreement with 
our estimates of heritabilities for fitness traits.

Raidan et al. (2018) reported greater heritabilities in genomic 
analyses for adaptative and growth traits in beef cattle. Momen 
et al. (2017), in broiler chickens, found that heritabilities using 
genomic information were greater for body weight at 35 d of 
age and ultrasound area of breast meat. However, their results 

Figure 7.  Genetic trends in standard deviation units of estimated breeding values (EBV) and genomic estimated breeding values (GEBV) for fitness (FT1, FT2, and FT3) 

and growth traits (GT1 and GT2). Genetic trends were similar for FT3. For FT1, FT2, and growth traits, the difference between genetic trends was nearly constant until 

2015, but the 2 trends started to diverge in 2016.
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were mixed for hen-house egg production. In our study, the 
heritabilities for growth traits were larger at the beginning 
but lower at the end, suggesting that the use of time intervals 
is appropriate to study the changes in genetic parameters 
over time.

Genetic correlations with GEN, in general, were greater than 
the estimates with only pedigree and phenotypes (Figure  5). 
Momen et al. (2017) found similar results for genetic correlations 
in broiler chickens; genetic correlations between body weight 
at 35 d of age and hen-house egg production were −0.192 and 
−0.020 with pedigree-based and genomic analyses, respectively, 
and genetic correlations for ultrasound area of breast meat and 
hen-house egg production were −0.206 and −0.154 with pedigree-
based and genomic analyses, respectively. The latter authors also 
reported that genetic correlations between body weight at 35 d 
of age and ultrasound area of breast meat were similar with 
pedigree-based (0.484) and with genomic analyses (0.497).

For populations undergone genomic selection, variance 
components or breeding values estimated using only pedigree 
and phenotypes are biased because an important piece upon 
selection is not used in the model. According to Patry and 
Ducrocq (2011a), this bias is due to preselection or because of 
the assumption that the mean of the mendelian sampling is 0.  
The preselection is clear when genetic trends under genomic 
and non-genomic (i.e., best linear unbiased prediction [BLUP]) 
analyses are compared. Masuda et  al. (2018) showed that the 
trend for protein yield in U.S. Holsteins under BLUP leveled off, 
whereas the trend for single-step genomic best linear unbiased 
predictor (ssGBLUP) showed a greater genetic gain, which agreed 
with phenotypic trends.  In our study, the bias was clear for the 
heritabilities estimated for growth traits.

Genetic trends estimated by GEN and PED are shown in 
Figure 7. When the goal of the breeding program is to increase 
the traits. According to Masuda et al. (2018), if there is a real 
downward bias using PED because an underestimation of 
breeding values, the trend by GEN should be greater than by 
PED for recent animals. Our results agree with this statement 
as genetic trends by GEN or genomic estimated breeding values 
(GEBV) were greater than those by PED or estimated breeding 
values (EBV) in the last 3 yr (2016–2018) for FT1, FT2, and growth 
traits. Over time, the genetic trends were similar for FT3, mainly 
due to the weak selection on this trait. However, for FT1, FT2, 
and growth traits, the difference between genetic trends by PED 
and GEN was nearly constant until 2015, but the 2 trends started 
to diverge in 2016.

In populations under selection with selective genotyping 
or when the genotyped population does not represent well the 
pedigree population (i.e., genotyped animals from only a few 
recent generations), a method that accounts for all available 
pedigree, genotypes, and phenotypes single-step genomic 
restricted maximum likelihood (ssGREML) produces the most 
accurate variance components compared with REML or genomic 
REML if only phenotypes of genotyped animals are considered 
(Cesarani et al., 2019).

The selection response is dictated by the breeder’s equation. 
With reduction of the genetic variance and assuming other 
parts of the breeder’s equation are constant (generation interval, 
intensity, and accuracy of selection), the selection response 
should be reduced. With increased accuracy due to the increasing 
number of genotyped animals (Table 1), again assuming other 
parts of the breeder’s equation constant, the selection response 
should accelerate. In our study, the selection response was not 
reduced (Figure 7), possibly because the reduction of the genetic 
variance was compensated by increased accuracy of selection.

Conclusions
Under genomic selection, the heritabilities of FT3 and growth 
traits decrease, and the negative genetic correlations become 
more negative. Subsequently, genetic gains may not be as high 
as computed using initial genetic parameters although they 
could keep constant if the accuracy of selection is increasing 
due to more genotyped animals. In populations undergone 
genomic selection, variance components estimated without 
genomic information are possibly biased. When the number of 
genotyped animals is large, variance components over time can 
be estimated using a model with time intervals.
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