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ABSTRACT
Background: Consuming foods with added fiber may help older adults achieve fiber recommendations; however, many high-fiber ingredients have
little effect on laxation and may contribute to unpleasant gastrointestinal side effects.
Objectives: The aim of the study was to determine the effects of consuming snacks fortified with pea hull fiber (PHF) on stool frequency and form,
gastrointestinal symptoms, and appetite in older adults. An exploratory aim was to determine if PHF altered the microbiota profile.
Methods: A 10-wk, randomized, blinded, crossover study was carried out. Following a 2-wk baseline period, participants [aged (mean ± SD)
69.7 ± 6.5 y; n = 31; 14 men, 17 women] consumed snacks providing 10 g/d of PHF or a control, each for 2-wk periods followed by 2-wk washouts.
Participants used the Bristol Stool Form Scale (BSFS) to record daily stool frequency and gastrointestinal symptoms, and completed the
Gastrointestinal Symptom Rating Scale (GSRS) and Simplified Nutritional Appetite Questionnaire (SNAQ) biweekly. One stool was collected per
period for 16S ribosomal RNA high-throughput amplicon sequencing of the fecal microbiota profile.
Results: Participants reported 1.63 ± 0.05 stools/d and 76.6% normal transit stool form at baseline and no change with PHF. GSRS syndrome
scores were similarly unchanged. Daily abdominal noises and bloating were higher for PHF versus control, and flatulence was higher for PHF versus
baseline, suggesting fermentation in some individuals. There was no evidence to suggest a common PHF-induced microbiome response for the
group as a whole; however, a subgroup of participants (n = 7) who responded with increased flatulence (fermenters), harbored many different taxa
than nonfermenters, and demonstrated lower abundance of Clostridiales with PHF. Appetite was unchanged with PHF.
Conclusions: PHF did not modulate stool form or frequency in older adults with normal bowel habits. Because snacks fortified with PHF did not
suppress appetite, PHF may be an appropriate fiber source for older adults at nutritional risk. Microbiome profile may be predictive of
gastrointestinal symptom response to PHF. This trial was registered at www.clinicaltrials.gov as NCT02778230. Curr Dev Nutr 2020;4:nzaa005.
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Introduction

Consuming foods with added fiber may help to achieve fiber recom-
mendations (1). This may be particularly important for older adults who
may require higher-protein diets to preserve muscle mass or for restora-
tion in times of recovery from unintentional weight loss, illness, or in-
jury (2). Increased intakes of protein from animal-based foods, devoid
of naturally occurring fiber, may displace plant-based foods contain-
ing fiber, such as whole grains, fruits, and vegetables, and thus may fur-
ther support the need for fiber fortification. However, fiber ingredients,

such as fructans (e.g., fructo-oligosaccharides and inulin), commonly
added to foods in North America have been shown to contribute to gas-
trointestinal complaints including flatulence, bloating, and abdominal
pain (3, 4), symptoms that may negatively impact quality of life in older
adults. In addition, there is some evidence that higher intakes of fruc-
tans may suppress appetite and decrease body weight (5, 6). As appetite
suppression and its possible effects on food intake and body weight may
be contraindicated in older adults at nutritional risk, exploration of the
physiological effects of alternative fibers for the purpose of fortification
is needed.
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Another consideration when choosing a fiber ingredient for forti-
fication of food intended for older adults is its potential impact on the
gut microbiota and associated health effects. Prebiotics such as fructans,
given their specific carbohydrate structure, require unique enzymes for
hydrolysis and thus, by definition, have specific effects on the gut micro-
biota or its activity (7). Although these effects, such as the enhancement
of Bifidobacterium, are considered positive, isolated fructans have not
been shown to impact diversity of the microbiota (8). This is an impor-
tant consideration, as microbiota diversity is associated with stability—
protection from disruption by dietary changes (9) and other stressors
(10). As decreased diversity is associated with the onset of frailty (11)
and increased risk of Clostridium difficile diarrhea (12), a potentially fa-
tal disease more common in older adults (13), maintaining microbiota
diversity is particularly important for older adults. Diets high in com-
plex plant fibers such as whole grains are associated with higher micro-
bial diversity (14, 15). Added fibers such as brans, containing a variety of
indigestible polysaccharides, also may support microbial diversity (16).
It is not known if hull fibers (pulse seed coats) have the potential for
such effects. Of note, the nondigestible polysaccharides contained in the
complex dietary fiber fractions of brans and hulls may be more slowly
fermented than purified, soluble, and highly fermentable oligosaccha-
rides and, thus, may produce less noticeable bloating and flatulence and,
perhaps, improved acceptance and feasibility while still inducing bene-
ficial shifts in the microbiota.

Pea hull fiber (PHF), a naturally occurring dietary fiber produced
from grinding of the outer hulls of yellow field peas (17), has been shown
to benefit laxation in older adults reporting low stool frequency (18).
Given its complex dietary fiber constituents (i.e., cellulose, pectin, and
hemicelluloses), it potentially may enhance gut microbial diversity and
profile. As slow transit, suggestive of constipation, negatively impacts
the gut microbiota and its metabolism (19), the potential of PHF to
modulate stool form, a proxy for transit time, and stool frequency is
also of interest. In addition, given that some older adults may be at risk
of weight loss and malnutrition, the impact of PHF fortification on ap-
petite requires exploration. The aims of the study were to determine the
effects of daily consumption of snacks fortified with PHF on stool form,
stool frequency, gastrointestinal symptoms, and appetite in community-
dwelling older adults. As appetite may be impacted by the sensory ac-
ceptability of the food vehicle used for fiber fortification, sensory eval-
uation of the study snacks was carried out prior to the trial. In addition,
an exploratory aim was to assess the effect of PHF on the microbiota
profile.

Methods

Product development and sensory evaluation
Snacks (cinnamon mixed berry and oatmeal raisin chocolate chip cook-
ies) containing 5 g of PHF (Best Cooking Pulses) and control snacks
with no added fiber were developed and evaluated for acceptability in
2 sensory panels, older adults and all ages. Commercial higher
fiber cookies (Belvita® Mixed Berry and FiberOne® Sugar Cookie,
FiberOne® Oatmeal Raisin Cookie and Belvita® Oats & Chocolate)
were used as benchmarks. Panelists (aged ≥60 y and all ages) rated sam-
ples using a hedonic 9-point scale (1 = dislike extremely, 5 = neither
like nor dislike, 9 = like extremely) with questions regarding the liking

of sweetness, texture, flavor, moistness, and overall acceptability of the
snacks. Sensory evaluation was approved by the University of Florida
Institutional Review Board 2.

Intervention study design
A 10-wk randomized, double-blind, crossover study was carried out
in Florida (Figure 1) in 2 cohorts, July to October 2016 and May to
July 2017. Following a 2-wk baseline period, participants consumed
2 cookies/d providing 10 g of PHF (9.3 g/d of fiber) or no added fiber
(control) each for 2-wk periods separated by 2-wk washouts. The ran-
domization was conducted by an individual unaffiliated with the study
using a sealed, stacked-envelope method. All study participants, inves-
tigators, staff, and the statistician were blinded to the sequence until
the statistical analyses were completed. Although study foods were visu-
ally very similar, there was the possibility that participants could detect
sensory differences between the control and PHF fiber cookies. To de-
termine if blinding was successful, participants were asked at the end
of each intervention period, which treatment, fiber or no fiber, they
thought they had been consuming. Participants recorded compliance to
study food intake in the daily questionnaire and returned any uneaten
study foods at each study visit.

Gastrointestinal symptoms, stool frequency and form, appetite, di-
etary intake, and compliance were assessed throughout the trial and
stool samples were collected for sequencing. The trial was approved by
the University of Florida Institutional Review Board 1. The protocol is
reported on clinicaltrials.gov (registration no. NCT02778230). All par-
ticipants provided written informed consent. The study was carried out
in accordance with the Declaration of Helsinki.

Participants
Participants (aged ≥60 y) were recruited from the community through
posters, flyers, announcements, and community and newspaper adver-
tisements. Participants were included if they were willing to undertake
study procedures and excluded if they had any known food allergies,
were taking medications for diarrhea, had taken antibiotics within the
past 4 wk prior to randomization, were taking probiotics supplements
and did not want to discontinue a minimum of 2 wk prior to the study,
or had previously been or were being treated for any diseases or illnesses
such as gastrointestinal disease (gastric ulcers, Crohn’s, celiac, ulcerative
colitis, etc.).

Outcome measures
The primary outcomes of interest were stool form and frequency. Sec-
ondary outcomes were gastrointestinal symptoms and appetite. Partic-
ipants recorded stool frequency and form using the Bristol Stool Form
Scale (BSFS) (20) in daily questionnaires. Stools were categorized into
slow transit (types 1 and 2), normal transit (types 3–5), and fast tran-
sit (types 6 and 7). In the daily questionnaire, participants were asked
to rank daily abdominal cramping, abdominal noises, bloating, consti-
pation, diarrhea, and flatulence using a scale from 0 (not at all) to 6
(very severe) and appetite using a scale from 0 (very poor) to 6 (very
good) in response to the question, “In general, how was your appetite
today?” Any changes in medications, supplement intake, and physi-
cal activity also were recorded. The Gastrointestinal Symptom Rating
Scale (GSRS), a 7-point Likert scale, where 1 represents no discomfort
at all and 7 represents very severe discomfort (21, 22), was administered
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FIGURE 1 Study design of the intervention trial in older adults examining the effects of pea hull fiber. GSRS, Gastrointestinal Symptom
Response Scale; SNAQ, Simplified Nutritional Appetite Questionnaire.

biweekly. Symptoms of the GSRS were combined into the 5 syndromes:
reflux, abdominal pain, indigestion, diarrhea, and constipation. The
Simplified Nutritional Appetite Questionnaire (SNAQ) (23) also was
administered biweekly. Total scores range from 4 to 20 with a total
SNAQ score ≤14 indicating poor appetite and a significant risk of
weight loss for community-dwelling older adults (23). Dietary intake
(24-h recall) was assessed by phone interview during each study period.
Food Processor Nutrition Analysis Software (ESHA version 11.3.2) was
used to analyze dietary intake.

Microbiota analysis
An exploratory outcome was microbiome profile. One stool was col-
lected toward the end of each 2-wk period. Stools were collected us-
ing the Fisher Scientific Commode Collection System (Fisher Scien-
tific catalog no. 02-544-208), kept on ice, and processed within 6 h of
defecation. Samples were homogenized, placed in aliquots, and stored
at −80◦C. Total DNA was extracted from homogenized feces using the
QIAamp® Fast DNA Stool Mini Kit (Qiagen) as per the manufacturer’s
instructions with modifications as previously described (24). Libraries
for sequencing were prepared according to Illumina’s 16S Metagenomic
Sequencing Library Preparation guidelines (Part no. 15,044,223 Rev. B),
with exceptions as previously reported (24). Template-specific primers
targeted the V3–V4 region of the 16S ribosomal RNA gene (PMCID:
PMC3592464) (25). Resulting sequence reads were analyzed as previ-
ously described (26, 27). Taxonomic summaries and ɑ and β diversity
metrics, statistical analysis, and taxonomic classifications were com-
puted using QIIME 2 software (28) and downstream analyses by R
scripts were performed as previously reported (29). Linear discriminant
analysis (LDA) effect size (LefSe) was used to compare fecal microbiome
abundance profiles between treatment groups (30). The Huttenhower
galaxy online platform was used to run LEfSe (http://huttenhower.sph.
harvard.edu/galaxy/).

Following the primary microbiome analysis and noting that a sub-
group of individuals had experienced significant flatulence (≥1 rating-
point increase) during the PHF, we hypothesized that these individu-
als harbored organisms capable of fermenting PHF (fermenters) and,
thus, may exhibit a microbiome profile different from the majority of the
participants (nonfermenters). Subgroups were compared using LefSe
analysis (30).

Statistical analysis
Sensory data for the any-age panels were collected using Compusense®

Five software and older adults by paper ballots. Statistical analysis was
carried out using Statistical Analysis Systems® 9.4 (SAS). A 2-factor
ANOVA was performed to determine if there were differences in rat-
ings for each attribute. Mean separation was completed using Duncan’s
multiple range test with an ɑ level of 0.05.

The sample size of the trial was based on a power of 0.80 and a type I
error rate of 0.05. Based on a study testing 10.5 g/d of an insoluble fiber
(31), reporting a mean stool frequency per day for placebo of ∼1.00
and for treatment of 1.35 (range: 1.15–1.51) with SDs of 0.32 and 0.63,
respectively, and a correlation of 0.35, a paired sample size of 26 for
a crossover trial was needed to show a significant effect. Estimating a
drop-out rate of 25%, a sample of 36 was targeted.

Daily symptoms, GSRS syndromes, and stool frequency were an-
alyzed as intent-to-treat. Unless noted otherwise, data are presented
as means ± SEMs. Significance was set at an ɑ level of 0.05. Lin-
ear mixed models were used to test differences between treatment
groups for the daily questionnaire symptoms, GSRS syndromes, SNAQ
scores, and dietary intake. Data were square root transformed, where
appropriate, with baseline as a covariate. When the F-value was sig-
nificant, a multiple-means comparison was performed using Tukey–
Kramer at a P value of 0.05. SNAQ was compared as the difference
between means and categorically (risk: ≤14 points vs. >14 points). A
2-tailed Fisher’s exact test was used to test the effectiveness of blind-
ing. Paired t test was used to determine if fiber intake was different be-
tween the subgroups at baseline. For the microbiome data, the Kruskal-
Wallis test was used to compare ɑ diversities. QIIME software suite was
used to calculate the metrics corresponding to diversity and taxonomic
classification (28).

Results

Product development and sensory evaluation
Sensory panels of older adults (aged ≥60 y) evaluated the PHF and con-
trol cinnamon mixed berry (n = 76) and oatmeal raisin chocolate chip
(n = 74) cookies as did 2 panels of all ages (n = 120/panel) in compar-
ison to commercial cookie varieties. Results of the sensory evaluations
are shown in Supplemental Table 1. Overall liking was rated highest
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FIGURE 2 Participant recruitment, randomization, and study flow diagram.

for the FiberOne® sugar cookie and the control cinnamon mixed berry
cookie. Belvita® and the cinnamon mixed berry with PHF were rated
somewhat lower but similar. Overall liking for the FiberOne® oatmeal
raisin cookie and the control oatmeal raisin chocolate chip cookie was
not different. Belvita® and the oatmeal raisin chocolate chip cookie with
PHF were rated as similar. The nutrient compositions of the PHF and
control cookies evaluated for acceptability and subsequently used in the
intervention trial are shown in Supplemental Table 2.

Wellness outcomes.
The intervention study flow diagram is presented as Figure 2. Partic-
ipant demographics and characteristics are shown in Table 1. Of the
36 individuals who consented, 3 withdrew prior to baseline, 2 withdrew
prior to randomization, 1 withdrew during the first intervention pe-
riod (fiber), and 1 withdrew during the first washout. Participants were
unable to ascertain whether they were consuming the PHF or control
snacks (intervention 1, P = 0.6; intervention 2, P = 0.3), confirming
the effectiveness of blinding. Participants reported normal stool fre-
quency (1.63 ± 0.05 stools/d) at baseline, with no significant changes
with interventions (Table 2). BSFS reporting showed 12.0% slow tran-
sit, 76.6% normal transit, and 11.4% fast transit at baseline, with no
differences between periods (Table 2). No significant differences were
reported for the GSRS (Table 2). For daily symptoms (Table 2), abdom-
inal noises and bloating were higher for the PHF intervention com-
pared with the control, and flatulence was higher for PHF compared
with baseline, whereas there were no differences for daily abdominal
cramping, constipation, diarrhea, or appetite. Mean SNAQ score was
higher during PHF for the fiber period (15.8 ± 0.4) compared with the

control (15.3 ± 0.4); however, when assessed as risk categories (at risk
vs. no risk) the apparent difference was not significant (PHF: n = 7 at
risk; control: n = 10 at risk). At baseline (n = 29), total energy intake
was 1780 ± 179 kcal/d and did not differ between intervention periods.
Similarly, background fiber (18.4 ± 2.0 g/d), protein (71.6 ± 7.6 g/d),
carbohydrate (204.7 ± 21.6 g/d), and fat (72.7 ± 8.6 g/d) intakes re-
ported at baseline did not change with the interventions. At baseline,
the mean fiber intake of the subgroup of fermenters (18.6 ± 4.5 g/d)
was not different from that of the nonfermenters (18.2 ± 2.5 g/d). With
the inclusion of study snacks, there was a significant increase in total
fiber intake during the PHF period (P < 0.0001). Intake of dairy foods,
some of which may have contained live cultures, did not significantly
differ between baseline (1.6 ± 0.3 servings/d) and interventions (PHF:
1.4 ± 0.1 servings/d; control: 1.4 ± 0.3 servings/d). Body weight did not
change between periods or over the duration of the study period (data
not shown).

Microbiota composition.
The relative abundances of bacteria observed for all participants dur-
ing the baseline, washouts (pooled), control, and PHF are shown in
Figure 3 and as a Krona figure in Supplemental Figure 1. No differ-
ences were seen between periods with LefSe analyses. There was no
change in bacterial ɑ diversity with PHF (Supplemental Figure 2).
For the subgroup analysis carried out to compare the microbiome of
those participants demonstrating an increase in flatulence severity as
an indicator of PHF fermentation, baseline differences between fer-
menters (n = 7) and nonfermenters (n = 22) are shown in Figure 4.
Taxa such as Methanobrevibacter, Coprococcus, and Peptosteptococ-
caceae were higher in the fermenters compared with nonfermenters.
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TABLE 1 Participant demographics and characteristics

Participants
(n = 31)

Fermenters1

(n = 7)
Nonfermenters2

(n = 22)

Gender (M/F), n 14/17 2/5 11/11
Age, mean ± SD (range), y 69.7 ± 6.5 (60–86) 68.6 ± 6.0 (61–80) 70.3 ± 6.9 (60–86)
Race, n (%)

African American 4 (12.9) 2 (28.6) 2 (9.1)
White 27 (87.1) 5 (71.4) 20 (90.9)

Ethnicity, n (%)
Hispanic 2 (6.4) 0 2 (9.1)
Non-Hispanic 27 (87.1) 6 (85.7) 19 (86.4)
Not reported 2 (6.4) 1 (14.3) 1 (4.5)

BMI (in kg/m2), n (%)
Normal (18.5–24.9) 8 (25.8) 0 8 (36.3)
Overweight (25–29.9) 9 (29.0) 3 (42.9) 6 (27.3)
Obese (>30) 14 (45.2) 4 (57.1) 8 (36.4)

Reported compliance3

Pea hull fiber snacks 98%
Control 96%

1Participants demonstrating an increase of ≥1 point (scale 0 to 6) in flatulence severity reported in the daily questionnaire during
the PHF intervention.
2Participants demonstrating a <1 point increase in flatulence severity during the PHF intervention.
3Daily questionnaire reporting.

Nonfermenters were enriched in Proteobacteria. Figure 5 shows a sig-
nificantly higher abundance of Clostridiales during the control com-
pared with the PHF intervention in fermenters. No significant changes
in microbiome profile were detected in the nonfermenter subgroup with
the provision of PHF compared with control (n = 22). A compari-
son of the relative bacterial proportions for all samples from all peri-
ods for fermenters versus nonfermenters is shown in Figure 6; using
a stringent (LDA = 3) cutoff, differences were demonstrated in nu-
merous taxa. A comparison of baseline with washout demonstrated

only an enrichment of Lactobacillus during baseline (Supplemental
Figure 3).

Discussion

PHF-fortified snacks evaluated in this clinical trial were assessed as be-
ing acceptable by sensory panelists, including older adults. The study
snacks provided ∼200 kcal/d, but the intake of the snacks did not

TABLE 2 Daily and biweekly reported wellness outcomes1

Baseline Fiber Control P

Stool frequency
Stools/d 1.63 ± 0.05 1.85 ± 0.05 1.76 ± 0.05 NS

BSFS, %
Slow transit 12.0 9.2 11.3 NS
Normal transit 76.6 77.0 78.4 NS
Fast transit 11.4 13.8 10.3 NS

Daily symptom scores
Appetite 4.07 ± 0.07 3.80 ± 0.07 3.94 ± 0.07 NS
Abdominal cramping 0.16 ± 0.03 0.23 ± 0.03 0.10 ± 0.02 NS
Abdominal noises 0.27 ± 0.03a,b 0.37 ± 0.04a 0.18 ± 0.02b <0.01
Bloating 0.26 ± 0.03a,b 0.34 ± 0.04a 0.18 ± 0.03b <0.05
Flatulence 0.74 ± 0.04b 1.05 ± 0.05a 0.83 ± 0.05a,b <0.05
Constipation 0.12 ± 0.02 0.16 ± 0.02 0.20 ± 0.04 NS
Diarrhea 0.17 ± 0.03 0.16 ± 0.02 0.12 ± 0.03 NS

GSRS syndrome scores
Abdominal pain 1.21 ± 0.07 1.36 ± 0.11 1.24 ± 0.12 NS
Reflux 1.09 ± 0.05 1.07 ± 0.04 1.09 ± 0.04 NS
Indigestion 1.41 ± 0.08 1.59 ± 0.13 1.40 ± 0.09 NS
Constipation 1.24 ± 0.10 1.13 ± 0.04 1.29 ± 0.10 NS
Diarrhea 1.25 ± 0.07 1.24 ± 0.06 1.43 ± 0.15 NS

1Values are means ± SEs unless otherwise indicated. Stool form were categorized into slow transit (types 1 and 2), normal transit (types 3 to 5), and fast transit (types 6
and 7). Means with different superscript letters differ significantly according to Tukey-Kramer (P < 0.05). BSFS, Bristol Stool Form Scale; GSRS, Gastrointestinal Symptom
Response Scale.
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FIGURE 3 Relative abundance of bacteria by phyla, order, and genus levels observed during baseline, PHF, washouts (pooled), and
control periods. PHF, pea hull fiber.

result in differences in energy intake during the intervention periods,
suggesting participants substituted instead of adding study foods to
their usual diet. Appetite as assessed by SNAQ category (23) did not
change during the PHF intervention, suggesting no increased risk of

unintended future weight loss in this older cohort; and the daily re-
porting of appetite was similarly unaffected. In most previous studies,
consuming PHF-fortified foods did not affect appetite, food intake, or
body weight (18, 32–34). In contrast, a study in overweight/obese adults

FIGURE 4 LDA effect size (LefSe) comparing the relative bacterial proportions. Fermenters (participants responding to PHF intake with
an increase in flatulence severity) (n = 7) versus nonfermenters at baseline (n = 22). c, class; f, family; g, genus; k, kingdom; LDA, linear
discriminant analysis; o, order; p, phylum; PHF, pea hull fiber.
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FIGURE 5 LDA effect size (LefSe) comparing the relative bacterial proportions in the subgroup of fermenters (participants responding to
PHF intake with an increase in flatulence severity) (n = 7) during PHF versus control periods. c, class; LDA, linear discriminant analysis; o,
order; p, phylum; PHF, pea hull fiber.

(aged 44 ± 15 y) showed weight loss with the consumption of 15 g/d of
PHF in the form of wafers over 12 wk and decreased food intake in a
single-meal study (35). However, appetite and sensory acceptance were
not reported and, thus, it is possible that the wafers were somewhat un-
appetizing and, as such, food intake may have been negatively impacted
independent of any metabolic effect resulting from any PHF fermen-
tation. It may also be possible that age confounds appetite response to
foods with added fiber. As SNAQ is validated to predict the future risk
of weight loss (23) and poor outcomes in older adults (36), this tool may
be useful to assess the appropriateness of added fibers for supplementa-
tion of foods intended for older adults. PHF did not suppress appetite;
thus, it may be an appropriate fiber for fortification of foods for older
adults at risk of unintended weight loss.

Reported GSRS syndrome scores fell below clinical significance
(mild discomfort) for participants overall, suggesting they were healthy
with respect to gastrointestinal function. Stool form was used as a proxy
for transit time, and participants reported primarily normal transit
stools at baseline, which remained unchanged with PHF. Participants
reported the proportion of slow transit stools at 11%, somewhat higher
than a representative sample of the US population considered to have
normal bowel habits at 6% slow transit (37), but lower than we have pre-
viously reported in younger women (38). The PHF used in this study
was finely processed (200 mesh) and, thus, its high surface area com-
pared with intact hulls may have facilitated fermentation by the colonic
bacteria, thus lessening its laxative effects, a mechanism that has been
previously suggested (39). It has been reported that coarse wheat bran
decreased transit time, whereas the same dose of finely ground wheat
bran did not (40). Similarly, finely ground oat hull fiber did not impact
transit time in young male subjects with relatively fast transit time (41).

Although stool form is strongly associated with microbiota profile (19),
the changes in the microbiota observed in some of the participants in
the present study are likely due to the fermentation of PHF rather than
an effect of altered transit time.

Although the current US FDA considers increased stool frequency
as a “beneficial physiological effect on human health” for isolated or
synthetic nondigestible carbohydrates (functional fibers) (42), in
healthy individuals with normal stool frequency, fibers, fermentable
fibers in particular, may not alter laxation (39). Although in the present
trial an insoluble dietary fiber versus functional fiber was examined,
stool frequency did not change. This finding may not be unexpected
given that the participants exhibited normal stool frequency (37) at
baseline and displayed no symptoms of constipation. In addition, in
nonconstipated individuals, stool frequency is not associated with tran-
sit time (43). The results of this study add to the significant literature that
refutes stool frequency as an appropriate outcome for the evaluation of
fiber supplementation in individuals with normal bowel habits. As in-
creases in stool frequency are more often seen as a response to fiber in
those with infrequency (e.g., <3 stools/wk) (44) and functional consti-
pation (45), it is possible that if PHF was tested in community-dwelling
older adults with low baseline stool frequency and symptoms of con-
stipation, an increase may have been seen, as has been demonstrated in
older adults residing in long-term care (18). Similarly, in a small study in
older adults with chronic kidney disease, stool frequency increased with
an intake of 10 g/d of PHF (46). These conflicting findings may, in part,
be due to the length of the intervention. The studies that have shown
an increase in frequency with PHF tested it with intervention periods
of 4 wk versus 2 wk in the present trial. Further, differences in resident
microbiota, extent of fermentation, and transit time may have affected

CURRENT DEVELOPMENTS IN NUTRITION



8 Alyousif et al.

FIGURE 6 LDA effect size (LefSe) comparing the relative bacterial proportions for all samples from all periods in the subgroup of
fermenters (n = 7) (participants responding to PHF with an increase in flatulence severity) versus nonfermenters (n = 22). c, class; f, family;
g, genus; k, kingdom; LDA, linear discriminant analysis; o, order; p, phylum; PHF, pea hull fiber.

the outcomes. Beyond stool frequency, quantitative measurements
such as stool bulk and examination of in vivo fermentability require
exploration.

The participants’ baseline microbiota showed significant intraindi-
vidual variation, which was not surprising given the diversity that has
been shown in the human microbiome (47) and its response to differing
dietary patterns (9). The results of this study did not provide evidence
for PHF as a means to increase microbial diversity or any modulation
of microbiota in most participants. It has been suggested that a higher-
fiber diet may not have remarkable effects on the microbiome profile in
the short term (48) unless an extreme change is made in dietary intake,
such as the elimination of fiber and other carbohydrates from the diet
(49). A longer-term exposure to the fiber source may be necessary to sig-
nificantly impact microbiota. However, in the present study, a subgroup
analysis revealed significant differences in the microbiota of those indi-
viduals exhibiting increased flatulence (fermenters), suggesting fermen-
tation of PHF by gas-generating microorganisms. Methanobrevibacter,
Coprococcus, and Peptostreptococcaceae were higher in fermenters. A
higher abundance of methanogens, primarily Methanobrevibacter, may
be unfavorable as methane production has been associated with consti-
pation (50); however, it has been suggested that certain methanogens,
at least theoretically, may suppress trimethylamine production and,
thus, that of trimethylamine-N-oxide, which is associated with cardio-
vascular disease risk (51). Legume intake has been shown to depress

proteolytic bacteria (52). Consuming snacks containing PHF resulted in
decreased abundance of Clostridiales compared with controls in the fer-
menters subgroup, specifically a suppression of Clostridia, which are im-
plicated in protein fermentation (53). Recently, a suppression of unclas-
sified Clostridiales after feeding vegetables high in fructans (artichokes
and leeks) was reported (54). In contrast, feeding 15 g/d of PHF over
a 12-wk period showed no treatment effect on the limited number of
taxa evaluated (33). In a secondary analysis, Lachnospira increased with
PHF (55). However, as subjects also lost weight in the PHF intervention
arm, it is possible that the change in Lachnospira was due to weight loss
instead of the PHF specifically, as a similar enrichment has been seen in
bariatric surgery (56) and nonalcoholic fatty liver disease patients (57)
following weight loss. Increased Bifidobacterium and Lactobacillus have
been commonly reported in fiber studies, but most often in response to
oligosaccharide (e.g., galacto-oligosaccharide, fructo-oligosaccharide)
supplementation (8) versus a complex fiber source with cellulose as the
major indigestible polysaccharide constituent, such as PHF (58). We saw
no changes in these genera. Diets higher in fiber, including legumes,
support diversity of gut microbiota and these diets are associated with
enhanced Bacteroidetes, specifically the genera Prevotella (59, 60). In
addition, consumption of a Mediterranean diet has been associated with
increased Prevotella (61). In the present study, no enhancement of Pre-
votella was seen with the PHF, although the subgroup of fermenters
exhibited higher relative abundance of Prevotella, which may reflect
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habitual higher fiber intake and possibly legume intake. However, the
baseline fiber intakes of the fermenters did not differ from those of non-
fermenters and long-term intake was not examined.

This study had limitations. As other research has shown, it is difficult
to demonstrate change and conclude improvement in gastrointestinal
function in individuals with normal bowel habits (62). The length of
the intervention period may have been a limitation. Administration of
fiber over many weeks or months, although not necessarily expected to
impact stool frequency or form, may modulate microbiota. However,
the comparisons of microbiome profiles seem to confirm the adequacy
of the 2-wk washouts as they differed from baseline only by Lactobacillus
abundance.

Current fiber intake in the United States falls below recommenda-
tions (63), a concern given that low fiber intakes are strongly associated
with increased chronic disease risk (64, 65). Foods with added fiber may
improve intakes (1); however, given the high burden of gastrointestinal
symptoms in the United States (66), added fibers that do not substan-
tially contribute to gastrointestinal discomfort are needed. The findings
of the present study using snacks fortified with PHF, a primarily insolu-
ble dietary fiber, showed that only a minority of individuals experienced
an increase in daily symptoms of flatulence, bloating, and abdominal
noise, suggesting differential fermentation or perhaps differing sensitiv-
ity to gas production. Thus, in older adults with normal bowel habits,
PHF at 10 g/d is well tolerated. Future trials should test PHF in individu-
als with low stool frequency and slow transit stool form. Snacks fortified
with PHF did not suppress appetite; thus, PHF may be an appropriate
fiber source for older adults at risk of unintended weight loss and sub-
sequent malnutrition.

It was suggested recently that controlled-feeding trials are needed to
determine the specific effects of fiber sources on microbiome composi-
tion (9). We have shown that the baseline microbiome profile, particu-
larly the predominance of methanogens, may be predictive of gastroin-
testinal symptom response to, and potentially health benefits of, PHF. It
is not known if microbiome profile also may be predictive of response to
whole pulses and other high-fiber ingredients. As has been suggested,
individuals may exhibit individualized bacterial population responses
to foods (9), and fiber specifically, and our results support this premise.
The results of the present study confirm that baseline microbiome pro-
file confounds symptom outcomes and, thus, also may influence health
outcomes related to a fiber source. Further research is needed to ex-
plore the potential health effects of Clostridia suppression. As the im-
pact of fiber on health is thought to be largely related to its modulation
of microbiota and its metabolism (67), and possibly transit time (19),
the effects of added fibers on these outcomes in community-dwelling
older adults presenting with constipation and dysbiosis, specifically low
baseline diversity, require investigation.
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