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Background: Sepsis, post-liver transplantation, is a frequent challenge that impacts

patient outcomes. We aimed to develop an artificial intelligence method to predict the

onset of post-operative sepsis earlier.

Methods: This pilot study aimed to identify “physiomarkers” in continuous

minute-by-minute physiologic data streams, such as heart rate, respiratory rate, oxygen

saturation (SpO2), and blood pressure, to predict the onset of sepsis. The model

was derived from a cohort of 5,748 transplant and non-transplant patients across

intensive care units (ICUs) over 36 months, with 92 post-liver transplant patients who

developed sepsis.

Results: Using an alert timestamp generated with the Third International Consensus

Definition of Sepsis (Sepsis-3) definition as a reference point, we studied up to 24 h

of continuous physiologic data prior to the event, totaling to 8.35 million data points.

One hundred fifty-five features were generated using signal processing and statistical

methods. Feature selection identified 52 highly ranked features, many of which included

blood pressures. An eXtreme Gradient Boost (XGB) classifier was then trained on the

ranked features by 5-fold cross validation on all patients (n = 5,748). We identified that

the average sensitivity, specificity, positive predictive value (PPV), and area under the

receiver-operator curve (AUC) of the model after 100 iterations was 0.94 ± 0.02, 0.9

± 0.02, 0.89 ± 0.01, respectively, and 0.97 ± 0.01 for predicting sepsis 12 h before

meeting criteria.

Conclusion: The data suggest that machine learning/deep learning can be applied

to continuous streaming data in the transplant ICU to monitor patients and possibly

predict sepsis.
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INTRODUCTION

Liver transplantation continues to be the optimal and more
successful therapy for end-stage liver disease and cirrhosis (Kim
et al., 2019). One of the biggest challenges in the transplant
community is the discrepancy of donor availability and the need
of the recipients. Transplant centers frequently appeal to the use
of marginal or suboptimal donors to decrease this gap, while,
at the same time, increasing the chances for post-transplant
complications associated with organ dysfunction (Kim et al.,
2019).

Moreover, in recent years, the increased availability of more
potent immunosuppressive agents, along with sicker and older
recipients needing transplantation, has increased the incidence
of opportunistic infections (OIs) affecting patient survival after
liver transplantation (LT) (Haidar et al., 2019; He et al., 2019).
Post-transplant infections with or without surgical complications
are the leading cause of morbidity and mortality post-LT
(Kim et al., 2019). Overall, infections and sepsis are estimated
to occur in more than half of LT recipients, and are the
main cause of post-LT death between days 21 and 180 (Sun
et al., 2011; Fischer et al., 2013; Martin et al., 2014; Haidar
et al., 2019; He et al., 2019). Bacterial infections are the most
common post-transplant infections (>70%), followed by viral
and fungal infections (Sun et al., 2011; Haidar et al., 2019; He
et al., 2019). Fortunately, due to intensive screening practices
to detect latent infections in liver transplant candidates, and
with the implementation of appropriate prophylactic protocols
and therapy, mortality associated with post-LT infections is still
low (<10%) (Sun et al., 2011; Martin et al., 2014; He et al.,
2019). Known risk factors associated with infection after LT
include a high model for end-stage liver disease (MELD) score,
re-transplantation, advanced age of the recipient, number of
blood transfusions, renal replacement therapy (RRT), and a long
intensive care unit (ICU) stay, among others (Haidar et al.,
2019; He et al., 2019). Several steps in the physical examination
and laboratory assessment allow a clinician to identify active
infections that would prompt therapy to prevent complications.
It is known, however, that delays in diagnosis and therapy
implementations would carry higher mortality in this population
(Kumar et al., 2006; Dombrovskiy et al., 2007). Because of the
scarce resource of liver grafts and the associated mortality of
post-transplant infections, biomarkers or markers capable of
accurately expediting diagnosis would be of significant clinical
significance in a transplant unit.

Sepsis is a common event, with more than a million
Americans getting hospitalized each year (Dombrovskiy et al.,
2007; Liu et al., 2014). Sepsis is caused by a heightened
inflammatory response to an infection, and can quickly progress
to multi-organ failure and death (Liu et al., 2014). In the
septic shock phase of the disease, every hour that treatment
is delayed can lead to a 7.6% increase in mortality (Kumar
et al., 2006). In liver transplantation, this phenomenon is not
different in the general population, and an early infection due to
surgical complications, such as bleeding, bile leak, or rejection,
may trigger infections and sepsis with severe consequences in
recipients (Kumar et al., 2006; Elkholy et al., 2019).

A number of recent studies have applied artificial intelligence
(AI) and machine learning to identify patients at risk for sepsis
earlier, thereby potentially reducing mortality and morbidity
(Kumar et al., 2006; Nemati et al., 2018; Elkholy et al., 2019).
These methods have typically used an array of clinical and
laboratory variables in the electronic medical record (EMR) to
predict the risk of sepsis. While such methods have achieved
a significant performance in retrospective studies, they are
limited by the aperiodic and unstructured nature of EMR
data. Alternative methods for developing predictive models
for sepsis have used high-frequency data streams captured
from the medical monitor, such as heart rate, blood pressures,
respiratory rate, and oxygen saturation (Kamaleswaran et al.,
2018; van Wyk et al., 2019). The use of such biosensor data
may identify physiomarkers that present hours before the clinical
manifestation of the disease or event, thereby allowing for earlier
recognition and the initiation of therapy. In this study, we
evaluated the effectiveness of high-frequency physiological data
stream analysis in predicting the onset of sepsis in liver transplant
patients. We developed and tested a number of machine learning
methods using features derived from the physiological time series
to generate predictions at various time intervals before the Third
International Consensus Definition of Sepsis (Sepsis-3) clinical
definition (Singer et al., 2016).

MATERIALS AND METHODS

Data Collection Environment
This observational retrospective study was approved by the
Institutional Review Board (IRB) of the University of Tennessee
Health Science Center. We collected continuous physiological
data streams from bed-side monitors using the Cerner iBus
(Cerner Corporation, Kansas City, MO, United States) (Cerner
Corporation, 2014). The Cerner iBus generated minute-by-
minute heart rate (HR), respiratory rate (RR), blood pressure
(mean, systolic, and diastolic), and oxygen saturation (SpO2) data
streams; however, continuous temperature was not available and
was, therefore, excluded from the analysis. We captured non-
invasive blood pressure (NIBP), which was sampled at least once
an hour, and, in some cases where clinical deterioration was
suspected, the NIBP was sampled more frequently.

Case Definition
Patients admitted to the intensive care unit across the Methodist
University Hospital and Transplant Institute (UTHSC) between
January 2017 and January 2020, with continuous minute-by-
minute physiological monitoring data, were included in the
study. In this study, we utilized the Sepsis-3 definition [SHAP
(SHapley Additive exPlanations), 2021]; patients whomet Sepsis-
3 criteria but did not have high-frequency data recorded within
the prior 24 h were excluded. Sepsis-3 definitions were applied
serially using the method described by Nemati et al. (2018) in
order to identify the time of sepsis onset (event time) (Nemati
et al., 2018). We identified controls as those who had never met
sepsis criteria during their encounter. To identify a control event
time (for supervised learning), we used a randomly generated
timestamp that occurred between admission and discharge,
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provided that the 24-h data availability criterion prior to the
random event time was met. All the data were then temporally
aligned to the event time, identified as tsepsis

Feature Extraction and Feature Selection
For each of the six physiological data streams [heart rate,
respiratory rate, oxygen saturation, systolic blood pressure (SBP),
diastolic blood pressure (DBP), and mean femoral artery blood
pressure (MAP)], features were extracted using eight statistical
and two time-frequency domain methods, namely, mean, sum,
minimum, maximum, frequency of the measurement (length),
standard deviation, variance, kurtosis, fast Fourier transform
(FFT), and continuous wavelet transform (CWT) (Christ et al.,
2018). A number of parameters were included for evaluating the
FFT coefficients (0–100, with a step of 4); then, we extracted
the absolute coefficient values for each parameter. For CWT
features, we evaluated width values of 0–20 at a step of 2. These
features were extracted for each hour within the 3-h window
across six data streams, for a total of 774 features per window;
24 FFT features consistently returned null and subsequently
removed, resulting in a total of 750. Missing data were imputed if
there was a previous record; otherwise, we used the population
median value. These features were then concatenated into a
single feature vector that incorporated temporal dynamics over
the 3-h period.

We then applied a variety of feature selection methods,
including statistical, and thus performed both non-parametric
Mann–Whitney-U and parametric independent sample t-tests,
ridge, lasso, recursive feature elimination (RFE), and random
forest-based variable importance utilizing information gain and
gini impurity. These feature selection methods were performed
in order to reduce data dimensionality to a limited set of markers
that predict the onset of sepsis.

The dataset was then segmented into two cohorts; the
first included all patients who were admitted to the intensive
care unit without having received a liver transplant at least
31 days prior to admission, and the second cohort included
all patients who underwent transplantation. For the training
of the model, we implemented a subsampling strategy where
we randomly selected an equal number of controls to cases.
In order to control for over-fitting, we implemented a 5-
fold cross validation on each iteration to derive training
and test performances. We then iterated this training 100
times to generate unique model performances from each run
and reported the averaged performance measure overall runs.
Hyperparameters were evaluated using a grid-search approach,
with which we predefined the upper and lower limits of the
hyperparameters and generated a series of models and recorded
their performance. The hyperparameters that achieved the most
stable model performance, with minimal variance over the 100
runs, were selected and used to train the entire first cohort
data. We selected the optimal hyperparameter for each of
the algorithms that were explored, namely, eXtreme Gradient
Boosting (XGB), logistic regression (LR), support vector machine
(SVM), and random forest (RF). The remaining selected models
were then validated on the transplant cohort.

Machine Learning Pipeline
Prior to the modeling of high-dimensional data streams, we
applied an unsupervised cluster visualization technique called
t-distributed stochastic neighbor embedding (tSNE) (Van der
Maaten and Hinton, 2008). This method converts similarities
between data points to joint probabilities and tries to minimize
the divergence between these joint probabilities in a low-
dimensional manner to illustrate possible clusters and separation.
Then, in the binary classification, we applied a number of
machine learning classifiers to generate complementary but
competing models. We investigated supervised learning methods
such as eXtremeGradient XGB, LR, SVM, and RF, with both XGB
and RF being non-linear ensemble-based learning methods. In
particular, XGB is unique in incorporating sequential boosting to
improve classification performance, but it may also be sensitive
to overfitting. Furthermore, SVM is a classical machine learning
method that utilizes hyperplanes to optimize separation among
features and has been successfully used for binary classification
tasks. In addition, ALR is a statistical learning method and often
serves as a benchmark for machine learning model comparison.
We utilized the above algorithms to compare performance across
unique learning strategies to select an optimal algorithm that
performs best for this dataset.

In order to generate explainable feature importance, we used
the SHapley Additive exPlanations (SHAP) package (Lundberg
and Lee, 2017). The SHAP algorithm uses methods from game
theory to explain the output of machine learning models; it has
been noted to be state-of-the-art in terms of generating reliable
explanations of predictive model outputs.

Model benchmarks were generated by computing area under
the receiver-operator curve (AUC), area under the precision-
recall curve (AUPRC), sensitivity, specificity, and positive
predictive value (PPV). In particular, AUC is a traditional
benchmarking tool for determining performance over a range
of possible model-estimated probability thresholds; however, it
assumes a balanced distribution of samples. Conversely, AUPRC
is more useful for measuring performance across imbalanced
and low-PPV scenarios; a higher AUPRC indicates that the
model can accurately identify all positive examples without
compromising specificity.

We utilized Python 3.6 and the XGBoost package (XGBoost
Documentation, 2021) for developing the XGB model and the
sci-kit learn (Scikit-Learn: Machine Learning in Python, 2021)
package for developing the remaining machine learning and
statistical analysis code base. We utilized the SHAP library to
derive explainable interpretations and summary plots [SHAP
(SHapley Additive exPlanations), 2021].

RESULTS

Data Missingness
In the derivation dataset, the rate of missing value was highest
between MAP and DBP, with an average of 16% patients having
at least one missing value in the 3-h observational window.
Oxygen saturation was the most often recorded, with only 0.1%
of the patients missing this measure, followed by HR with
a missing value of up to 0.6%, RR in 2.7% of patients, and
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TABLE 1 | Characteristics of the study population.

Sepsis (Non-Transplant) Sepsis (Transplant)

Characteristics Overall Yes No Overall Yes No

Patient, n (%) 5,748 (100) 604 (10.5) 5,144 (89.5) 252 (100) 92 (27) 160 (73)

Male, n (%) 2,932 (49.2) 299 (48.5) 2,633 (49.3) 160 (63) 50 (54) 110 (69)

Mechanical ventilation, n (%) 1,356 (22.8) 490 (74.6) 896 (16.8) 252 (100) 92 (100) 160 (100)

In hospital deaths, n (%) 439 (7.4) 176 (28.5)** 263 (4.9) 23 (9) 8 (9) 15 (9)

Age (yr.) median (IQR) 62 (50–72) 63 (52–72) 61.5 (50–72) 57 (48–66) 61 (46–67) 57 (50–65)

ICU LOS (d), median (IQR) 5 (3–8) 11 (6–20)** 4 (3–7) 2 (2–5) 4 (2–5) 2 (2–5)

ICU LOS > = 7d, n (%) 1,917 (32.2) 435 (70.5)** 1,482 (27.7) 58 (22.9) 21 (23) 37 (22.9)

Self-reported race, n (% row-wise)

Black or African American 3,453 (58.0) 387 (62.7)* 3,066 (57.4) 44 (17) 7 (16) 37 (84)

White 2,360 (39.6) 214 (34.7) 2,146 (40.2) 178 (71) 14 (8) 164 (80)

Other/Unknown 104 (1.8) 13 (2.1) 91 (1.7) 20 (8) 2 18 (6)

Multiple 21 (0.4) 1 (0.2) 20 (0.4) 0 0 0

Asian 19 (0.3) 2 (0.3) 17 (0.3) 1 0 1

Self-reported Ethnicity, n (%)

Not Hispanic or Latino 5,847 (98.2) 605 (98.0) 5,242 (98.2) 219 (87) 11 (1) 208 (99)

Hispanic or Latino 69 (1.2) 8 (1.4) 69 (1.3) 19 (8) 2 (10) 17 (90)

Unknown or Declined 33 (0.6) 4 (0.6) 29 (0.5) 0 0 0

*Significant at a = 0.01; **significant at a = 0.001.

SBP in 4.8%. Supplementary Figure S1 illustrates the correlation
between the missing variables, and suggests that when MAP
is missing, DBP is also missing and vice versa. In 60% of the
cases, SBP is associated with missing MAP and DBP. In cases
where HR is missing, in 30% of the patients, MAP and DBP are
also missing.

We identified a total of 5,748 non-transplant patients who
were admitted to the intensive care unit over an 8-month period,
604 (10.5%) of whom met the “Sepsis-3” criteria defined as
suspicion of infection in the presence of organ failure (Singer
et al., 2016). Furthermore, another 252 patients were separately
identified to have undergone a liver transplant, 92 (36%) of whom
met Sepsis-3 criteria during their stay in the ICU.

Age and gender differences were not statistically significant in
the general cohort (Table 1). Model for end-stage liver disease
scores was also not statistically different between the cohorts,
with scores consistently ranging from 22 to 28 across both
cohorts. As expected, in the transplant program, a greater portion
of the transplant cohort consisted ofmale Caucasians. In-hospital
mortality in the transplantation cohort was 9%, which is less than
the in-hospital mortality in the general cohort. The incidence of
sepsis in the transplant cohort was significantly higher than in
the general cohort. The median age of the transplant cohort was
57 years, with the sepsis patients being, on average, 4 years older
than the non-sepsis liver transplant patients across each group
similar to the general cohort. All patients in the transplant cohort
were temporarily mechanically ventilated, while only 23% was in
the general cohort.

An Unsupervised clustering, using the tSNE method, of the
raw data up to 12 h prior to sepsis onset suggests that clusters
can be distinguishable (Figure 1A, tSNE plot). The cluster to the

left largely consists of patients without sepsis, while the cluster
to the top and to the right contains a significant portion of
patients with sepsis, indicating that further analysis of the data
may reveal useful predictive markers for sepsis. We found a
number of overlapping distinguishing physiomarkers when we
utilized the gradient boosting method (Figures 1B,C), and the
SHAP output (Figure 1D). Notably, HR, RR, and SBPs were
significant explainers for patients who developed sepsis early in
the clinical course.

Figure 2 illustrates an example patient with sepsis where the
physiological data streams were available up to 16 h before onset.
In this figure, dynamic shifts are seen in the HR, RR, and
blood pressure data streams during the time leading to sepsis.
Moreover, interventional response via fluid resuscitation is also
observed shortly thereafter.

Statistical Analysis
A total of 750 features were generated from all the physiological
data streams using statistical and time-frequency domain
methods (described in the methods section); these represent
features generated in the observational window at 12 h
(prediction horizon) prior to sepsis onset. By Student’s t-test
against these continuous measures to identify distinguishing
features, we found that the statistical significance for the
transplant cohort at p < 0.05 was observed in 311 features,
of which 106 were various time-frequency abstractions of
DBP and 79 features were related to SBP, 73 to RR, 38 to
MAP, and 15 belonged to HR. None of the SpO2 features
figured as statistically significant. Among the signal processing
features, at p < 0.001, FFT of DBP and SBP, and CWT
of RR were significant (Figure 3). The box plots illustrated
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FIGURE 1 | (A) t-Distributed stochastic neighbor embedding (tSNE) plot characterizing sepsis (dark purple) and non-sepsis clusters (pink); (B) cumulative feature

importance identifies 29 features that explain 99% of the data; (C) feature importance generated using light gradient boosted machines; (D) explainable importance

with SHapley Additive exPlanations (SHAP) after feature selection.

in Figure 3 show that frequency-domain characteristics were
meaningfully distinguishable among blood pressures, while more
complex dynamics that spanned the time-frequency domain were
apparent among respiratory rates.

Machine Learning
Utilizing the statistically significant features (n= 311), we applied
feature selection techniques, namely, the RFE method, which
generated 22 features that were highly predictive. All of these
22 features were derived from statistical and continuous wavelet
transformmethods, and indicated that SBP characteristics are the
top predictor of sepsis (Figure 1D). Separately, using ridge and
lasso feature selection, we applied a defined coefficient threshold
of 0.5 to select the most predictive features. The lasso method
selected 12 features, which consisted exclusively of statistics from
respiratory rate. The ridge method selected 52 highly ranked
features, of which the top feature was SBP, with various temporal
permutations of SBP appearing a total of nine times. The second
most important feature was DBP, which appeared a total of 10
times, followed by RR, which appeared 12 times. The models
were developed using both the RFE and ridge methods, and
the ridge-based feature selection was identified as the optimal
feature set because of its improved performance across the

5-fold cross-validation benchmarks. While we evaluated XGB,
LR, SVM, RF, and MLP, XGB was identified as the optimal model
after averaging 10 randomized runs of the 5-fold cross-validation.
Because of the significant overfitting that occurred in the MLP
pipeline early in the analysis, we did not pursue it for further
hyperparameterization. Figure 4 illustrates model performance,
such as AUC and AUPRC, for the machine learning methods
evaluated. In the figure, both XGB and RF are consistently shown
to have the highest performance across both benchmarks, with
XGB slightly outperforming RF.

Table 2 lists the performances of the logistic regression,
support vector machine, random forest, and eXtreme Gradient
Boost models. The XGB model was identified as the optimal
model because of generally improved performance across all
metrics, with a mean sensitivity of 0.94, specificity of 0.90, and an
AUC of 0.97, as shown in Figure 4. The SVM model performed
worst with respect to AUC (0.63) but had the highest specificity
(0.94). The RF model performed relatively close to the XGB
model but with a lower sensitivity (0.92) and specificity (0.88).
The LRmodel had the lowest overall PPV (0.76). The XGBmodel
outperformed all the other models in terms of each metric except
for specificity. The optimal hyperparameters used in the XGB
model were as follows: max depth of 6, subsample parameter
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FIGURE 2 | An example patient with sepsis is illustrated in this figure; continuous physiological data were captured over an 18-h post-transplantation period. The

patient met Sepsis-3 criteria (tSepsis) 13 h post transplantation (retrospectively identified), and fluid resuscitation (fluid bolus) was initiated 1.5 h thereafter. Several

elements are of note within this patient, namely, in the preceding hours before meeting criteria, heart rate (HR) variability is noticeably reduced, accompanied by

increased dynamics in the systolic blood pressure (SBP) and mean femoral artery blood pressure (MAP) data streams.

FIGURE 3 | Statistical significance (p < 0.001) was observed among the three

physiological signals, namely, respiratory rate, diastolic blood pressure, and

systolic blood pressure at 12 h prior to sepsis onset.

of 1, the minimum sum of instance weight for child of 1, and a
learning rate of 0.1. The optimal SVM kernel function was linear.
The threshold used for binary classification was 0.5.

DISCUSSION

Liver transplantation is a life-saving therapy for patients with
liver cancer and end-stage liver disease. In the United States in
2017, more than 7,000 LTs were performed (Kim et al., 2019).

Transplant recipients are, however, at high risk for
complications such as infections due to advanced age, obesity,
comorbidities, and issues associated with the transplant
event that may be related to surgical complications or organ
dysfunction (Pedersen and Seetharam, 2014). Furthermore,
systemic immunosuppression has rendered liver recipients
susceptible to de novo infections and the reactivation of
preexisting latent infections such as viral infections. Infections
occurring during the first month post-LT are usually nosocomial
or donor-derived or the result of a perioperative complication,
such as a surgical complication, or organ dysfunction
(Hernandez Mdel et al., 2015). A recent review of the Organ
Procurement and Transplantation Network (OPTN) data
from 64,977 patients who underwent liver transplantation
identified the incidence of 90-day and 1-year mortalities
at 5 and 10%, respectively. Although death associated with
cardiovascular/cerebrovascular/pulmonary/hemorrhage was the
most common cause of death within the first 21 days (7-day:
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53%), only 20% of patients who underwent liver transplantation
died from these causes after 180 days. Importantly, infections
were the most frequent cause of death 30–180 days after liver
transplantation. In contrast, after roughly 200 days from the time
of liver transplantation, other causes were the most frequent
cause of death (Baganate et al., 2018).

Severe sepsis, or infection with systemic inflammation,
poses a substantial burden on the United States healthcare
system, leading to>7,50,000 hospitalizations and 2,00,000 deaths
annually (Moore et al., 2016). Severe sepsis remains a leading
cause of death in the United States, with in-hospital mortality

FIGURE 4 | (A) Area under the Receiver Operator Curve, the XGBoost model

achieves the highest AUC while SVM performed the worst. (B) area under the

Precision Recall curve, XGBoost maintains the best AUPRC but Logistic

Regression is ranked the worst.

ranging from 12 to 26% (Donnelly et al., 2016). In solid organ
transplantation and in contrast to the general belief, infection,
and sepsis are more frequent in the general population, but the
mortality associated with sepsis is lower, as also demonstrated in
the analysis and results (Donnelly et al., 2016).

A big challenge is, however, early diagnosis, as the syndrome
of sepsis has a wider range of causative organisms and differing
presentations among immunosuppressed individuals such as
patients who underwent liver transplant (Oriol et al., 2015).
Furthermore, in the septic shock phase of the disease, every hour
that treatment is delayed can lead to a 7.6% increase in mortality
(Kumar et al., 2006).

Traditional markers of systemic inflammatory response
syndrome and clinical presentation may not be present
among the immunosuppressed, despite active overwhelming
infection (Gauer, 2013).

Hereby, the analysis of patients who underwent liver
transplantation patients who were admitted to the intensive
care unit post-surgery revealed novel physiomarkers that can
predict the onset of sepsis earlier and may have an impact on
clinical decisions. An illustration using the tSNE visualization
method indicated that there are unique clusters that emerge with
separation between sepsis and non-sepsis cohorts. This indicates
that the source data, comprising physiological data streams, may
indeed be useful to predict the onset of sepsis within this cohort.
We further found that these physiomarkers existed at least 12 h
before a clinical definition was made. Among the important
features, we noted that, when compared across two different
explainability methods, we saw a consistent trend in the statistical
markers of RR and SBP, along with HR, dominating the list of
signals that predicted sepsis early in the clinical course. These
vital sign measures have been previously described using EMR
data. However, they have not been discussed in the context of
continuous bedside monitoring for patients who received liver
transplants in the past (Desautels et al., 2016; Bloch et al., 2019).
While signal processing methods, FFT and CWT, were both
statistically significant between the cohorts, they were outranked
by the statistical features derived from the same physiological
data streams.

We also found that, while several models may be useful
as optimal candidates, the eXtreme Gradient Boost model
specifically showed higher performance. In the selection criteria
for the optimal model, we ensured that a specificity value of at
least 0.6 would be required, as to not overwhelm nursing staff
with false alarms. Therefore, these results indicate a value in the

TABLE 2 | Comparison of model performance.

LR SVM RF XGB

mean [95% CI]

Sensitivity 0.49 [0.44–0.49] 0.28 [0.27–0.33] 0.92 [0.90–0.92] 0.94 [0.93–0.95]

Specificity 0.85 [0.83–0.86] 0.94 [0.93–0.95] 0.88 [0.83–0.89] 0.90 [0.89–0.90]

PPV 0.76 [0.74–0.78] 0.83 [0.82–0.84] 0.88 [0.87–0.89] 0.89 [0.88–0.91]

AUC 0.67 [0.66–0.70] 0.63 [0.62–0.65] 0.96[0.93–0.96] 0.97 [0.95–0.97]

Frontiers in Physiology | www.frontiersin.org 7 September 2021 | Volume 12 | Article 692667

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kamaleswaran et al. AI in Liver Transplant

use of bedside monitoring data streams for informed clinical
decision-making and potential treatment plans for patients who
received liver transplants in the past, and may serve as useful
alternatives to existing clinical monitoring.

Specific features derived from time-frequency domain
extractions revealed the useful characteristics of the continuous
physiological data streams that can highly predict sepsis.
Specifically, in the results, we found that SBP and DBP, along
with changes in RR, were among the dominant features (top
10) in the model. We noted that SpO2 was not observed to
be a significant predictor. While significant literature has
been proposed around the utility of HR and HR variability
(Ahmad et al., 2009), we noted that, in the model, these appear
only seven times in the 52 features that were included in
model development.

We sought to develop a minimal physiologic model of
sepsis because of the unpredictable nature of orders and
their results. The development, therefore, of a minimalistic
predictive model may allow for wider use. However, we note
that there may be significant improvements in the performance
of the model by incorporating clinical- and laboratory-based
findings. We expect this to improve the model performance in
prospective deployment.

Limitations associated with this study are being derived from
a single site and incomplete data analysis due to incomplete
clinical data collection (e.g., IMS, surgical complications, HAT,
among others). As for the future study, we seek to incorporate
data across multiple sites. We were unable to compute standard
severity of illness scores because of the limited clinical data, such
as the composite sepsis risk score, D-MELD (donor age recipient
MELD), donor risk index, Euro-transplant donor risk index, or
survival outcome following liver transplantation (SOFT) score,
to perform benchmark comparisons. We also reported a small
sample size of patients who received liver transplants in the past,
which could limit the generalizability of the model; thus, larger
datasets from multi-site transplantation units could improve the
external generalization.

Clinical Translation and Future Study
In this pilot study, we demonstrated that continuous
physiological data streams can be used for informed clinical
decision-making related to the risk of sepsis among patients
who received liver transplants in the past. While the model
proposed in this study can be directly applied, clinical translation
has been a major challenge for machine learning algorithms.
We have previously demonstrated that, while clinical data may
be useful by themselves, machine learning algorithms are also
influenced by measurement indicators (e.g., practice patterns),
such as specific applications of sepsis bundles that may indicate
increased clinical suspicion (Futoma et al., 2021). In order to
control for these confounding variables, a clinical translation of

such machine learning models needs to be carefully managed,
for instance, by enacting benchmark methods that include silent
prospective pilots and clinical adjudication of alerts. These efforts
form the basis for the future study.

CONCLUSION

Artificial intelligence is becoming an important tool to assist
many areas in the field, such as inpatient and outpatient
monitoring, including the setting of solid organ transplantation
(Woldaregay et al., 2019). In this context, this is one of the first
studies that aim to demonstrate that the use of machine learning
and AI tools may accurately assess a large amount of continuous
data streams from the bedside of patients and help tomake earlier
diagnoses or event recognition, allowing for faster and more
accurate clinical decisions.
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