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Abstract: Rapidly progressing development of optogenetic tools, particularly genetically encoded
optical indicators, enables monitoring activities of neuronal circuits of identified cell populations in
longitudinal in vivo studies. Recently developed advanced transgenic approaches achieve high levels
of indicator expression. However, targeting non-sparse cell populations leads to dense expression
patterns such that optical signals from neuronal processes cannot be allocated to individual neurons.
This issue is particularly pertinent for the use of genetically encoded voltage indicators whose
membrane-delimited signals arise largely from the neuropil where dendritic and axonal membranes
of many cells intermingle. Here we address this need for sparse but strong expression of genetically
encoded optical indicators using a titratable recombination-activated transgene transcription to
achieve a Golgi staining-type indicator expression pattern in vivo. Using different transgenic
strategies, we also illustrate that co-expression of genetically encoded voltage and calcium indicators
can be achieved in vivo for studying neuronal circuit input–output relationships.

Keywords: genetically encoded; voltage indicator; intersectional; transgenic; inducible expression;
controlled recombination

1. Introduction

To understand the dynamic interactions of neuronal circuits, covering large neuronal populations
across multiple spatially distant brain regions, is a key focus in systems neuroscience. Recent
progress in genetically encoded voltage and calcium indicators (GEVIs and GECIs respectively)
now provides powerful tools toward this goal by allowing longitudinal monitoring from the same
neuronal populations of defined cell classes [1–5]. GECIs (e.g., GCaMPs) have now been employed
as a mainstream tool in systems neuroscience, yet calcium imaging provides only a surrogate and
incomplete readout of neuronal activity. In contrast, by directly monitoring changes in membrane
potential, GEVIs provide unparalleled opportunity to directly readout neuronal activity, including
subthreshold fluctuations and hyperpolarisation.

Developments in the generation of Cre-dependent transgenic mice provides genetic approaches
that achieve strong, cell type-specific expression of optical indicators in the mammalian brain,
while bypassing the limitations of invasive gene expression techniques like electroporation and
viral injections [6,7]. In combination with the use of the very strong tetracycline-responsive promoter
element (TRE), modular intersectional transgenic strategies have been developed to achieve optimal
cell class-specific indicator expression patterns [8].
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GECIs can be targeted cytosolically to report changes in intracellular calcium concentrations,
and since cell bodies contribute to a large fraction of the cytosol, GECI signals predominantly
appear as “sparkling” cell bodies. GECI signals from dendrites and axons (“neuropil signals”) are
often left unconsidered in densely labelled tissue, as they cannot be easily allocated to individual
neurons. In contrast, GEVI expression needs to be strictly targeted to the plasma membrane to sense
transmembrane voltage transients, and because membrane of the soma is only a small fraction of total
membrane, the membrane-limited signals of GEVIs arise predominantly from dendritic and axonal
membranes. For this reason, it is very difficult to attribute optical voltage signals from intermingled
processes of many neurons to individual neurons.

This problem could be resolved to facilitate single-cell resolution voltage imaging by targeting
GEVIs sparsely to only a fraction of the neuronal population of interest. Conceptually, the idea
of sparse cellular indicator expression bears resemblance to Golgi staining; a prime histological
technique for resolving and segregating individual cells and their processes in a densely populated
neuronal network.

To achieve a strong cell class-specific but sparse expression of GECIs and GEVIs, we took
advantage of the recently developed strategy to control Cre-dependent recombination via the
use of a destabilized Cre variant, dCre [6]. This modified recombinase can be stabilized (that is,
“de-destabilized”) using the antibiotic trimethoprim (TMP) that has no natural targets in mammals
and penetrates the blood brain barrier [9]. Using a mouse line that expresses dCre under Rasgrf2A
promoter [6], here we show that titratable recombination probability can be used to achieve strong
intensity, but sparsely distributed (Golgi staining-like) indicator expression pattern in cortical layer
II/III pyramidal neurons with either GCaMP6f (GECI) [10] or the voltage sensitive fluorescent protein
(VSFP) VSFP Butterfly 1.2 (GEVI) [11,12].

The GEVIs used in the present study (from the Förster resonance energy transfer (FRET)-based
VSFP Butterfly family containing mCitrine and mKate2 fluorescent protein pair) emit at two
wavelengths. The signals in both wavelength bands can be spectrally deconvoluted from the GFP
signals of GCaMP6f. We also show that, using these fluorescent proteins, the modular transgenic
approach produced dual GEVI/GECI neuronal labelling, shown here in cortical layer II/III pyramidal
neurons, which will allow monitoring of concurrent voltage and calcium activity in either the same
neuron or in neighbouring neurons.

2. Results

2.1. TMP Dose-Dependent Control of dCre-Mediated Recombination

We used a mouse line that carries a transgene cassette where dCre is under transcriptional control
of the Rasgrf2 promoter that drives gene transcription in layer II/III neurons [6,13]. These mice were
crossed with two mouse lines that carry (i) an expression cassette where the coding sequences for
the GECI GCaMP6f is under transcriptional control of both Cre and tTA [8,14], and (ii) a cassette
where expression of tTA is driven by the CaMK2A promoter [14]. In the presence of Cre-mediated
recombination, these mice express GCaMP6f in layer II/III pyramidal cells [8]. In the absence of
TMP treatment, dCre is degraded and Cre-mediated recombination prevented [9]. In the presence of
increasing doses of TMP, increasing amounts of dCre are de-destabilised and are available to excise a
STOP codon to permit tTA-activated transcription of the GCaMP6f gene (Figure 1a).

To test the control of indicator expression probability, animals were treated with different total
doses of TMP ranging from 0.005 mg/kg body weight (single intraperitoneal injection) to 750 mg/kg
body weight (three daily injections of 250 mg/kg for saturating expression levels). We initially treated
animals with total TMP doses of 50, 5 and 0.5 mg/kg body weight (all single injections), and examined
indicator expression after a two-week expression period. We observed comparable densities of
expressing cells between 50 mg/kg and saturating 750 mg/kg body weight TMP administration
(Figure 1(b-i); wide-field epifluorescence microscopy). Surprisingly, the lowest TMP dose used in this
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initial set of experiments (0.5 mg/kg body weight; Figure 1(b-ii); confocal microscopy) still induced
indicator expression in the majority of the layer II/III pyramidal cell population (with the expected
density of layer II/III pyramidal neurons derived from published CUX1 expression patterns [15]).
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Figure 1. Representative images of adjusted GECI expression probability of layer II/III pyramidal 
neurons achieved via dose-dependent TMP administration. (a) Transgenic strategy using the 
combination of both Cre-recombinase and transactivator intersectionally controls indicator 
expression in identified cell populations in Ai93 GCaMP6f indicator transgenic mice. The transgenic 
strategy shown here uses a destabilized form of Cre-recombinase driven by Rasgrf2-2A promoter 
(Rasgrf2-2A-dCre) that can be “de-destabilized” using TMP to remove the STOP cassette in layer II/III 
neurons. Transactivator expression driven by CaMK2A promoter (CaMK2A-tTA) in pyramidal 
neurons is also required for binding to the TRE promoter in the indicator mice for indicator expression 
(GCaMP6f in this transgenic diagram). This combination of dCre and tTA facilitates adjustable 
indicator expression probability of layer II/III pyramidal neurons by titratable TMP administration 
(b) GCaMP6f expression density remained high with total TMP dose administered at 50 mg/kg body 
weight (i; imaged using wide-field epifluorescence microscopy; solid line marks the pia, dashed line 
marks cortical layer boundaries) and 0.5 mg/kg body weight (ii; using confocal microscopy, single 
plane) (c) GCaMP6f expression with total TMP dose administered at 0.005 mg/kg body weight (i), 
0.03 mg/kg body weight (ii), and 750 mg/kg body weight (iii) TMP concentrations resulted in different 
levels of GCaMP6f expression density (confocal microscopy). DAPI nuclei-counterstaining shows, in 
addition to pyramidal neurons, dense cell population including glia, GABAergic interneurons and 
blood vessel-related cells. Scale bar = 50 µm; stack thickness = 15 µm.  

Figure 1. Representative images of adjusted GECI expression probability of layer II/III pyramidal
neurons achieved via dose-dependent TMP administration. (a) Transgenic strategy using the
combination of both Cre-recombinase and transactivator intersectionally controls indicator expression
in identified cell populations in Ai93 GCaMP6f indicator transgenic mice. The transgenic
strategy shown here uses a destabilized form of Cre-recombinase driven by Rasgrf2-2A promoter
(Rasgrf2-2A-dCre) that can be “de-destabilized” using TMP to remove the STOP cassette in layer
II/III neurons. Transactivator expression driven by CaMK2A promoter (CaMK2A-tTA) in pyramidal
neurons is also required for binding to the TRE promoter in the indicator mice for indicator expression
(GCaMP6f in this transgenic diagram). This combination of dCre and tTA facilitates adjustable indicator
expression probability of layer II/III pyramidal neurons by titratable TMP administration (b) GCaMP6f
expression density remained high with total TMP dose administered at 50 mg/kg body weight
(i, imaged using wide-field epifluorescence microscopy; solid line marks the pia, dashed line marks
cortical layer boundaries) and 0.5 mg/kg body weight (ii, using confocal microscopy, single plane)
(c) GCaMP6f expression with total TMP dose administered at 0.005 mg/kg body weight (i), 0.03 mg/kg
body weight (ii), and 750 mg/kg body weight (iii) TMP concentrations resulted in different levels of
GCaMP6f expression density (confocal microscopy). DAPI nuclei-counterstaining shows, in addition
to pyramidal neurons, dense cell population including glia, GABAergic interneurons and blood
vessel-related cells. Scale bar = 50 µm; stack thickness = 15 µm.
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These initial results suggested that a TMP dose much lower than 0.5 mg/kg is needed to achieve
desirable sparse Golgi-like indicator expression. We therefore administered total TMP dosages ranging
from 0.005 to 0.05 mg/kg body weight (distributed over 1–2 injections per animal), and analysed
the density of indicator expressing cells with confocal microscopy 1–3 weeks thereafter. In this
set of experiments we also counterstained with DAPI, a fluorescent marker of cell nuclei. Notably,
DAPI-stained nuclei include, in addition to those representing pyramidal cells, also those of GABAergic
cells, glia cells and blood vessel-related cells. We therefore counted the indicator-expressing cells,
normalized on the total count of nuclei and then scaled to the maximal density of layer II/III pyramidal
cells that expressed the indicator under control of the stabilised Rasgrf2-dCRE gene product. We refer
to this value as “scaled expression probability”. In this dose range, the fraction of layer II/III
pyramidal cells that expressed the indicator increased with increasing total TMP dosage administered
(Figure 1(c-i–iii), Table 1).

Table 1. Titrated indicator expression probabilities.

(TMP) (mg/kg
Body Weight) No. of Animals Total No. of

Sections
Expressing

Cells/All Nuclei
Scaled Expression

Probability

750 5 25 25.29 ± 1.88% 1.00
0.03 5 25 20.02 ± 0.83% 0.79
0.005 2 10 15.68 ± 2.63% 0.62
0.001 2 4 4.51 ± 1.06% 0.18

The indicator expression levels did not depend on the fraction of expressing cells because
recombination is “all or not at all” at the level of individual cells, while expression levels are controlled
by the strong TRE promoter. We also explored expression durations longer than two weeks and TMP
administration in older animals (aged 3–6 months) and did not find overt differences compared to
our standard induction age of six weeks and two weeks of expression time at similar total TMP doses
administered (data not shown). Similar TMP dose-dependent indicator expression was obtained with
GEVI mice under the same transgenic configuration, where the Ai93 transgenic line was replaced by
the Ai78 transgenic line such that Cre-mediated recombination leads to expression of the GEVI VSFP
Butterfly 1.2, also in layer II/III pyramidal population.

2.2. Sparse Expression of GEVI Uncovers the Morphologies of Individual Cells

With VSFP Butterfly 1.2 or chimeric VSFP Butterfly expression in all cortical pyramidal cells,
individual neurons could not be resolved due to intermingled neuronal processes (Figure 2a). Using the
genetic approach described above (Figure 1a) along with a low dose of TMP for limited Cre-dependent
recombination, strong Golgi staining-like GEVI expression was achieved (Figure 2(b-i)) and this sparse
expression allowed resolving morphological details of individual cells. In single confocal planes,
subcellular structures can also be clearly resolved, including axonal boutons and dendritic spines
(Figure 2(b-ii)).

2.3. Modular Transgenic Strategies Allow Controlled Co-Expression of GECI and GEVI

Next, we expanded the above-described genetic approach to develop strategies for controlled
expression of both a GECI and a GEVI in the same animal. To this end, we generated quadruple
transgenic mice carrying both the GCaMP6f and the VSFP Butterfly 1.2 genes, and expression of both
indicator proteins in layer II/III pyramidal neurons was under the control of inducible dCre and
transactivator (Rasgrf2-dCre;CaMK2A-tTA;Ai78;Ai93, Figure 3a). Induction using titrated TMP dose
resulted in observable sparse indicator expression, with subpopulations of layer II/III pyramidal
neurons expressing either GCaMP6f (Figure 3(b-i)) or VSFP Butterfly 1.2 (Figure 3(b-ii)), and an
overlapping sub-population co-expressing GCaMP6f and VSFP Butterfly 1.2 (Figure 3b; dotted box
outlines an example neuron).
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Figure 2. Sparse GEVI expression in vivo resolves subcellular structures. (a) At full expression 
density, GEVI optical signals are difficult to be assigned to individual neurons due to intermingled 
neuronal processes in dense populations. (b) Sparse Golgi staining-like GEVI expression density 
resolves single cells and subcellular morphologies (i) A 15 µm stack projection of three individual 
layer II/III pyramidal neurons. (ii) Single-plane image from the stack in (bi). GEVI targeting achieves 
optimal membrane expression, and is capable of resolving subcellular structures in vivo, including 
axonal boutons (blue inset) and dendritic spines (white inset). Image scale bar = 50 µm; inset scale bar 
= 2 µm. 

 
Figure 3. Dual-controlled co-expression of GECI (GCaMP6f) and GEVI (VSFP Butterfly 1.2) in 
somatosensory cortical layer II/III pyramidal neurons in vivo. (a) The combination of dCre and tTA 
allows for dual control of Ai78 VSFP Butterfly 1.2 and Ai93 GCaMP6f expression probabilities. This 
transgenic strategy resulted in GECI-expressing, GEVI-expressing and GECI/GEVI co-expressing 
populations. (bi) Strong GCaMP6f fluorescence signal observed in perisomatic regions of individual 
pyramidal neurons. (ii) Strong VSFP Butterfly 1.2 fluorescence signal observed in the membranes of 
two pyramidal neurons (arrows). (biii) Merged GCaMP6f (green) and VSFP Butterfly 1.2 (red) 
fluorescence signals on DAPI nuclei counterstaining (blue) showing sparse Golgi staining-like 
indicator expression pattern. Inset: a single-plane confocal image of the indicator-expressing neuron, 
outlined by the dotted box in (bii), showing optimal GEVI membrane targeting. Note this cell co-
expresses GCaMP6f and VSFP Butterfly 1.2. Scale bar = 50 µm. 

Figure 2. Sparse GEVI expression in vivo resolves subcellular structures. (a) At full expression density,
GEVI optical signals are difficult to be assigned to individual neurons due to intermingled neuronal
processes in dense populations. (b) Sparse Golgi staining-like GEVI expression density resolves
single cells and subcellular morphologies (i) A 15 µm stack projection of three individual layer II/III
pyramidal neurons. (ii) Single-plane image from the stack in (b-i). GEVI targeting achieves optimal
membrane expression, and is capable of resolving subcellular structures in vivo, including axonal
boutons (blue inset) and dendritic spines (white inset). Image scale bar = 50 µm; inset scale bar = 2 µm.
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Figure 3. Dual-controlled co-expression of GECI (GCaMP6f) and GEVI (VSFP Butterfly 1.2)
in somatosensory cortical layer II/III pyramidal neurons in vivo. (a) The combination of dCre
and tTA allows for dual control of Ai78 VSFP Butterfly 1.2 and Ai93 GCaMP6f expression probabilities.
This transgenic strategy resulted in GECI-expressing, GEVI-expressing and GECI/GEVI co-expressing
populations. (b-i) Strong GCaMP6f fluorescence signal observed in perisomatic regions of individual
pyramidal neurons. (ii) Strong VSFP Butterfly 1.2 fluorescence signal observed in the membranes
of two pyramidal neurons (arrows). (b-iii) Merged GCaMP6f (green) and VSFP Butterfly 1.2 (red)
fluorescence signals on DAPI nuclei counterstaining (blue) showing sparse Golgi staining-like indicator
expression pattern. Inset: a single-plane confocal image of the indicator-expressing neuron, outlined
by the dotted box in (b-ii), showing optimal GEVI membrane targeting. Note this cell co-expresses
GCaMP6f and VSFP Butterfly 1.2. Scale bar = 50 µm.
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A second quadruple transgenic combination was generated for controlled GCaMP6f expression in
layer II/III pyramidal neurons in combination with expression of the GEVI chimeric VSFP Butterfly in
all pyramidal neurons across all cortical layers. For this transgenic strategy, we crossed-in a line where
chimeric VSFP Butterfly expression is under the exclusive control of the TRE element (Rasgrf2-dCre;
CaMK2A-tTA; chiVSFP; Ai93; Figure 4a). Our TMP induction protocol achieved sparse GCaMP6f
expression in layer II/III pyramidal neurons (Figure 4(b-i,ii)), while the chimeric VSFP Butterfly voltage
indicator displayed a dense expression pattern (Figure 4(b-ii,iii)).
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Figure 4. Expression of genetically encoded voltage indicator (chimeric VSFP Butterfly) in all
cortical pyramidal neurons with controlled co-expression of genetically encoded calcium indicator
(GCaMP6f) in layer II/III pyramidal neurons in vivo. (a) A transactivator, driven by CaMK2A promoter
(CaMK2A-tTA) in pyramidal neurons, is required for binding to the TRE promoter for transcription
activation in both chimeric VSFP Butterfly and Ai93 indicator mice. A STOP cassette removal using
TMP-stabilized Cre-recombinase driven by Rasgrf2-2A promoter (Rasgrf2-2A-dCre) is only needed
for the Ai93 line. This quadruple transgenic strategy therefore achieves full GEVI expression in all
pyramidal neurons, with TMP dose-dependent adjustable GECI co-expression in layer II/III pyramidal
neurons (b-i) Strong GCaMP6f fluorescence signal observed in perisomatic regions of individual
pyramidal neurons (b-ii) A single confocal plane image showing strong chimeric VSFP Butterfly
fluorescence signal from pyramidal neurons observed across all cortical layers (b-iii) Merged GCaMP6f
(green) and chimeric VSFP Butterfly (red) fluorescence signals showing adjustable sparse GECI indicator
expression over dense GEVI expression patterns. Scale bar = 50 µm.

3. Discussion

Using a trimethoprim-inducible Cre-mediated activation of transcription under a strong TRE
promoter, we attained controlled, sparse and strong Golgi staining-like expression of genetically
encoded voltage and calcium indicators in vivo (Figure 1c). The expression is termed “strong”
because the expression level in individual cells is high, and it is termed “sparse” because only
a few cells express the fluorescent indicator. Sparse and strong GEVI expression allowed resolving
morphologies of individual neurons and subcellular structures—including axonal boutons and
dendritic spines—in the mammalian brain in vivo (Figure 2b-ii). By using different transgenic
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combinations, we also demonstrate that GEVI/GECI co-expression can be achieved in vivo, resulting
in GEVI-expressing, GECI-expressing, and GEVI/GECI co-expressing populations in the same animal
(Figure 3b-iii). Indicator-expressing neurons are a subpopulation within the population defined by the
cell-class specific promotor, and we assume that recombination within the transgene does not affect
the identity of the neuron or neuronal response properties [8,11,12].

3.1. GEVI and GECI Transgenic Approach

Until recently, in vivo application of GECIs and GEVIs was obtained using gene delivery
techniques based on in utero electroporation or viruses [11,16–20]. Compared to these approaches,
transgenic strategies achieve more reliable, reproducible, yet strong indicator expression patterns in
the mammalian brain with minimal invasiveness [8,21], and allow for more stringent targeting of
specific cell classes, as well as temporal and functional control of labelling [22]. In contrast to voltage
sensitive dye (VSD) imaging and viral approaches that involve craniotomies for dye and gene delivery,
the GEVI-based transgenic approach, when combined with thin-cranium mice, permits transcranial
imaging through a fully intact skull for longitudinal studies of mammalian behaviour [4,8,11,23,24].
Moreover, the growing available palette of Cre driver lines and tetracycline transactivator system
allows for intersectional transgenic approach for specific restricted expression patterns in vivo to
achieve a reliable modular experimental strategy [6,25,26].

Rapid progress in the development of GEVIs and GECIs fuels the deciphering of neuronal circuit
dynamics in systems neuroscience. GEVIs in particular permit the direct monitoring of cellular
electrical activity, providing additional information on subthreshold activity, hyperpolarising events,
and high frequency oscillatory activity at the population level of one specific cell type, and across
spatially distributed populations of neurons [27,28]. This approach was explored in the past using
classic VSDs injected into individual neurons [2,29]. The sparse GEVI expression protocol further
advances the optical voltage monitoring approach by enabling cell class-specific voltage imaging at
multiple single-cell resolution in vitro and in vivo.

3.2. Sparse Strong GEVI Expression Resolves Individual Cells and Subcellular Structures

The recent generation of GEVIs exhibit response dynamics compatible with recording fast action
potentials (APs), as demonstrated in cell cultures [12,19,20,30,31]. However, resolution of APs from
multiple neurons in vivo in mammalian brains is not yet routinely achieved due to the intermingled
neuronal processes in dense cell populations that complicate precise optical signal allocation to
individual cells.

The experimental strategies presented here offer a solution to this problem. Combination of the
inducible dCre system with the intersectional transgenic approach for strong and cell class-specific
indicator expression produces Golgi staining-like expression patterns with known cell identity (e.g.,
pyramidal neurons, Figure 1). Administration of a saturating TMP dose (750 mg/kg Figure 1c-iii)
achieves a high density of indicator-expressing cells. We compared this density with expression
pattern of CUX1 ([15], a DNA-binding protein homeodomain family that identifies layer II/III
pyramidal neuron nuclei [32]), and we concluded that the Rasgrf2 promoter is active in most,
if not all, layer II/III pyramidal neurons, hence when driving expression of stabilized dCre triggers
Cre-mediated recombination in most, if not all, layer II/III pyramidal neurons. In contrast to the
intermingled indicator expression at high recombination probability achieved by the saturating TMP
dose (Figure 2a), strong but sparse expression pattern achieved by low-dose TMP administration
resolves the morphology of distinct subcellular structures including axonal boutons and dendritic
spines in single confocal planes in vivo (Figure 2b), opening the possibility for synaptic level functional
monitoring in vivo. In our current study, a much lower dose of TMP is used than indicated in
previous reports, to achieve limited recombination probabilities via the use of dCre [9]. A possible
explanation could be the genomic location of the novel TIGRE locus—into which our indicator
transgenes are inserted—is more Cre-accessible compared to the more widely used Rosa26 locus, thus
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lowering amounts of stabilized Cre required to achieve a similar recombination probability [8,22].
Although the titrated TMP induction protocol achieves adjustable recombination percentage amongst
a cell population, the recombination event in any given cell is, in principle, “all-or-nothing”, thus the
effective indicator expression (thereby signal intensity) remains strong in the expressing cells despite
the low populational expression density (Figures 1, 2 and 3b).

3.3. GEVI/GECI Co-Expression

GECIs like GCaMPs are currently employed as a mainstream tool in systems neuroscience
as a surrogate indicator of neuronal activity via reporting changes in the intracellular calcium
concentration of the expressing cell. Although GCaMPs offer large signal-to-noise ratio due to the
substantial change in cytosolic calcium concentration upon activity, this optical signal has a mixed
origin and, whilst useful for reporting suprathreshold AP events, is completely blind to synaptic
inputs [2]. In contrast, GEVIs are ideally suited to monitor synaptic responses and input−output
behaviour. A more powerful approach to full exploration of the circuit connectivity is to combine GEVIs
with GECIs. Whilst this has been explored ex vivo using voltage and calcium sensitive dyes [33,34],
such approaches remain impossible in vivo.

In the present study, a successful dual GEVI/GECI neuronal labelling in vivo was achieved
(Figures 3 and 4) by using the modular nature of the intersectional transgenic strategies. In our
transgenic animals, the fluorescence emission spectra from the mCitrine and mKate2 fluorescent
protein pair in the FRET-based VSFP Butterfly family were sufficiently different from the GFP emission
spectrum of GCaMP6f (Figures 3 and 4), thereby providing the essential bases for future simultaneous
optical imaging of both voltage and calcium activity of the same neurons in vivo.

4. Materials and Methods

All animal experimental procedures were performed in accordance with the United Kingdom
Animals (Scientific Procedures) Act 1986 under Home Office project and personal licences following
appropriate ethical review.

4.1. Animals

Triple transgenic mice were generated to express GCaMP6f (Rasgrf2-dCre; CaMK2A-tTA;Ai93)
or VSFP Butterfly 1.2 (Rasgrf2-dCre;CaMK2A-tTA;Ai78) in cortical layer II/III pyramidal neurons.
Quadruple transgenic mice were generated to co-express VSFP Butterfly 1.2 and GCaMP6f in cortical
layer II/III pyramidal neurons (Rasgrf2-dCre;CaMK2A-tTA;Ai78;Ai93), or to express chimeric VSFP
Butterfly in all cortical pyramidal neurons and GCaMP6f in cortical layer II/III pyramidal neurons
(Rasgrf2-dCre;CaMK2A-tTA;chiVSFP;Ai93).

4.2. Inducible Control of Recombination Using Trimethoprim

Trimethoprim (Sigma, Germany) was dissolved in DMSO first at 100 mg/mL and then further
serially diluted in DMSO. The TMP in DMSO solution was mixed 1:9 with 0.9% saline <1 min before
intraperitoneal injection to avoid TMP precipitation. Triple or Quadruple transgenic mice received final
TMP doses ranging from 0.005 to 750 mg/kg body weight and DMSO concentration was kept constant.

4.3. Histology and Confocal Imaging

One to six weeks (see results) after TMP administration, mice were anaesthetized with
pentobarbital sodium, and transcardially perfused with 4% paraformaldehyde, post-fixed overnight
and cryoprotected with 25% sucrose. Coronal sections of 100 µm thickness were cut on a sledge
microtome and stored in phosphate buffered saline. All sections were nuclei counterstained with
DAPI and imaged under a Leica TCS SP5 confocal microscope, using 405 nm for DAPI excitation
and 488 nm for GEVI/GECI excitation. Z-stacks of images were captured with 63× oil-immersion
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objective (Numerical Aperture = 1.4, 15 µm or 20 µm thick at 1.05 µm steps). Since GECI signals can be
more accurately attributed to single cells, GCaMP6f-expressing sections were counted to determine
TMP-indicator expression dose dependency.

4.4. Ex Vivo Quantification of Indicator Expression

For GCaMP6f expression analysis, images were analysed post hoc using ImageJ Fiji 1.5 (NIH,
MD, USA). Regions of interest (ROIs) corresponding to identified cells were manually defined.
Straight line ROIs were placed across the two brightest points of the cytosolic region of selected
cells. Mean fluorescence signal of these two brightest points (Fselected cell) were normalised against
the spatially averaged background signals (FBG) in the specific layers where the cells were selected.
Selected cells are considered as expressing GCaMP6f if their Fselected cell/FBG ratio is equal to or greater
than 1.5 and are considered as non-expressing otherwise. Only cell profiles that included a nucleus
and were present in more than 3 z levels were counted. Quantification of DAPI-counterstained cell
nuclei representing total number of cells present in each imaged region was manually performed using
the ImageJ Cell Counter plugin. Quantitative data reported as mean ± SEM.
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