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Biometric is an important field that enables identification of an individual to access their sensitive information and asset. In recent
years, electroencephalography- (EEG-) based biometrics have been popularly explored by researchers because EEG is able to
distinct between two individuals. ,e literature reviews have shown that convolutional neural network (CNN) is one of the
classification approaches that can avoid the complex stages of preprocessing, feature extraction, and feature selection. ,erefore,
CNN is suggested to be one of the efficient classifiers for biometric identification. Conventionally, input to CNN can be in image or
matrix form.,e objective of this paper is to explore the arrangement of EEG for CNN input to investigate the most suitable input
arrangement of EEG towards the performance of EEG-based identification. EEG datasets that are used in this paper are resting
state eyes open (REO) and resting state eyes close (REC) EEG. Six types of data arrangement are compared in this paper. ,ey are
matrix of amplitude versus time, matrix of energy versus time, matrix of amplitude versus time for rearranged channels, image of
amplitude versus time, image of energy versus time, and image of amplitude versus time for rearranged channels. It was found that
the matrix of amplitude versus time for each rearranged channels using the combination of REC and REO performed the best for
biometric identification, achieving validation accuracy and test accuracy of 83.21% and 79.08%, respectively.

1. Introduction

Progress in information technology makes security a crucial
aspect in protecting personal details and information.
,erefore, authentication is needed to allow the correct in-
dividual to access this information [1]. Authentication can be
divided into three categories: the knowledge-based, token-
based, and biometric-based approaches [2]. Knowledge-based
approach depends on information that has been set by users,
such as personal identification number (PIN) and textual
password. Token-based approach uses an object that a person
owns, such as smart card and passport. Knowledge-based and
token-based approaches have disadvantages in which the

identifiers may be forgotten, misplaced, or stolen [3]. Pass
card and password that are stolen can cause losses in financial
and intellectual property. For example, perpetrators of fraud
may attempt to obtain sensitive information such as pass-
words and credit card details for malicious reasons. In order
to overcome these issues, a biometric-based approach has
been introduced [4].

Biometrics-based approach depends on a person’s iden-
tity [5]. ,e approach enables authentication based on
physiological or behavioral features to recognize an indi-
vidual, which cannot be replicated or stolen. Biometrics can
be further divided into two categories, which are conventional
biometrics [6] and cognitive biometrics [7]. Conventional
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biometrics use the physiological properties of the individual,
including fingerprint, palm print, gait, and iris scan. Behavior
characteristics such as voice and signature are also parts of
conventional biometrics. In contrast with conventional bio-
metrics, cognitive biometrics measures the human brain
signals during emotional and cognitive brain conditions. ,e
recorded signals are used as biometric traits.

Human brain plays an important role in controlling the
actions and behavior of individuals. Every movement of our
human body reflects the signals which are sent by the human
brain [8]. In order to pick up signals from the human brain,
different modalities are used to study the differences of brain
signals to trigger various actions. Examples of brain signal
representation that can be seen are functional magnetic
resonance imaging (fMRI) and electroencephalography
(EEG). Nevertheless, EEG has higher temporal resolution [9]
and is able to directly measure brain activity.,erefore, EEG
is a better option in cognitive biometrics as the procedures to
obtain EEG are relatively practical and cheap. In addition,
EEG is able to provide important information that can
discriminate two individuals [10]. ,e analysis of EEG is
more consistent as the signals recorded are more substantial
and explicit [11]. Besides, EEG is universal, unique, and
robust, making it suitable to be used as cognitive measures
for biometric identification [12].

During the recording of EEG, certain tasks will be carried
out by the subject in order to evoke responses from the
human brain. ,e responses are picked up by the EEG. In
recent years, resting state eyes closed (REC) and resting state
eyes open (REO) are implemented in biometrics. Subjects
closed their eyes when the EEG are recorded (i.e., REC),
followed by eyes open (i.e., REO). Both REC and REO tasks
are performed in resting state. REC and REO are commonly
used as it is able to differentiate brain conditions of different
individuals [13].

In the work by Choi et al. [14], they extracted features
from the alpha activity of the EEG during REC and REO, as
alpha power becomes stronger when eyes are closed [15, 16].
,eir experimental results showed that the spatiospectral
patterns of changed alpha activity are different for in-
dividuals and can perform identification efficiently. In the
work of ,omas et al. [17], sample entropy features are
extracted from delta, theta, alpha, beta, and gamma bands of
the REC and REO EEG. It was shown that beta band entropy
has the highest intersubject variability. In their work, power
spectral density (PSD) is concatenated with the entropy
features and improves the performance. In the work of
Suppiah et al. [18], PSD was also extracted from REC and
REO EEG as features, and a Fischer linear discriminant
classifier was trained to perform identification. In addition,
Lee et al. [19] also extracted spectral power, maximum
power, and frequency of maximum power in the alpha band
from the REC EEG in their design of the biometric au-
thentication system. Fraschini et al. [20] proposed an REC
REO EEG-based biometric system, which makes use of
eigenvector centrality. ,eir work reported that the resting
state functional brain network provides a better classification
than only using a measure of functional connectivity. ,eir
report strengthens the usability of resting state EEG as a

biometric measure. It is observed from previous studies that
resting state EEG provides important information which can
differentiate individuals. In addition, resting state EEG can
be applied to individuals who are severely ill as it only re-
quired their EEG acquisition in their resting state for bio-
metric confirmation. From the review of many works,
feature extraction is a complicated task as important in-
formation has to be selected to represent the individuals.

Based on the literature, we found that the general
framework for biometric identification is as shown in Fig-
ure 1, which can be divided into four stages. ,e first stage is
the preprocessing stage, where the raw signal will be pre-
processed in order to remove unwanted elements such as
noise and artifacts. ,e second stage is the feature extraction
stage. In this stage, features are extracted from the pre-
processed signal and then consequently used to train a
classifier. If the size of the feature set is too huge, the feature
dimension reduction will also be carried out at this stage. In
the third stage, the feature set extracted from the second
stage will be used to train a classifier. In the fourth stage, the
trained classifier is used to perform classification for the
input EEG.

,ere are several works that have been proposed for the
EEG-based biometric authentication system using the
framework in Figure 1. In the work of Koike-Akino et al.
[21], blind source separation canonical correlation analysis
(BSS-CCA) is used to preprocess the signal to remove ocular
artifacts. Due to the huge dimensionality of their features,
principal component analysis is used to rank and select the
representative features from the feature pool. In their work,
several machine learning classifiers were evaluated, and it
was found that quadratic discriminant analysis (QDA)
presents the best classification accuracy. He et al. [22] extract
multivariate autoregressive (mAR) coefficients from mul-
tiple EEG channels as features. ,e extracted features are
further hashed using the Fast Johnson-Lindenstrauss
Transform- (FJLT-) based hashing algorithm to obtain
compact hash vectors. ,e hash vectors are then used to
train a Naive Bayes probabilistic model for identification.

Reshmi et al. [23] preprocessed the raw EEG signal using
band pass filtering, baseline removal, detrending, and arti-
fact removal. ,is is to remove unwanted components in the
signal. Next, independent component analysis (ICA) is used
to select the useful EEG components. ,e wavelet transform
is used on the resultant signal to reveal the discriminative
characteristic. ,e wavelet is used to train an artificial neural
network (ANN) for identification. In the work by ,omas
et al. [24], EEG signals are filtered using a zero-phase
Butterworth filter and divided into five subfrequency
bands. Entropy is computed from the resulting signals as
features and used to train a Mahalanobis distance-based
classifier.

,e preprocessing is crucial to remove all the unwanted
elements in a signal. However, it is time consuming to locate
and remove the impurities in the signal. Impurities such as
noises and artifacts can affect the training of classifiers and
reduce the classification accuracy. In addition, determining
the important features will also take up experimental time.
In order to overcome the complex design of preprocessing,

2 Computational Intelligence and Neuroscience



feature extraction and feature selection, CNN is one of the
common methods used in development that requires clas-
sification [25].

CNN is a machine learning method which is inspired
from the biological system [26]. ,e architecture is made up
of multilayer perception (MLP) which consists of multiple
hidden layers, combining the convolution layer and the
conventional back propagation neural network dense layer.
,e hidden layers including the convolutional kernel in the
CNN carry learnable parameters which require multiple
iterations of learning and validation to determine the op-
timum value empirically [27]. ,e convolutional layers play
the role of extracting important features from the input
matrix through the weighted learnable kernels [28]. Each
forward input of the matrix computes a feature map. ,e
convolutional layers learn to activate the feature maps when
the patterns of interest are detected in the input. Activated
feature maps will be downsampled by using the pooling layer
and further feed forward to the next layers. Fully connected
layer (also known as dense layer) is trained using the feature
map. ,e learning process of the learnable parameters
implies backpropagation [29] and gradient decent [30].

An example of CNN structure is shown in Figure 2. ,e
first convolutional layer will extract the features to form
feature map from the output, followed by the first pooling
layer. ,e first pooling layer will pool the features together
and direct them into the second convolutional layer. ,e
second convolutional layer extracts features to form the
second feature map. Consequently, the second pooling layer
will pool the features and direct it to the fully connected
layer. From the fully connected layer, classification will be
made and the input will be categorized into their labeled
classes.

In recent years, CNN is frequently used in an EEG-based
identification task [31–34]. In these approaches, input EEG
is arranged in matrix form of amplitude versus time for
every channel of EEG. ,e input matrix of amplitude versus
time for every channel is a direct and convenient way to
prepare the signals that can save input data preparation time.
In the work by Ma et al. [34], an EEG-based biometric
recognition was developed using CNN. In their work, resting
state EEG is used as the input of CNN.

Resting state EEG lacks task-related features; hence, it is
hard to perform feature extraction. CNN is one of the best
used methods, which does not require preprocessing and
feature extraction beforehand in order to obtain the feature
set for the training of the classifier. In the work of Ma et al.
[34], the CNN architecture used is shallow, which can avoid
the possibility of overfitting. At the same time, their frame-
work presents a high degree of accuracy for identification.

However, the input matrix of amplitude versus time
might not be distinctive enough to represent the information
in the signal to train the CNN. Besides the direct input of the
raw EEG, there is no implementation of batch normalization

in the work of Ma et al. [34] despite batch normalization is
shown to be able to improve the performance of CNN [29].

,e objective of this paper is to investigate the most
suitable input to represent the EEG for the training of CNN.
Six methods of organizing the input EEG are compared
using the same data set and CNN architecture as in the work
by Ma et al. [34]. ,e paper is divided into four sections.
Section 2 presents the methodology. Next, Section 3 presents
the experimental results and discussion. Finally, the con-
clusion is given in Section 4.

2. Methodology

In this section, the methodology to investigate the most
suitable input type of EEG and the effect of batch nor-
malization are explained. In this work, six types of input of
EEG are compared. ,e details of the input types will be
explained in Section 2.3. In addition, the necessity of batch
normalization is evaluated on all of the six input types. ,e
input type of the work by Ma et al. [34] is used as the
benchmark.

,is section is divided into five subsections. Section 2.1
will discuss the CNN architecture used in this study. Section
2.2 presents the dataset used and the division of the dataset
into training and testing sets. Section 2.3 explains the data
preparation of EEG into six input types, and Section 2.4 is
about batch normalization.

2.1. Convolutional Neural Network Architecture. For this
biometric identification system, we have chosen the CNN
architecture by Ma et al. [34] because their design of CNN is
shallow, yet presents a high identification accuracy. In the
work by Ma et al. [34], there is no implementation of batch
normalization despite batch normalization was shown to be
able to improve the performance of CNN [29]. ,erefore, in
this work, batch normalization will be included in the CNN
architecture.

,is CNN architecture is implemented to evaluate the
performance of all six input types of EEG which will be
further explained in Section 2.3. ,e CNN architecture is
shown in Table 1 and Figure 3. ,e CNN is made up of five
layers, including two convolutional layers, two pooling
layers, and one fully connected layer. ,e input with size
64×160 will be directed to the first convolutional layer made
up of six 5 × 5 filters, resulting an output of 60×156× 6. ,e
resulting feature map is then directed into an average
pooling layer of size 2× 2, producing an output of
30× 78× 6. ,e feature map is then directed to the second
convolution layer made up of six 5× 5 filters, outputting a
feature map of 26× 74× 6. After going through an average
pooling of size 2× 2, an output of 13× 37× 6 is produced.
,is output is then flattened and directed into the fully
connected layer. Softmax function is used as the activation
function.

EEG signal Preprocessing Feature
extraction

Classifier
training AuthenticationClassification

Figure 1: General framework of a biometric authentication system.
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In this study, there are seven parameters that are fixed for a
fair evaluation. ,ese parameters are presented in Table 2. ,e
learning rate of the CNN is set to 0.001 and remains constant
throughout the training. In this study, the necessity of batch
normalization is evaluated, and the result is shown in Section 3.
L2 is used for batch normalization.,emini-batch size is set at
100 for experiments using REC or REO data set, while 200 are
used for the combination of REC+REO. ,is is to allow a fair
comparison of forming equal amount of epoch for training.
,e training repetition is fixed with 30 repetitions for all ex-
periments. L2 regularization is used with the regularization

factor of 0.0005. ,e optimizer used is the stochastic gradient
decent with a momentum of 0.9.

2.2. Dataset. In this study, both REO and REC data used are
from an open source dataset available on the website [35],
which is the same dataset used in the work by Ma et al. [34].
,e signals from the data set are recorded using 64-channel
BCI2000 system with a sampling rate of 160Hz. ,e dataset
is divided into training set, testing set, and validation set. A
total of 109 subjects’ data are used under both REO and REC

Table 1: Layers of the CNN and kernel size proposed by Ma et al. [34].

Index Layer Kernel size
1 Convolution layer 5× 5
2 Average pooling layer 2× 2
3 Convolution layer 5× 5
4 Average pooling layer 2× 2
5 Fully connected layer —

Feature
maps

Input
Convolutional

layer 1

Pooling
layer 1

Convolutional
layer 2

Pooling
layer 2

Out put

Pooled
feature
maps

Feature
maps Pooled

feature
maps

Fully
connected

layer

Figure 2: Example of the CNN structure.

Input

Output
160 60 × 156 × 6 30 × 78 × 6 26 × 74 × 6 13 × 37× 6

64 5

5
2

2
5

5 2
2

66
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Convolutional
layer 1

Convolutional
layer 2Pooling

layer 1

Pooling
layer 2

Fully connected
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Figure 3: Structure of the CNN proposed by Ma et al. [34].
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conditions. Recording time of the first 60 seconds is used for
each condition. ,is is because the presence of more dis-
criminating characteristics of the EEG is close to the be-
ginning of the recording [36].,is signal is then divided into
60 subsets of one second each. After this division, 25 subsets
will be used for training, five will be used for validation, and
30 will be used for testing. ,ere will be three sample sets
used, which are REO, REC, and REO combined with REC.
,ere are a total of 2725 training samples, 545 validation
samples, and 3270 testing samples for REC and REO,
whereas for a combination of the REC and REO, it will have
5450 training samples, 1090 validation samples, and 6540
testing samples. In this study, subjects that are included in
the dataset will be used for classification. Additional im-
postor subjects are not included.

2.3. Data Preparation. ,ere are six types of input methods
of the EEG compared in this study (Table 3). ,ree matrices
and three images are compared. ,e three matrices are
stored as images because images have manageable storage
size.

2.3.1. Matrix of Amplitude versus Time, M1. ,e first type of
input is a matrix of amplitude versus time M1, as in the work
of Ma et al. [34]. ,e arrangement of channels will use the
default arrangement given by the dataset [35], as shown in
Figure 4.

,e matrix size is N × Fs, where N is the number of
channels and Fs is the sampling frequency. In this case, the
matrix size will be 64×160 because the data are partitioned
into one second segment, the number of channels is 64, and
the sampling rate of EEG recording is 160Hz. ,e com-
ponents in the matrix are stored from the EEG by using the
formula:

M1(i, t) � xi(t), (1)

where i is the channel of the sampling point, t is the time of
the sampling point, and xi(t) is the amplitude of the
sampling point of channel i at time t. ,e example for matrix
M1 is shown in Figure 5.

2.3.2. Matrix of Energy versus Time, M2. ,e second type of
input data is the matrix of time versus energy M2. ,is input
data matrix can be seen in the work of Sakhavil et al. [37] of
motor imagery classification using CNN but is never used
yet for EEG biometric identification. ,e Hilbert transform

is applied on the input signal x(t) and computes the in-
stantaneous energy for each of the time points in one second
of EEG. ,erefore, the matrix is 64×160. ,e Hilbert
transform of the time series is calculated using the formula
[38]:

H xi(t)( 􏼁 � 1
π PV􏽚

​−∞

∞

xi(τ)

t− τ
dτ, (2)

where xi(t) is the input time series and PV is the Cauchy
principal value. Next, the analytic EEG signal zi(t) is build
from the Hilbert transform using the formula [38]:

zi(t) � xi(t) + jH xi(t)( 􏼁, (3)

where the real part of the signal xi(t) is the original value of
the time point. ,e imaginary part jH(xi(t)) is the Hilbert
transform of the time point.

,e energy for channel i at a certain time point t, Ei,t, is
computed using the formula:

Ei,t � H xi(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
, (4)

where H(xi(t)) is the Hilbert transformed signal. ,e
computed energy is stored in matrix M2 using the formula:

M2(i, t) � Ei,t. (5)

,e example for matrix M2 is shown in Figure 6.

2.3.3. Matrix of Amplitude versus Time for Rearranged
Channels, M3. ,e third type of input data matrix is the
rearrangement of channels according to the Pearson cor-
relation coefficient, which was proposed by Wen et al. [39]
for emotion recognition using CNN. Similar to M2, this
data matrix has not been used in EEG biometric
identification.

,e Pearson correlation coefficient is the statistical value
of linear correlation between two variables [40]. In their
application, it is used to evaluate the relevant information
between two electrodes (known as channel). ,e value of the
coefficient ranges from −1 to 1, showing the negative linear
correlation and positive linear correlation. Value 0 means
there is no correlation between two variables. ,e Pearson
correlation coefficient is computed for EEG using the
formula:

ρxy �
􏽐
​t
i�1 xi − x( 􏼁 yi −y( 􏼁

�����������

􏽐
​t
i�1 xi −x( 􏼁

2
􏽱 �����������

􏽐
​t
i�1 yi −y( 􏼁

2
􏽱 , (6)

where ρxy is the computed coefficient, xi and yi are the two
signals from different channels, x is the mean of signal xi,
and y is the mean of signal yi.

,e rearrangement of channels started by placing
channel one and the most correlated channel on the top
most of the matrix. ,is step is then repeated for the rest of
the channels, concatenating correlated channels next to each
other. After the rearrangement, the amplitude of each
sampling points is stored in matrix M3 using equation (1).
,e matrix size will be 64×160. ,e example for matrix M3
is shown in Figure 7.

Table 2: Parameters and values.

Parameter Value
Learning rate 0.001
Batch normalization L2 normalization
L2 Regularization 0.0005
Mini-batch size 100 (REO or REO), 200(REC+REO)
Optimizer Stochastic gradient decent
Training repetitions 30
Momentum 0.9
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2.3.4. Image of Amplitude versus Time, I1. After the com-
putation of matrix M1, each value of its components is scaled
from 0 to 255 and stored as image I1. Storing EEG in image
format makes it more feasible as it requires smaller storage

space. However, there are no existing work in EEG-based
identification that stores EEG in image format. ,e matrix is
stored as an image using the formula:

Table 3: Type of input methods.

Input Type Size Description
M1 Matrix 64×160 Matrix of amplitude versus time
M2 Matrix 64×160 Matrix of energy versus time

M3 Matrix 64×160 Matrix of amplitude versus time for
rearranged channels

I1 Image 64×160 Image of amplitude versus time
I1 Image 64×160 Image of energy versus time

I1 Image 64×160 Image of amplitude versus time for
rearranged channels
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FPz FP2

AF7 AF3
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28
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43 41 8 9 10 11 12 13 14 42
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48 49 50 51 52 53
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F5 F3 F1 Fz
F2 F4
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Figure 4: Default arrangement of EEG channels.
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I1(i, t) �
M1(i, t)−M1min

M1max
−M1min

× 255, (7)

where i is the channel of the sampling point, t is the time of
the sampling point, M1max

is the maximum value in M1, and
M1min

is the minimum value in M1.,e example for image I1
is shown in Figure 8.

2.3.5. Image of Energy versus Time, I2. To form an image of
matrix M2, the values in the matrix are scaled from 0 to 255
and stored in image I2 using the formula:

I2(i, t) �
M2(i, t)−M2min

M2max
−M2min

× 255, (8)

where i is the channel of the sampling point, t is the time of
the sampling point, M2max

is the maximum value in M2, and
M2min

is the minimum value in M2.,e example for image I2
is shown in Figure 9. Similarly to image I2, there are no
existing works in EEG-based identification that computes
energy from EEG and stored in image format. It is suggested
that the image format is easier for data storage and
management.

2.3.6. Image of Amplitude versus Time for Rearranged
Channels, I3. By referring to matrix M3, image I3 is formed.
In the literature, there are no approaches in EEG-based
identification that stored EEGmatrices in image format. It is
predictable that image of the EEG can ease researchers to
manage the storage in a convenient way. ,e values in the
matrix are scaled from 0 to 255 and stored in image I3 using
the formula:

I3(i, t) �
M3(i, t)−M3min

M3max
−M3min

× 255, (9)

where i is the channel of the sampling point, t is the time of
the sampling point, M3max

is the maximum value in M3, and
M3min

is the minimum value in M3.,e example for image I3
is shown in Figure 10.

2.4. Batch Normalization. In the work of LeCun et al. [29],
batch normalization is introduced for network regulariza-
tion [41]. In their work, batch normalization is applied to

avoid overfitting of the network and to have better con-
servation of information throughout the training process.

Firstly, mean μβ and variance σ2i are calculated for the
inputs mini-batch xi to the batch normalization layer. Next,
the mean and variance are used to calculate the normalized
activations 􏽢xi using the formula:

􏽢xi �
xi − μβ

�����
σ2i + ϵ

􏽱 , (10)

where ϵ is a constant that improves numerical stability when
the variance of the mini-batch is small. In order to allow
inputs with zero mean and unit variance that are not optimal
for the layer, the batch normalization layer shifts and scales
the activations. ,e scaled activation zi is calculated using
the formula:

zi � c􏽢xi + β, (11)

where β is the offset and c is the scale factor. Both the
parameters are learnable during training of the CNN. When
the training is done, mean and variance are calculated for the
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full training set and then stored. While predicting using the
trained CNN, the trained mean and variance will be used to
normalize the activation.

Experiments using six types of input data are repeated by
adding batch normalization layers in between the convo-
lution layer and pooling layer.

3. Results and Discussion

,eperformance of each type of input is measured using two
identification accuracies in terms of percentage, which are
the validation accuracy and testing accuracy. ,e identifi-
cation accuracies are obtained using a threefold cross val-
idation. Both of the identification accuracies are calculated
using the formula:

accuracy �
􏽐CP

􏽐NP
, (12)

where CP is the correct prediction and NP is the number of
prediction done. Each of the identification accuracies is
tabulated.

First, Table 4 shows the identification accuracy using the
REC dataset. Among the input types, matrix M1 showed the
highest validation and test accuracies, which are 74.86% and
67.04%, respectively.,e image I1 presents validation and test
accuracies which are slightly below matrix M1. ,is scenario
shows that there was some information lost in between the
conversion of matrix to an image. On the other hand, con-
verting M2 into image I2 improved the validation and test
accuracies. ,e values of power computed are large, costing
complex calculation in the training of CNN. ,e conversion
of matrix to image scaled the values into the range from 0 to
255, which normalized the larger values in the matrix.

At the same time, it was found that rearrangement of
the channels according to the correlation is ineffective in
representing the EEG. ,e implementation of image and
matrix both shows validation and test accuracies lower than
40%. It is worth noting that channel reorganization alters
the 2D spatial information presented by the matrix or the
image. As our convolutional layers in CNN are using 2D
filters, different features are extracted by these layers from
the rearrangement of the channels, as compared to those
extracted from the original EEG sequence. During the
rearrangement of channels, important edges and patterns
represented by the original EEG are lost, and there are no
discriminating features that can be extracted during the
training of CNN, thus causing low validation and testing
accuracy.

,e identification accuracy using the REO dataset is
tabulated in Table 5. From Table 5, matrix M1 presented the
highest validation and test accuracy. Mapping the original
data from EEG into a matrix preserves the information for
each individual. Similarly, image I2 has higher validation
and test accuracy than matrix M2 due to the normalized
values in the matrix-to-image conversion. Rearranging the
channels of REO EEG shows similar validation and test
accuracy with the REC, which is relatively low. Both M3 and
I3 show validation and test accuracy lower than 30%.

Table 6 presents the identification accuracy, using the
dataset of REO combined with REC. In using the
REO+REC dataset, matrix M1 also presents the highest
identification accuracy. It shows that storing raw EEG in
matrix format effectively brings out the important in-
formation for the training of CNN. For the computation of
power for the raw EEG, image I2 outperformed matrix M2
due to the normalization of the values. From the result, the
implementation of rearranging the EEG channels is not
effective, even with using the combination of REO and REC.

To have a better analysis of the best input type for each
dataset, their identification accuracies are tabulated in Ta-
ble 7. It can be seen that matrix M1 shows the best per-
formance among each dataset used. ,e raw EEG contains
patterns and information which can discriminate each
subject. Such a property makes EEG a suitable trait for
biometrics. In comparison to using REC or REO dataset
itself, the combination of both achieved a higher validation
and test accuracy. ,e combination of the REC and REO
provides extra information for the training of CNN, making
the trained model to be more robust towards different
individuals.

By converting matrix M1 into an image, it can ease the
dataset management by implementing into other existing
structures of machine learning which are image-based
implementation. From the results, image I1 did not per-
form as well as matrix M1. However, in the use of the
REO+REC dataset, image I1 presented an elevated vali-
dation and test accuracy of 78.66% and 72.31%, respectively.
It is suggested that implementing image I1 using the
REO+REC dataset for biometrics is acceptable for easier
handling of large dimension datasets.

4. Conclusion

From the experiment, arranging raw EEG in the form of
matrix presents the best identification accuracy by using the
REO+REC dataset. Referring to this, it is noticeable that
resting states eyes close and eyes open should be used

Table 4: Identification accuracy using the REC dataset.

Type of input REC Validation accuracy (%) Test accuracy (%)
M1 74.86 67.04
M2 37.80 37.21
M3 30.40 25.45
I1 62.64 59.80
I2 59.39 52.56
I3 19.88 16.01

Table 5: Identification accuracy using the RE0 dataset.

Type of input REC Validation accuracy (%) Test accuracy (%)
M1 81.47 74.10
M2 44.22 38.87
M3 29.88 25.80
I1 65.81 59.03
I2 64.95 56.67
I3 19.33 16.16
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together as a trait for biometrics. Conversion of matrix to
image can cause information loss, but when using the
REO+REC dataset, it presented an acceptable range of
results. Processing image form of raw EEG provides ad-
vantages such as less storage space, easier storage man-
agement, and dataset sharing among researchers. In
addition, it was found that by rearranging the channels
according to their correlation removes patterns and in-
formation from the raw EEG, which is not suitable for the
application of EEG biometrics. It was also found that scaling
and storing the power computed from the raw EEG into
image form can improve the identification accuracy. ,is is
because huge power values are normalized when they are
rescaled into a range from 0 to 255 in the conversion process.
,is study concludes that matrix form of raw REO+REC
EEG is sufficient for a robust biometric identification system.

Data Availability

Previously reported EEG data were used to support this
study and are available at https://www.physionet.org/
physiobank/database/eegmmidb. ,ese prior studies (and
datasets) are cited at relevant places within the text as ref-
erences [35]. ,e data used to support the findings of this
study are available from the corresponding author upon
request.
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