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Detecting COVID-19 in computed tomography (CT) or radiography images has been proposed as a sup-
plement to the RT-PCR test. We compare slice-based (2D) and volume-based (3D) approaches to this
problem and propose a deep learning ensemble, called IST-CovNet, combining the best 2D and 3D sys-
tems with novel preprocessing and attention modules and the use of a bidirectional Long Short-Term
Memory model for combining slice-level decisions. The proposed ensemble obtains 90.80% accuracy
and 0.95 AUC score overall on the newly collected IST-C dataset in detecting COVID-19 among normal
controls and other types of lung pathologies; and 93.69% accuracy and 0.99 AUC score on the publicly
available MosMedData dataset that consists of COVID-19 scans and normal controls only. The system also
obtains state-of-art results (90.16% accuracy and 0.94 AUC) on the COVID-CT-MD dataset which is only
used for testing. The system is deployed at Istanbul University Cerrahpas�a School of Medicine where it
is used to automatically screen CT scans of patients, while waiting for RT-PCR tests or radiologist
evaluation.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

COVID-19 is a highly contagious disease caused by the SARS-
CoV-2 virus, which spread rapidly around the world starting early
2020 (Zhu et al. [1]). The definitive diagnosis of COVID-19 is based
on real-time reverse transcriptase polymerase chain reaction (RT-
PCR) positivity for the presence of coronavirus [2,3].

Due to the long duration to obtain the RT-PCR results and the
prevalence of false negative results [4], the medical community
has been in search of alternative or supplementary methods,
including screening chest X-ray or Computed Tomography (CT)
scans of patients for patterns of pneumonia caused by the
COVID-19 infection. This work originated at Istanbul University-
CerrahpaS�a Hospital, to automatically analyze CT scans while the
patient is still in the tomography room, for successful containment
of infected cases.

The chest X-ray consists of a single 2-dimensional, frontal
image of the thorax, while a chest CT scan consists of a variable
number of 2-dimensional axial slice images. The number of slices
in a CT volume vary (typically 200–500) and the shape and size
of lung tissue within the slice vary significantly between slices.
Hence, detection of COVID-19 infection in a chest X-ray presents
as a typical image classification problem, while the CT scan pro-
vides a richer, but also more challenging input.

Detecting computed tomography or X-ray images has been
studied widely since the beginning of the pandemic [5–14]. Some
of these systems only address the 2-class problem: distinguishing
between normal and COVID-19 infected parenchyma (e.g [11,12]),
while others aim detect COVID-19 infection among all possible
conditions (normal lung parenchyma and other lung pathologies,
including other types of pneumonia). The latter, which is the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2022.02.018&domain=pdf
https://doi.org/10.1016/j.neucom.2022.02.018
mailto:sara.atito@gmail.com
mailto:mehmetyavuz@sabanciuniv.edu
mailto:mehmetyavuz@sabanciuniv.edu
mailto:umutsen@alumni.sabanciuniv.edu
mailto:fatih.gulsen@istanbul.edu.tr
mailto:fatih.gulsen@istanbul.edu.tr
mailto:onur.tutar@istanbul.edu.tr
mailto:bora.korkmazer@istanbul.edu.tr
mailto:bora.korkmazer@istanbul.edu.tr
mailto:cesur.samanci@istanbul.edu.tr
mailto:sabri.sirolu@istanbul.edu.tr
mailto:rauf.hamid@istanbul.edu.tr
mailto:ali.eryurekli@istanbul.edu.tr
mailto:toghrul.mammadov@istanbul.edu.tr
mailto:toghrul.mammadov@istanbul.edu.tr
mailto:berrin@sabanciuniv.edu
https://doi.org/10.1016/j.neucom.2022.02.018
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


Fig. 1. IST-C dataset samples. The ground glass opacities can be observed in the COVID-19 images, marked with the ellipses.

3 https://github.com/verimsu/IST-C-dataset
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problem addressed in this work, is a significantly more difficult
problem as non-COVID-19 pneumonia presents similar patterns
to COVID-19.

We developed a deep learning ensemble (IST-CovNet) for
detecting COVID-19 infections in high resolution chest CT scans,
where we compare and combine slice-based and volume-based
approaches. The slice-based approach takes individual slices as
input and outputs the COVID-19 probability for that slice. The sys-
tem is based on transfer learning using the Inception-ResNet-V2
[15] network that is expanded with a novel attention mecha-
nism [16]. To obtain the patient-level decision from slice-level pre-
dictions, we have evaluated different classifier combination
techniques, including simple averaging and Long-Short Term
Memory (LSTM) networks.

The volume-based approach is based on the DeCoVNet
architecture of Wang et al. [9] with some modifications to the
architecture. In both approaches, we make use of the pretrained
U-Net [17] architecture to focus on the lung regions in the slice
images. To combine 2D and 3D systems, we used ensemble aver-
aging, multi-variate regression and Support Vector Machines
(SVMs).

A new dataset (IST-C) is collected at Istanbul University-
Cerrahpas�a, Cerrahpas�a Faculty of Medicine (IUC), consisting of
712 chest CT scans collected from 645 patients. It includes samples
from COVID-19 infected patients, as well as normal lung parench-
yma and Non-COVID-19 pneumonia, tumors and emphysema
patients. Fig. 1 shows three samples from the IST-C dataset col-
lected in this work, including a typical COVID-19 involvement pat-
tern termed as ground glass opacity, along with normal lung
parenchyma and other conditions including non-COVID-19 pneu-
monia, tumors and emphysema.

The contributions of this work are the following:

� We present a deep neural network ensemble (IST-CovNet) that
combines 2D (slice-based) and 3D (volume-based) approaches
and achieves state-of-art accuracies on the publicly available
MosMedData [18] and the IST-C dataset collected in this work.
The proposed system also obtains close to state-of-art results
on the COVID-CT-MD [19] dataset which is not used for train-
ing, demonstrating the inter-operability of the proposed
system.
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� Rather than adopting a single approach as done commonly in
the COVID-19 AI literature, we compare 2D and 3D approaches,
along with relevant preprocessing, attention and combination
alternatives on 3 different data sets, and combine the best sys-
tems to obtain the final ensemble classifier. Our approaches
include novel aspects that contribute to improved performance,
such as a new attention model and slice-level combination
using LSTMs in the 2D system and an extended novel architec-
ture in the 3D approach.

� We have collected a medium-size dataset consisting of 712 high
resolution chest CT scans from 645 people, showing normal
lung parenchyma, COVID-19 infections, as well as other
pathologies (including non-COVID-19 pneumonia, tumors and
emphysema). The IST-C dataset is made public along with our
results as benchmark3.

� The system is deployed at one of the biggest hospitals in Turkey
(Istanbul University Cerrahpas�a School of Medicine), to screen
for CT scans that show COVID-19 infections for timely contain-
ment of infected patients.

2. Related Works

Automatic COVID-19 detection research in literature have tar-
geted both chest X-rays [5,11,6] and CT scans [7–10] as input
and there have been many systems published in peer-reviewed
venues or pre-print sites since the beginning of the pandemic.
There are also systems that aim to leverage the potential of the
two biomedical imaging modalities, taking as input both a chest
CT and a chest X-ray [13,14,20].

Comprehensive literature reviews can be found in surveys
about artificial intelligence (AI) based approaches to COVID-19 in
[24–26]. Among these surveys, Ozsahin et al. [26] structure their
survey into 3 groups: systems aiming to differentiate between i)
COVID-19 versus normal lung parenchyma, ii) COVID-19 versus
non-COVID-19 (sometimes called COVID-19 negative) consisting
of both normal lung parenchyma and other types of pneumonia,
and iii) COVID-19 versus other types of pneumonia. Systems
included in this survey report the accuracy and/or the Area Under
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the Curve (AUC) score related to the Receiver Operating Character-
istic (ROC) curve. State-of-art results are above 90% accuracy and
0.95 AUC for the first problem (i) and approximately 88% accuracy
and 0.90 AUC for the second problem (ii).

AI based COVID-19 detection approaches are twofold: 2D or
slice-based approach, taking a single slice image as input and obtain
a score for individual slices [11] and 3D or volume-based approach,
taking the whole volume (sequence of slices) as the input and pro-
duce a single score for the patient [7–9,6]. Note that while a patient
may have more than one CT scan, we treat each CT scan as if it
belongs to a unique patient and use the terms CT-level and
patient-level interchangeably in this work.

In slice-based models, output scores of slices are often com-
bined by averaging, to obtain the patient-level scores and deci-
sions. Among volume-based approaches, most systems use
adaptive-pooling operation for combining slice level features
[8,9], while others use a more implicit combination using Recur-
rent Neural Networks (RNN) [6]. An advantage of 2D models is
the direct interpretability while the 3D models is potentially more
powerful as they leverage end-to-end optimization rather than a 2-
stage process of obtaining patient-level scores after slice-level
scores.

In the remainder of this section, we focus on a subset of the lit-
erature due to space limitations, reporting systems that analyze CT
scans (not X-rays), address the problem of separating COVID-19
samples from all non-COVID-19 samples (not just normal lung par-
enchyma), and appear on peer-reviewed venues. While we include
performance results reported in the referenced works, it should be
kept in mind that most of the results cannot be directly compared,
as the test datasets or experimental settings vary between systems.

Li et al. [8] developed a model called COVNet, that is based on
the Resnet [15] backbone. The varying number of CT slices are
input into parallel branches that use shared weights and the deep
features extracted from each are combined by a max-pooling oper-
ation. They report 0.96 AUC score on the 3-class classification prob-
lem of distinguishing between normal lung parenchyma, COVID-19
and other lung pathologies.

Wang et. al. [9] use the pretrained U-Net [17] architecture to
segment lung regions and obtain the lung mask volume. Then,
the proposed DeCovNet takes the whole CT volume along with
the corresponding lung mask volume as input, and outputs a
patient-level probability for COVID-19. The variable number of
slices is handled using adaptive maxpool operation. Authors report
%0.91 accuracy and a 0.959 AUC score on the 2-class problem of
separating COVID-19 positive cases from all others (non-COVID-
19, including other pneumonia).

Hammoudi et al. [6] split a chest X-ray into patches and after
obtaining patch-level predictions using deep convolutional net-
works, they use bidirectional recurrent networks to combine them
to predict patient health status.

Liu et al. [10] fine-tune well-known deep neural networks for
the primary task of detecting COVID-19 and the auxiliary task of
identifying the different types of COVID-19 patterns (e.g. ground
glass opacities, crazy paving appearance, air bronchograms)
observed in the slice-image. They report that using the auxiliary
task helps with the detection performance, which reaches 89.0%
accuracy.

Harmon et al. [27] test the performance of a baseline deep neu-
ral network approach in a multi-center study. The approach con-
sists of lung segmentation using AH-Net [28] and the
classification of segmented 3D lung regions by pretrained Dense-
Net121 [29]. On a 1,337-patient test set, they report an accuracy
of 0.908 and AUC score of 0.949.

Among systems that report on the MosMedData dataset, Jin
et al. [30] propose a slice-based approach employing ResNet-152
[31] architecture. The developed model achieved comparable per-
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formance to experienced radiologists with an AUC score of 0.93. He
et al. [32] propose a differentiable neural architecture search
framework for 3D chest CT-scans classification with the Gumbel-
Softmax technique [33] to improve the searching efficiency. The
experimental results show that their automatically searchedmodel
outperforms three of the state-of-the-art 3D models achieving an
accuracy of 82.29% on MosMedData dataset.

In a critical study, Maguolo and Nanni [34] show that some
automatic COVID-19 detection systems achieve high accuracies
even when the lung region is masked in chest X-rays, indicating
that the underlying neural networks are learning patterns in the
data that are not correlated to the presence of COVID-19. They also
discuss how to construct a fair testing protocol. Our single-channel
3D system that achieves the best results in all datasets inputs CT
scans that are masked with the lung mask (hence, we can assert
that there is no information leakage outside of the lung region).
Similarly, our 2D system attends to the lung areas, due to the
PCA-based attention module.

In another recent and well-publicized survey, Roberts et al. [35]
analyze all COVID-19 AI papers published in the first 9-months
period of 2020, in terms of their potential potential biases, accord-
ing to the criteria indicated in [36]. After filtering the 2,212 papers
found in an initial search according to relevance and quality, the
remaining 62 papers were analyzed in depth. Authors conclude
that ‘‘none of the models identified are of potential clinical use
due to methodological flaws and/or underlying biases.” While this
work points out to some important biases in machine learning sys-
tems for Covid-19 detection, it is worth pointing out with this cat-
egorization, any system evaluated on a public dataset is directly
categorized as having a high risk of ‘‘participant bias” (since the
participants cannot be verified) and all deep learning approaches
are categorized as having high risk of ‘‘predictor bias” (since deep
features are deemed as ‘‘abstract and unknown imaging features”).
In our work, we evaluate the proposed system on two large public
datasets (one not used in training at all) and one private dataset
collected in the scope of this work, to address participation and
outcome biases. We also report cross-validation results for our
final system, to eliminate analysis bias. The results obtained on
the unseen data [19] are state-of-art (in AUC) and also close to
the results obtained on the other two datasets, attesting to the gen-
erality of the system.
3. IST-C Dataset

While there are many works on automatic detection of COVID-
19 infection on X-ray or CT images, there were only a handful pub-
licly accessible COVID-19 CT scan datasets at the time of the prepa-
ration of this manuscript, shown in Table 1. Three of these datasets,
CC-19 [21], MosMedData dataset [18] and BIMCV-COVID19 [22]
only contain COVID-19 and normal lung parenchyma. On the other
hand, in MosMedData, the COVID-19 samples are also labelled
with the severity of the infection in 4 levels (CT-1 to CT-4). In addi-
tion to using two large public datasets [18,19] in evaluating the
system developed in this study, we have also collected a new
open-source dataset called IST-C, retrospectively from patients
admitted to the Radiology department of Cerrahpas�a Faculty of
Medicine from March 2020 to August 2020. The collected dataset
consists of 336 chest CT scans that are positive for COVID-19, along
with 245 scans showing normal lung parenchyma and 131 scans
from Non-COVID-19 pneumonia, tumors and emphysema patients.
The COVID-19 scans are selected by expert radiologists from
among the patients to whom CT is performed with clinical suspi-
cion of COVID-19 in the emergency department. These two last
groups will be called simply as ‘‘Normal” and ‘‘Other” from here
on. The detailed statistics of the dataset are shown in Table 2.



Table 1
Some of the publicly available COVID-19 CT scan datasets. The first four datasets contain scans of only COVID-19 infected patients and those with normal lung parenchyma. IST-C
dataset collected in this work includes non-COVID-19 pneumonia, tumors and emphysema as well.

Dataset Description Resolution # CT Scans # Slices # COVID-19 # Normal # Others

CC-19 [21] CT scans collected from 3 different hospitals
and 6 different scanners

High 89 34,006 68 21 0

MosMedData [18] CT scans with indicated COVID-19 severity
level (4 levels)

High 1,110 46,411 856 254 0

BIMCV-COVID19[22] COVID-19 and Normal only High 2,068 314,056 1,141 927 0
COVID-CT-MD [19] COVID-19, Normal and Other High 305 45,471 170 77 61
HKBU-HPML-COVID-19 [23] COVID-19, Normal and Other Collected

from different hospitals
High 6,878 406,449 2,513 1,927 2,435

IST-C (this work) COVID-19, Normal, Other CT scans from one hospital High 712 200,647 336 245 131

Table 2
Overview of the IST-C dataset: COVID-19 infections are all people diagnosed with the
infection; ‘‘Normal” is everyone with no infection whatsoever; ‘‘Other” is all other
types, including pneumonia, tumors and emphysema.

# Patients # CT volumes Total # slices Avg # slices/person

COVID-19 300 336 92,905 276 � 83
‘‘Normal” 245 245 67,712 277 � 67
‘‘Other” 131 131 40,030 306 � 98
Overall 645 712 200,647 282 � 82
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The collected CT scans in DICOM format consists of 16-bit gray
scale images of size 512� 512. Each scan is accompanied with a set
of personal attributes, such as patient ID, age, gender, location,
date, etc. (not used in this work). The average age of the patients
is 52� 17 years, in which 405 of the patients are male and 274
patients are female.

The annotation of this dataset is at CT scan level: the CT of a
patient as a whole is labelled as COVID-19, ‘‘Normal”, or ‘‘Other”
by expert radiologists at Istanbul University-Cerrahpas�a, Cer-
rahpas�a Faculty of Medicine.

Sample images extracted from COVID-19, ‘‘Normal” and ‘‘Other”
classes are shown in Fig. 1. The anonymized dataset is now shared
publicly at http://github.com/verimsu.

4. Preprocessing

Pixel values of images in a CT scan are in Hounsfield Unit (HU),
which is a radiodensity measurement scale that maps distilled
water to 0 and air to �1000. The HU values range between
�1024 and 4096, with higher values being obtained from bones
and metal implants in the body and lung regions typically ranging
in �1024;0½ �. Similar to literature, we process chest CT scans such
that values higher than umax ¼ 600 are mapped to umax and the
range �1024;umax½ � is normalized to the 0;1½ � linearly.

Slice images that are originally 512� 512 are resized to match
the input size of the respective deep networks, namely 299� 299
for slice-based system and 256� 256 for the volume-based sys-
tem. For the 3D approach, we have also reduced the slice count
by half, so that the whole CT volume consisting of up to around
500 slice images fits in the GPU memory. We compared two alter-
natives for this: interpolation of two subsequent slices and skip-
ping every other slide. We found that the latter results in higher
accuracy, even though interpolation is commonly used in many
biomedical applications. This reduction is done for only the IST-C
dataset where the number of slices per CT scan is high (Table II).

5. Lung Segmentation

Lung shapes vary greatly within a chest CT scan, as can be seen
in Fig. 1. With the aim of focusing on the lung areas, we make use
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of the pretrained U-Net network to segment lung regions from
non-lung areas. Focusing to lung areas is possible by masking the
input with the lung mask as done in the 3D system or guiding
the attention of the network to the lung areas. This step is found
to be quite important in reducing overfitting [37], as well as infor-
mation leakage found in some previous COVID-19 detection sys-
tems [34].

The U-Net architecture was first proposed by Ronneberger et al.
[17] for biomedical image segmentation in general and trained
specifically for lungs by Hofmanninger et al. [38]. Since then it
has been used in detecting lung regions extensively in the diagno-
sis of lung health [7–9]. The U-Net network, shown in Fig. 2, is
named after the U-shape formed by the encoder branch consisting
of convolutional layers and the decoder branch consisting of
deconvolution operations. The network also has skip connections
in each layer, carrying the output of earlier layers to later layers.

Lung segmentation is applied to individual slices in the CT vol-
ume. The output for each slice is the corresponding binary segmen-
tation mask, separating lung areas (including air pockets, tumors
and effusions in lung regions) from background or other organs,
as shown in Fig. 3. The segmentation extracts left and right lungs
separately, although this information is not used in our model.

Lung segmentation with U-Net is very successful, as reported in
[38] and also observed in our case. Nonetheless, in order not to
miss infected regions, we dilated the masks with a 10-pixel struc-
turing disk. Sample slices from the IST-C dataset and corresponding
lung masks obtained by U-Net and the dilated masks are shown in
Fig. 3.

6. Slice-based Approach

In the 2D approach, CT slices are analyzed independently,
before combining them to obtain patient-level predictions.

6.1. Base Model

To construct the base network architecture, we employed
Inception-ResNet-V2 architecture [15], one of the top-ranked
architectures of the ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC) 2014 [39]. The network architecture was used suc-
cessfully in various image classification and object detection tasks
[40,41].

Inception-ResNet-V2 network is an advanced convolutional
neural network that combines the inception module with ResNet
[31] to increase the efficiency of the network. The network is 164
layers deep with only 55:9 million parameters. It consists of three
main reduction modules with 10, 20 and 10 inception blocks,
respectively. The size of the output feature maps of the three
reduction modules are 35� 35;17� 17, and 8� 8, respectively.

Training a large deep learning network from scratch is time
consuming and requires a tremendous amount of training data.



Fig. 2. Segmentation network U-Net [17]: input is a slice image and the output is the corresponding lung mask.

Fig. 3. Sample slice images along with their segmentation masks as obtained by U-
Net and dilated masks.
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Therefore, our approach is based on fine-tuning a pre-trained
Inception-ResNet-V2 model, that is originally trained on the Ima-
geNet dataset with 1.2 million hand-labeled images of 1,000 differ-
ent object classes.

6.2. Attention Mechanism

To investigate the predictions of the trained base model, we
applied Class Activation Mapping (CAM) [42] on some of the
images from the validation set. Observing that the attention of
the network is not always directed to the area of interest (lung tis-
sues) in misclassified images, we decided to use attention maps
and thereby guide the network to the regions that are important
to the problem at hand. Attention mechanism has been success-
fully applied in many computer vision tasks, including fine-
grained image recognition [43] and face attributes classification
[44].

We add an attention map block inserted to the backbone of our
base network, as shown in Fig. 4. The input to the attention layer is
a convolutional feature map F 2 RH�W�C , where H;W , and C are the
height, width, and the number of channels, respectively. The out-
put of the attention module is the masked feature map
F0 ¼ F� r U Fð Þð Þ, obtained via element-wise multiplication of the
feature maps F and sigmoid (r) attenuated attention layer output,
U Fð Þ 2 RH�W .

Unlike the standard approach of learning the attention layer
fully within the network, the approach used in this work is sug-
gested to be an explainable and modular approach [16]. It makes
the assumption that an attention map can be represented using
the linear combination of a set of basis vectors, as:
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U Fð Þ ¼ Mþ B� a
where M 2 RH�W is the average segmentation map; H and W are the
height and width of the images; B 2 RH�W�n is the matrix of the n

basis vectors; and a 2 Rn�1 are the coefficients.
The average lung mapM and the 12 basis vectors B are obtained

by applying Principal Component Analysis (PCA) to lung masks
obtained by U-Net segmentation network. The 12 basis vectors
that retain approximately 75% of the variance are shown in Fig. 5
and U-Net is explained in Section 5.

To obtain the attention map coefficients a, an additional convo-
lutional block is inserted to the network getting the input from the
feature maps F, as shown in Fig. 4. The convolutional block consists
of a separable convolutional layer which is a depth-wise convolu-
tion performed independently over each channel of an input, fol-
lowed by a pointwise convolution, batch normalization, and ReLU
activation function. The output of the convolutional block (or
attention coefficient block) are the weights a which form the coef-
ficients in the linear basis vector representation.
6.3. Implementation Details

The Inception-ResNet-V2 network used as the base model in the
slice-based approach is chosen due to its relatively small size and
good performance. The network has an RGB image input size of
299� 299. The output layer of the model is replaced with a fully
connected layer with 2 units to represent the given classes:
COVID-19 vs Non-COVID-19 (including ‘‘Normal‘‘ and ‘‘Other‘‘
samples). All the layers in the classification network are finetuned
and optimized using categorical cross-entropy loss function.

For the attention based model, we added the attention layer
after the first reduction block as shown in Fig. 4. As for the atten-
tion loss function, we trained the network in unsupervisedmanner.
Even in the absence of the attention map supervision, we found
that the attention module is able to learn the discriminative
regions automatically.

The implementation is done using the Inception-ResNet-V2
model provided in the Matlab deep learning toolbox. Several com-
monly used data augmentation techniques are applied during
training, such as rotation ([�5; 5] degrees), x and y translation
([�5;5] pixels), and x and y scaling ([0:9;1:1]).

For all 2D systems, we set the batch size equal to 64 and the ini-
tial learning rate as 1e-5 with a total of 50 epochs using the Adam
optimizer. The training process takes around 100 min per epoch for
the IST-C dataset and 40 min per epoch for the MosMedData data-
set using an 8 GB Nvidia GeForce RTX 2080 GPU.



Fig. 4. The base network and the inserted attention-based layer. Attention layer takes the feature maps F as an input and estimate the attention map U Fð Þ, which is then used
to attend to the original features after a sigmoid activation.

Fig. 5. (a) Mean mask M and (b) The first 12 eigenvectors.
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6.4. Combining Slice-level Predictions

The straightforward approach to obtain patient-level decision is
to combine the predictions of the slice based model using simple
averaging of slice-level predictions. This is evaluated as the base
model, to obtain the patient-level score.

However, simple averaging does not take into account the infor-
mation about the characteristics of COVID-19 infection, such as the
fact that the patterns are often seen in the lower parts of the lungs.
To learn this type of information about the slice sequence and to
also handle the variable length of the slice sequence, we also used
Recurrent Neural Networks (RNNs) as an alternative [45].

We used Long Short-Term Memory (LSTM) network [46] that is
the most powerful type of recurrent network. The input to the net-
work consists of deep features corresponding to each slice in the CT
volume. The features are extracted from the last pooling layer of
the slice-based CNN model with the attention module, discussed
in Section 6.2. The LSTM learns to combine the slice-level features
to obtain patient-level predictions.

The LSTM architecture consists of 3 layers: i) a bidirectional
LSTM layer with 1024 hidden units and a dropout layer to reduce
overfitting; ii) another bidirectional LSTM layer with 512 hidden
units; and iii) a fully connected layer with an output size corre-
sponding to the number of classes (2 or 3 in our case). It is impor-
tant to note that the number of slices in the CT volumes varies
substantially which can introduce lots of padding into the training
process of the LSTMs and consequently negatively impact the clas-
sification accuracy. To overcome this issue, we normalized each CT
sequence into 282 slices (the mean slice count across the IST-C
dataset), by either dropping or replicating slices depending on
the length of the volume. After normalization, each slice of the
462
CT volume is passed to the trained CNN model for feature extrac-
tion. Then, the LSTM model is trained using the sequence of the
feature vectors corresponding to the slices.

7. Volume-base Approach

The 3D volume-based approach takes as input the whole CT vol-
ume and outputs patient-level decision (COVID-19 positive and
negative probabilities), based on a single step processing of the
input. It uses the lung segmentation volume obtained by U-Net
(described in Section 5), followed by a classification network based
on DeCoVNet [9].

The segmentation network (U-Net) takes as input a single slice
of the chest CT and outputs a binary mask indicating the lung
region. The classification network subsequently takes the seg-
mented CT volume and outputs the patient-level scores.

7.1. Classification network

The classification network used in our work is based on DeCoV-
Net that has been proposed byWang et al. [9]. We have made some
modifications to this network, without significantly changing its
architecture. The network consists of three consecutive blocks,
(1) Stem (2) ResBlocks (3) Classifier, as shown in Fig. 6 and detailed
in Table 3.

The stem block consists of a convolutional layer with a recep-
tive field size 5�7�7 (depth, height, width), as used in well-
known networks AlexNet [47] and Resnet [31]. The convolutional
layer is followed by a batchnorm layer and a pooling layer. We
evaluated using both a single channel input, consisting of the slice
image with the lung mask applied, as well as the 2-channel input,
consisting of the input slice and its lung mask, as in the original
network. As we expected, the 2-channel approach led to less effi-
cient training and did not bring accuracy gains.

The second block of the network is adopted without any
modification. It consists of two 3D residual blocks (ResBlocks),
with maxpool operation in between, to reduce the volume depth
by half to 64�T/2�64�64. In each residual block, there are 2 ker-
nels: 3�1�1, 1�3�3 (depth,height,width) with a stride of 1 in each
dimension and padding of 1 wherever needed. The output volume
is of size 128�T/2�32�32. This block is adopted without any
modification.



Fig. 6. Architecture of the classification network which is based on DeCoVNet [9].

Table 3
The 3D-classification network architecture. The residual blocks have two kernels.

Operation Output Penultimate

Stem Conv3d@5�7�7 16�T�64�64

ResBlocks ResBlock@3�1�1&1�3�3 64�T�64�64
MaxPool3d 64�T/2�64�64
ResBlock@3�1�1&1�3�3 128�T/2�64�64

Progressive AdaptiveMaxPool3d 128�16�32�32
Classifier Conv3d@3�3�3 96�16�32�32

GlobalPool3d 96�1�1�1
———— 2nd Block ————
MaxPool3d 96�4�16�16
Conv3d@3�3�3 48�4�16�16
Dropout3d (p = 0.5) 48�4�16�16
GlobalPool3d 48�1�1�1
———— 3rd Block ————
MaxPool3d 48�4�16�16
Conv3d@3�3�3+ReLU 48�4�16�16
GlobalPool3d 48�1�1�1
FullyConnected 2
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The third block, called the Progressive classifier, starts with an
adaptive maxpool operation that handles the variable number of
slices and outputs 128�16 feature maps of size 32�32. It is fol-
lowed by 3 convolution layers and pooling operations, followed
by a fully connected output layer with softmax activation. The
main modification in this block is to enrich the feature representa-
tion. The original DeCoVNet had a global max pooling layer with
32�1�1�1 nodes, in the penultimate layer. We extended the Pro-
gressive classifier block by adding a new layer of concatenated fea-
tures obtained using global max pool operation after each of the 3D
convolutional layers. More specifically, from a convolutional layer
with F�D�H�W output volume, the global max pooling operation
outputs a vector of size F. The resulting 192-dimensional
(96þ 48þ 48) feature vector is fully connected to the output layer
(2 nodes with softmax activation), as shown in Fig. 6. We thus
increased the penultimate layer size from 32 to 192. This feature
representation was inspired by the work in [48], where authors
proposed to approximate a deep learning ensemble by replicating
the output layer with connections from earlier layers and extend-
ing the loss function to include all the loss terms [48].

The modified classification network architecture is given in
Table 3.
7.2. Implementation Details

In training the system, the settings are the same and as follows:
the loss function is the categorical cross-entropy; the optimizer is
the Adam optimizer used with 1e-5 learning rate. Since the graph-
463
ical card Nvidia 2080 can only process a single volume at a time,
the batch size is one. We also used data augmentation exactly
the same way as DeCoVNet: scaling ([1;1:2]), rotation ([�10; 10]
degrees) and translation ([�10; 10] pixels). All 3D systems were
run for a fixed number of 200 epochs, observing validation set
accuracy at each epoch. The optimal weights were chosen as those
giving the highest validation set results. The training process takes
around 8 min for an epoch of the IST-C dataset and 4 min for an
epoch of MosMedData dataset, using an 8 GB Nvidia GeForce RTX
2080 GPU.
8. Combining Multiple Systems

After training the 2D and 3D systems, we combine output of the
systems (patient-level predictions) to obtain the final prediction. In
contrast, please note that Section 6.4 discusses the combination of
slice-level predictions to obtain patient-level predictions for the 2D
approach.

The 2D (slice-based) approach is realized with or without the
attention mechanism and using different combination mecha-
nisms to obtain the patient-level decision. Similarly, the 3D
(volume-based) approach is realized with 1-channel input where
the input is masked with the lung mask, or with 2-channel input
as in the original DeCovNet [9].

The combination methods that were evaluated were averaging,
multivariate linear regression and Support Vector Machines (SVM).
However, we only report ensemble averaging results because
multi-variate regression essentially assigned the same weights to



Table 4
Performance results for the IST-C test set with n ¼ 250 samples from 3 classes. The 2D

Sara Atito Ali Ahmed, Mehmet Can Yavuz, Mehmet Umut S�en et al. Neurocomputing 488 (2022) 457–469
the two combined systems and the SVM did not bring noticeable
improvements to justify the more complex combination method.
systems are trained with only IST-C and the 3D systems were trained with
MosMedData and IST-C training subsets. DeCoVNet results are obtained with author
supplied code. Bold figures indicate the best accuracy in slice-based or volume-based
approaches.

Model Accuracy (%) AUC

2D - Base Network + Averaging 80.80 � 4.88 0.87
2D - Base + Attention + Averaging 85.60 � 4.35 0.90
2D - Base + Attention + LSTM 87.20 � 4.14 0.89

3D - DeCoVNet [9] 78.00 � 5.14 0.78
3D - single channel - interpolation 82.80 � 4.68 0.86
3D - single channel - skipping 87.20 � 4.14 0.90
3D - two channels - skipping 81.45 � 4.82 0.86

Ensemble - Averaging (IST-CovNet) 90.80 � 3.58 0.95

Table 5
Performance results for the MosMedData [18] test set with n ¼ 222 samples from
only 2 classes (COVID-19 and Normal). Our approaches are trained using only
MosMedData training subset. DeCoVNet results are obtained with author supplied
code. Bold figures indicate the best results in the literature and among our two
different approaches.

Model Accuracy (%) AUC

Jin et al. (2D) [30] - 0.93
He et al. (3D) [32] 82.29 -
3D - DeCoVNet [9] 82.43 0.82

2D - Base + Attention + Averaging 90.09 � 3.93 0.96
9. Experimental Evaluation

We have trained and evaluated the proposed 2D and 3D
approaches along with considered submodules, with the IST-C col-
lected in this work (Section 3) and and the MosMedData dataset
[18]. These results are given in Tables 4 and 5, respectively. Fur-
thermore, we report results of the above trained models on the
COVID-CT-MD dataset [19], to evaluate inter-operability perfor-
mance. These results are given in Table 6.

We have done extensive evaluation comparing different prepro-
cessing, segmentation, architecture and ensemble methods. How-
ever for the sake of clarity, we report only the most important
experiments, using accuracy and AUC scores, in line with the liter-
ature. The accuracy values are given together with 95% confidence
intervals that are computed using the Wilson score interval
method [49] for the number of test samples in each dataset.

We split the IST-C database into training/validation/testing
data. For ‘‘COVID-19” class, 100 volumes are used for testing and
the rest are used of the training and the validation. For ‘‘Normal”
and ‘‘Others” classes, 100 and 50 volumes are used for testing,
respectively. In total, we assigned 250 volumes for testing and
462 for training and validation. The MosMed dataset was split ran-
domly as train-test, with a 80–20% split, resulting in a 222 test
samples. The full COVID-CT-MD dataset was used only for testing.
2D - Base + Attention + LSTM 91.89 � 3.59 0.95

3D - single channel - skipping 93.24 � 3.30 0.96

Ensemble - Averaging (IST-CovNet) 93.69 � 3.20 0.99

Table 6
Inter-operability results using the COVID-CT-MD [19] dataset with n ¼ 305 samples
from 3 classes. Our ensemble system was trained using only MosMedData and IST-C
datasets to measure the inter-operability of the developed system. Bold figures
indicate the best results in the literature and among our approaches.

Model Accuracy (%) AUC

COVID-FACT [50] 91.83 -
CT-CAPS [51] 89.80 0.930
Deep-CT-Net [52] 86.00 0.886

2D - Base + Attention + Averaging 75.41 � 4.84 0.838
2D - Base + Attention + LSTM 79.34 � 4.55 0.819

3D - single channel 87.87 � 3.67 0.931

Ensemble Averaging (IST-CovNet) 90.16 � 3.35 0.942
9.1. 2D vs 3D

We first compared the effectiveness of 2D and 3D approaches in
identifying COVID-19 positive samples in IST-C and MosMedData
datasets. Specifically, we evaluated the 2D approach with or with-
out using the attention module and using simple averaging or the
LSTM architecture for combining slide-level features/predictions.
For the 3D approach, we compared using a single channel as input
(the masked CT scan), two-channel (CT scan and segmentation
masks separately). Only the best configurations were evaluated
for MosMedData due to long training times needed.

For MosMedData, the systems were trained only on the training
portion of MosMedData to separate COVID-19 positive samples
from the Normal class and tested on the MosMedData test portion,
with results given in Table 5. For IST-C dataset, the systems were
pretrained with all of the 1,110-sample MosMedData and fine-
tuned on the IST-C training set.

The state-of-art results from the literature are also included when-
ever available [30,32]. We have also implemented DeCovNet [9], that
our 3D approach is based on, using the code supplied by the authors4,
following the same training procedure used for our 3D model.

Considering the results given in Tables 4 and 5, we see that the
best 2D and 3D approach have the same accuracy on the IST-C
datasets (87.20%), while the 3D system is slightly better for the
MosMedData dataset (93.24% vs 91.89%) and slightly better in
AUC score in both datasets. However it should be noted that train-
ing was faster for the 3D dataset per epoch thanks to the Python
environment (vs. Matlab) and the smaller 3D network afforded
longer training times (200 vs 50).

The 2D system on the other hand can be said to be more
explainable, since it is possible to view slice-level decisions to
identify where COVID-19 infection patterns are detected by the
system; this information can be displayed to the attending physi-
cians in the deployed system.
4 https://github.com/sydney0zq/covid-19-detection
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9.2. Comparison to the Results in Literature

Our best results obtained on the IST-C dataset is 90.80% accu-
racy and 0.95 AUC score with ensemble averaging of the best 2D
and and best 3D system (Table 4).

The results obtained on the MosMedData dataset with only
COVID-19 and Normal classes are better as expected (93.69% accu-
racy and 0.99 AUC), given the relatively simpler problem with two
classes (Table 5). In comparison to the best results in the literature,
our ensemble accuracy (93.69%) is 10% points higher compared to
the state-of-art and the AUC score (0.99) is also very high, exceed-
ing the state-of-art.
9.3. Evaluating Novel Sub-Modules

Considering the results in Table 4, we see that the attention
layer in the 2D approach increases the accuracy significantly

https://github.com/sydney0zq/covid-19-detection


Table 7
Confusion matrix for the IST-C dataset.

Actual \ Predicted Covid-19 Non-Covid-19

Covid-19 91 9
Normal 9 91
Other 5 45
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(85.60% vs 80.80% in IST-C), in line with other problems where
attention brings performance increase in literature.

The use of LSTM to obtain the patient-level predictions from
slice-level features brings another 1.6 and 1.8% points improve-
ments in accuracy, for IST-C and MosmedData, compared to
averaging the slice-level predictions. The CT sequence size normal-
ization in LSTM training is an important aspect for this improve-
ment. On the other hand, the LSTM achieves lower AUC scores
compared to averaging; we expect that this is due to LSTM outputs
being close to 0 or 1.

For the 3D approach, we observed that the 2-channel input also
used in DeCoVNet achieves significantly lower accuracy (81.45% vs
87.20%), probably due to the difficulty in training the first layer
weights and the success in obtaining good segmentation masks
(see Table 4).

The model trained with the author supplied DeCoVNet [9] also
achieved lower results (Table 4) compared to our extended version
(78.00% vs 81.45% obtained by the two-channel system that is basi-
cally the same as DeCovNet except for the added skip connections),
showing the benefits of extending the network to deal with the
rich information present in the CT scan.

Additionally, we found that the interpolation done to halve the
large CT volume in the case of the IST-C dataset, leads to signifi-
cantly lower performance (%87.20 vs %82.80) compared to skip-
ping every other slice, presumably due to the loss of the fine
details in the images. This is something to be aware of when deal-
ing with this or similar problems, as interpolation is commonly
used in many biomedical applications.
9.4. Inter-Operability

To study the inter-operability of systems with respect to differ-
ent datasets collected from different patient populations and
tomography equipment and settings, we tested the accuracy of
the systems trained using the MosMedData and IST-C datasets,
on the COVID-CT-MD dataset [19]. As the COVID-CT-MD dataset
was not used in training at all, we used the whole dataset for test-
ing. Hence our results are obtained on the whole dataset, while
others are obtained on the testing portion of the dataset. COVID-
CT-MD dataset comprises 305 CT scans from 3 classes, as indicated
in Table 2.

The results shown in Table 6 (90.16% accuracy and 0.9418 AUC)
are in line with results reported in literature, even though our sys-
tems were not trained or finetuned at all for this dataset. In partic-
ular, the AUC of the ensemble is highest and accuracy value is only
slightly behind the best reported results in literature for this data-
set [50].

Furthermore, while the results are not directly comparable, our
results on COVID-CT-MD dataset show only a slight decrease com-
pared to the IST-C dataset results (90.80% accuracy and 0.95 AUC vs
90.16% accuracy and 0.942 AUC), indicating the generality of the
proposed system.
Fig. 7. COVID-19 predicted probability distribution for the IST-C dataset, using the
ensemble.
9.5. Error Analysis

The confusion matrix of the ensemble that obtained 90.8% accu-
racy on the IST-C dataset (4) is given in Table 7. The system pre-
dicted 9 false negatives (9/100 COVID-19 samples) and 14 false
positives (9/100 Normal and 5/50 Other samples) in total. Hence
the error rates were almost the same in each group.

An analysis of the errors by expert physicians revealed that the
majority (6/9) of the false negatives were due to minimal lung
involvement or respiratory motion artifacts. Respiratory motion
artifacts were also observed alone or with atelectasis in 4/9 false
positives with normal parenchyma.
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9.6. Prediction Scores Distribution

The system is designed to alert the attending physicians in case
of sufficiently high COVID-19 probability. Hence, we also consid-
ered the COVID-19 prediction distribution of the ensemble, shown
in Fig. 7. An adjustable threshold (e.g. 0.3 or 0.4) can be set to alert
the attending physician, at the risk of some increased false
positives.

At 0.3 threshold, we obtain 95.0% sensitivity (true positive rate)
and 84.0% specificity (true negative rate) on the IST-C test data set.
ROC figures corresponding to IST-C and MosMedData datasets are
given in Fig. 8.
9.7. Lung Segmentation Results

Regarding lung segmentation accuracy, Hofmanninger et al.
[38] report 97–98% Dice similarity scores measuring how much
the mask generated by U-Net and ground-truth overlaps, on differ-
ent test datasets involving multiple lung pathologies. While their
tested datasets also included ground glass opacities observed in
COVID-19 cases, we evaluated the segmentation network’s perfor-
mance specifically for the COVID-19 detection problem by visually
checking the segmentation results of 5 slices from sampled at reg-
ular intervals from 1,156 CT scans (all covid patients from IST-C
and MosMedData datasets), for a total of 5,783 slice images. We
found around 11 serious segmentation errors, corresponding to
roughly %0.19, which is in line with [38]. Samples of these images
are given in Fig. 9, where lung areas that are considered as back-
ground and are highlighted by ellipses. Noting that the errors occur
only in some of the slices within one CT scan, we conclude that U-
Net provides a successful segmentation, suitable for COVID-19
detection.
9.8. Discussion

While our 3D approach is based on DeCoVNet [9], we were able
to outperform its results on both datasets, thanks to the changes
made to the model. In particular, using only one input channel
leads to more efficient training, especially since the U-Net lung
segmentation is very accurate, while enriching the network archi-
tecture also contributed to higher accuracy.



Fig. 8. ROC curves of the trained models on (a) IST-C dataset and (b) MosMedData dataset.

Fig. 9. Samples of segmentation errors (a) slice image (b) corresponding lung masks. Problematic areas are indicated with red arrows and are often missed lung tissue due to
infection or tumors.
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Similarly, even though the 2D system is based on fine-tuning a
pretrained deep network, the use of the novel attention mecha-
nism and LSTMs to combine slice-level features bring significant
improvements over the base network and the standard approach
of averaging slice predictions. We are aware of only one other work
that also combines a deep network with LSTMs, related to COVID-
19 predictions: Hammoudi et al. [6] use bidirectional LSTMs to pre-
dict patient health status by combining the predictions made by a
deep network for image-patches of an X-ray.

Considering the results in Table 4, we see that our contributions
improve accuracies by 6.4 and 9.20 percentage points, in 2D and
3D models respectively (%87.20 vs %80.80 and %87.20 vs %78.00).
Furthermore, we gain another 3.6 percentage points when we
combine the 2D and 3D systems (%90.80 vs %87.20). Hence, while
the main contributions of our work are in the network architec-
tures, the ensemble approach also brings significant
improvements.
10. Conclusion

In addition to presenting a state-of-art system, we provide an
evaluation of different 2D and 3D approaches on two datasets
and discuss the effects of relevant preprocessing, segmentation
and classifier combination steps on performance. A third large
and public dataset is used to show inter-operability results.

The collected dataset (IST-C) is made public to contribute to the
literature as a challenging new dataset that consists of high resolu-
tion chest CT scans from a variety of conditions.

This work was motivated to help combat the pandemic and the
developed system (IST-CovNet) is deployed and in use at Istanbul
University Cerrahpas�a School of Medicine, to flag suspected
COVID-19 cases when the patient is still at the tomography room.
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In future work, we plan to study how to best use semi-
supervised approaches (especially with 3D volumes) to leverage
larger collections of unlabelled chest CTs.
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