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Correlation between Carotid and Brachial Artery Velocity 
Time Integral and Their Comparison to Pulse Pressure 
Variation and Stroke Volume Variation for Assessing Fluid 
Responsiveness 
Malini Joshi1 , Praveen Dhakane2 , Shilpushp J Bhosale3 , Rutuja Phulambrikar4 , Atul P Kulkarni5

Ab s t r ac t
Background: Fluid boluses are used in hemodynamically unstable patients with presumed hypovolemia, to improve tissue perfusion, in the 
perioperative period. Now less invasive methods, such as pulse pressure variation (PPV) and stroke volume variation (SVV) are increasingly 
being used. We investigated correlation between carotid and brachial artery velocity time integral (VTI) and compared both with PPV and SVV.
Methods: We recruited 27 patients undergoing supra-major abdominal surgeries. When indicated (hypotension or increased lactate), a fluid 
bolus was given after measuring carotid and brachial artery VTI, PPV, and SVV. The change in SV was noted and patients were categorized as 
responders if the SV increased by >15%. We performed Bland Altman Agreement and calculated best sensitivity and specificity for the parameters.
Results: Patients were found to be fluid responders on 29 instances. The correlation between PPV, SVV, carotid and brachial artery VTI was poor 
and the limits of agreement between them were wide. The Area under Curve (AUC) for PPV was 0.69, for SVV was 0.63, while those of Carotid 
and Brachial artery VTI (TAP and flow) were (0.53 and 0.54 for carotid) and (0.51 and 0.56 for brachial) respectively.
Conclusion: We found poor agreement and weak correlation between both VTi (TAP and flow) measured at carotid and brachial arteries, 
suggesting that the readings at brachial vessel cannot be used interchangeably with those at carotid artery. The PPV and SVV were better than 
these parameters for predicting fluid responsiveness; however, their predictive ability (AUROC), sensitivity and specificity were much lower 
than previously reported. Further studies in this area are therefore required (CTRI Reg No: CTRI/2017/08/009243).
Keywords: Fluid responders, Fluid responsiveness, Hypoperfusion, Hypovolemia, Pulse pressure variation, Stroke volume variation, Velocity 
time integral.
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In t r o d u c t i o n
Fluid boluses are used in hemodynamically unstable patients with 
presumed hypovolemia to improve tissue perfusion. When cardiac 
index (CI) increases after fluid bolus patients are called responders; 
this occurs when they are on the steep portion of the Frank Starling 
curve. However, bedside assessment of fluid responsiveness (FR) 
remains challenging.1

Compared to the static measures [pulmonary artery occlusion 
pressure (PAOP) and central venous pressure (CVP)], dynamic 
measures such as pulse pressure variation (PPV) and systolic 
pressure variation (SPV) are better predictors of FR.2–5 PPV 
and SVV measurements need arterial cannulation and these 
may not predict fluid responsiveness under all conditions.1,6 
Arterial cannulation itself can cause infections and embolic 
complications.7

Availability of portable ultrasound machines has made 
noninvasive measurement of hemodynamic parameters, such 
as aortic blood flow (ABF) or aortic velocity time integral (VTi), 
possible.8 Recently, measurement of carotid and brachial VTi has 
been shown to be useful for FR prediction.9–11 The correlation 
and degree of agreement between carotid and brachial artery 
VTi has not been studied before. We therefore evaluated the 
correlation and agreement between VTI (TAP, time average peak 
and flow corrected to vessel size) at carotid and brachial arteries  
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(VTi_TAPCarotid, VTi_TAPBrachial, and VTi_flowBrachial and VTi_
flowCarotid). We also compared the ability of these parameters to 
PPV and SVV to predict FR in adults.

Mat e r ia  l s a n d Me t h o d s
We conducted this study after Institutional Ethics Committee (IEC) 
approval and informed consent. We included adults (>18  years) 
undergoing elective, supra-major abdominal oncosurgeries under 
GA. Patients with known peripheral vascular disease, carotid 
artery disease, history of heart failure, valvular heart disease, 
and arrhythmias were excluded. Anesthesia technique was 
standardized. Along with routine monitoring, all patients had their 
radial artery cannulated, for invasive arterial pressure monitoring. 
Cardiac output was monitored using FloTrac™ device with EV1000™ 
clinical platform (Edwards Lifesciences, Irvine California, USA). The 
patient’s lungs were ventilated with tidal volume 6 mL/kg predicted 
body weight, with respiratory rate 12–14 minute, I:E ratio 1:2, and 
PEEP 5 cm H2O.

The demographic data, details of surgery, and use of 
vasopressors (and dose, if used) were recorded. Indications for 
the fluid challenge were noted. The respiratory (peak and plateau 
pressures) and hemodynamic parameters (HR, SBP, MAP, CI, 
SV, PPV, SVV, VTi_TAPCarotid, VTi_TAPBrachial, VTi_flowCarotid, and 
VTi_flowBrachial) were recorded at baseline, before and after fluid 
bolus. The tidal volume was transiently increased to 8 mL/kg PBW 
at the time of observations. Fluid responsiveness was defined as 
an increase in the SV by 15% in response to fluid administration.

When clinically indicated (hypotension, and/or need for 
vasopressors, oliguria, lactate levels >2 mmol/L), a fluid bolus of 
7 mL/kg Ringers Lactate was given over 30 minutes. 

PPV was measured using Philips IntelliVue MP70 monitor. SVV, 
SV, and CI were recorded using the EV1000™ clinical platform. A 
maximum of three sets for all parameters were recorded in every 
patient, with a gap of at least 2 hours between the two readings.

The Doppler imaging for carotid and brachial artery  
measurements (VTI TAP i.e., time average peak and flow measured 
from vessel size by software in machine) were done by a portable 
ultrasound device, SonoSite Titan HCU (SonoSite; M-TURBO™, 
FUJIFILM Sonosite India Pvt. Ltd). A 7–13 MHz broadband linear array 
transducer was used to obtain carotid and brachial arterial Doppler 
measurements. The Doppler measurements (VTi_TAPCarotid and 
VTi_TAPBrachial and VTi_flowCarotid and VTi_flowBrachial) were carried 
out by a single investigator trained in critical care ultrasound. The 
brachial artery imaging was performed in the antecubital fossa, on 
the side without radial artery cannulation. The blood flow velocity 
was recorded at the midstream of the vessel lumen over 10 seconds 
with the sample volume adjusted at the center of the artery. The 
carotid artery velocity waveform was recorded after obtaining a 
longitudinal view of the common carotid artery, within 2 cm of the 
bifurcation. The sample volume was positioned at the center of  
the vessel, with Doppler angulation at approx 20° (not more than 60°).  
All image angles were corrected up to 15° for the best signal 
and stored for immediate review following each measurement. 
An in-built software in the machine computed the VTi_TAP and 
VTi_flow. The clinician obtaining ultrasound images was blinded 
to the results of the PPV and SVV, while the clinician recording the 
PPV and SVV values was blinded to the Doppler results.

Patients were divided into two groups, responders and 
nonresponders, based on increase in stroke volume (SV) ≥15%, and 
we tried to identify the predictors of FR.

Sample Size
This study was meant to be a proof of concept study; we chose a 
convenience sample size of 50 instances requiring fluid boluses. The 
fluid boluses were given in 27 patients, when clinically indicated. In 
nine patients, fluid challenge was required only once, in 13 patients 
twice, and thrice in five patients.

Statistical Analysis
Data was analyzed using SPSS Statistics version 21 software. 
Quantitative variables were described using mean  ±  SD where 
data were normally distributed and using median (IQR), where 
it was skewed. Paired t test was used to compare the change in 
hemodynamic parameters. Student’s t-test or Mann-Whitney  
U test was used to compare the hemodynamic parameters between 
responders and nonresponders.

The relation between quantitative variables (VTi_TAPCarotid, 
VTi_TAPBrachial) was assessed using Pearson and Spearman 
correlation coefficients according to normality test. Bland-Altman 
plots were used to describe agreement between VTi_TAPCarotid 
and VTi_TAPBrachial, and VTi_flowCarotid and VTi_flowBrachial. The 
receiver operating characteristic (ROC) curves were generated 
to identify predictors of fluid response and based on highest 
sensitivity and specificity, cut-offs for PPV, SVV, VTi_TAPCarotid 
and VTi_TAPBrachial, VTi_flowCarotid and VTi_flowBrachial were 
determined. All analyses were two-sided, and significance was 
set at a p-value of 0.05.

Re s u lts
We included 50 sets of measurements from 27 adults undergoing 
elective supra-major abdominal surgeries. The mean age of patients 
was 53 (±20) years and most patients (24) had gastrointestinal 
malignancies (Table 1). The commonest indications for fluid bolus 
were hypotension and need for vasopressors (Table 2). Based on the 
response to fluid bolus, the patients were divided into responders 
and nonresponders. Table 3 shows the baseline and subsequent 
(after increasing tidal volume) peak and plateau pressures. Table 4 
summarizes the hemodynamic parameters before and after fluid 
boluses. On 58% occasions, patients were fluid-responsive (Table 4).

We found weak correlation between VTi_TAPCarotid and 
VTi_TAPBrachial (r2 =  0.143) and VTi_flowCarotid and VTi_flowBrachial 
(r2  =  0.0004) (Figs 1 and 2). The bias and limits of agreement 
between the readings taken at carotid and brachial arteries for 
VTi_TAP and VTi_flow were also wide (Figs 3 and 4). The predictive 
abilities of PPV and SVV were similar to each other, but low [PPV 
Receiver Operating Characteristics Curve (AUROC) 0.628 and SVV 
(AUROC 0.631)]. The AUROC for both VTi_TAP and VTi_flow at 
carotid and brachial vessels was close to 0.5, suggesting predictive 

Table 1: Patients characteristics and primary diagnosis

Characteristics Data (mean ± SD)
Age (years)
Height (cm)
Weight (kg)
BMI
Females
Males

    53 ± 20
  162 ± 17
    59 ± 14
22.9 ± 4.8

13
14

Primary diagnosis No. of patients
Gastrointestinal malignancies 24
Genitourinary malignancies 03
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ability close to a toss of a coin, i.e., very poor (Fig. 5 and Table 5). 
Highest sensitivity and specificity cut-offs and NPV and PPV for 
SVV, PPV, VTi_TAPCarotid and VTi_TAPbrachial, and VTi_Flowcarotid and 
VTi_Flowbrachial were also determined (Table 6).

Di s c u s s i o n
In this prospective observational study we found weak correlation 
between VTi and VTi_flow (Figs 1 and 2). The bias and LOA between 
the readings of VTi and VTi_flow at both arteries were also wide 
(Figs 3 and 4).

We chose to perform this study in patients undergoing elective 
supra-major oncosurgeries, since during these surgeries, major 
blood loss and large volume shifts are common. Thus, the patients 
often become hemodynamically unstable (Table 2). Fast, accurate, 
and reliable measurement of CO is important for determining FR. 
Aortic VTi is a well-established method for assessing FR.8 However, 
intraoperative assessment of aortic VTi can be cumbersome in 
patients undergoing supra-major abdominal surgeries, where the 
patients are fully draped and the precordial area is difficult to access. 
It is also difficult to visualize and ensure correct angle of the cardiac 
ultrasound probe under the drape. Carotid artery Doppler imaging 
has been shown to be a substitute for the aortic VTI.9 However, it 
also presents difficulty in access, due to drapes and if central venous 
cannulation has been performed. Carotid and brachial Doppler 
imaging are easier compared to transthoracic echocardiography, 
which requires extensive training and is operator-dependent. 
Monge García et al. showed that measurement of VTi at brachial 
artery might be a good alternative to aortic VTi.10 There are no 
studies evaluating correlation between carotid and brachial artery 
parameters.

In our study, predictive value of VTi_TAP and VTi_flow at carotid 
and brachial arteries for FR was poor (Table 7), a finding contrary to 
previous studies. The AUROC in the study by Monge García et al. 
was 0.88, and while it was 0.94 in the study by Brenan et  al.10,11 
In both these studies, patients were ventilated with higher tidal 
volumes: 9 (8–10) mL/kg IBW in the study by Monge Garcia et al., and  
9 (± 2) mL/kg IBW by Brennan et al.10,11

The low sensitivity and specificity of PPV and SVV to accurately 
predict fluid responsiveness at the usual cut-offs in our study is 
not surprising. This may have been due to low tidal volume (TV) 
ventilation, which is our protocol for all patients undergoing elective 

Table 2: Surgical procedures, blood loss, fluid and blood 
transfusions, and indications for fluid bolus

Surgical procedures n
Anterior resection 1
Cytoreductive surgery  
gynae/genitourinary

2

Colorectal cytoreductive surgery 
with hyperthermic intraperitoneal  
chemotherapy (CRS + HIPEC)

8

Duodenojejunal flexure resection 1
Colorectal cytoreductive surgery 
without hyperthermic  
intraperitoneal chemotherapy 
(HIPEC)

12

Pylorus preserving pancreatico- 
duodenectomy (PPPD)

1

Radical cystectomy with ileal 
Conduit

1

Retroperitoneal lymph node  
dissection and repair of inferior 
vena cava (RPLND + IVC repair)

1

Blood loss, fluids and blood and blood products transfused
Blood loss, mL 2783.33 ± 2144.27
Crystalloids, mL 4862.96 ± 2944.77
Colloids, mL 1286.11 ± 1119.8
PRBCs transfused, no of units  
(10 patients)

2.18 ± 2.39

FFPs transfused, no of units  
(8 patients)

2.18 ± 2.39

Indications for fluid bolus@ No of patients
Hypotension 10
Lactates >2 mmol/L 04
Need for vasopressors 16

@Some patients had more than one indication for fluid bolus

Table 3: Respiratory pressures before and after increasing tidal volume

Peak pressure Plateau pressure
Baseline  
(6 mL/kg)

After increasing 
TV (8 mL/kg)

Baseline 
(6 mL/kg)

After increasing TV 
(8 mL/kg)

19.66 (±4.15) 19.02 (±3.71) 15.42 (±3.77) 15.34 (±3.42)

Table 4: Hemodynamic variables among responders and nonresponders before and after fluid bolus

Variables

Nonresponders Responders

Before bolus After bolus p value Before bolus After bolus p value
HR (bpm)   79.33 (18.32)   78.24 (16.55)     0.395     90.79 (16.15)   84.55 (16.08) <0.001
SBP (mm Hg) 100.59 (19.38)   112.59 (18.91) <0.001 111.38 (16.21) 121.86 (16.11) <0.001
DBP (mm Hg)   60.31 (10.37)   63.55 (10.18)     0.023 65.05 (9.47) 68.24 (8.59)      0.008
MAP (mm Hg)   74.97 (13.72)   81.83 (12.93) <0.001     82.71 (11.27)    88.38 (10.69)      0.002
Cardiac index   3.39 (0.94)   3.91 (0.86) <0.001     3.15 (0.72)    3.48 (0.77)      0.002
PPV 14.69 (5.03)     9.86 (4.45) <0.001     14.1 (5.51)   9.19 (3.28) <0.001
SVV   25.91 (12.46)     30.34 (15.98)     0.002 12.57 (3.53)        9 (3.83) <0.001
VTi_TAPBrachial 22.59 (9.59)     26.31 (11.38) <0.001   26.43 (12.90)   30.99 (16.68)      0.027
VTi_FlowBrachial 180.43 (64.72) 220.52 (89.2) <0.001         204 (75.80) 252.48 (92.30) <0.001
VTi_TAPCarotid   17.85 (16.92)     23.74 (19.68)     0.275     14.36 (16.39)   22.70 (19.21)      0.712
VTi_FlowCarotid   363.47 (147.01)     444.23 (133.44)     0.002     359.37 (126.20)   454.41 (114.09) 0.19

HR (bpm), heart rate beats/min; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; SV, stroke 
volume; PPV, pulse pressure variation; SVV, stroke volume variation; VTI_TAP, velocity time integral averaged peak (carotid or brachial); 
VTI_Flow, velocity time integral calibrated to vessel diameter (carotid or brachial)
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Fig. 1: Correlation between VTI_TAP at carotid and brachial arteries Fig. 2: Correlation between VTI_flow at carotid and brachial arteries

Fig. 3: Bland-Altman plot for VTI_flow at carotid and brachial arteries Fig. 4: Bland-Altman plot for VTI_TAP at carotid and brachial arteries

Fig. 5: ROC curves for PPV, SVV, VTI_flow, and VTi_TAP at carotid and brachial vessels
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volumes <8 mL/kg.16 In 935 fluid challenges, 51.1% patients were 
found to be fluid responsive. PPV of 10% had the fitted sensitivity 
of 0.65 (95% CI: 0.57–0.73) to predict FR, and the specificity was 0.79 
(95% CI: 0.73–0.84). The AUROC was 0.75. This is similar to our findings 
for PPV, with sensitivity of 77% and a specificity of 72% but with 
lower AUROC.16 The dynamic indices rely on change in intrathoracic 
pressure. In patients with low lung compliance due to ARDS, the 
changes in intrathoracic pressure induced by low TV are too small to 
affect the stroke volume, leading to inability of PPV or SVV to predict 
fluid responsiveness. We have shown in a previous study that the use 
of tidal volume challenge (TVC—a transient increase in TV) helps to 
predict FR.17 Liu et al. showed that PPV adjusted for change in pleural 
pressure rather than tidal volume predicted fluid responsiveness 
better.18 However, in our study cohort, the patients had normal lungs 
and there was minimal change in the peak and plateau pressure with 
increase in TV (Table 3). Using lower cut-offs may offer a solution; 
however, small errors during measurement might magnify the effects 
in measurements, affecting the interpretation.6

Many studies have tried to investigate if lower cut-offs improve 
the predictive value of PPV. While studying the effects of tidal 
volume and adrenergic tone on PPV and aortic VTi, Charron et al. 
ventilated patients with TV 6–10 mL/kg IBW and varied the TV both 
ways. The PPV increased with TV both before and after volume 
expansion. PPV at 10% threshold had sensitivity of 89% and 
specificity of 83%.19 Other studies too found improved predictive 
value of PPV with lower cut-offs (6.5%, 10%).20,21 We did not find 
any improvement in the predictive ability of PPV with the use of 
lower cut-off in our cohort.

In addition to VTi_TAP, we also studied utility of VTi_flow, to 
see if the VTi calibrated for vessel diameter makes a difference in 
predicting FR, which has not been studied before. A small sample 
size could be a limitation of our study. In our study the fluid boluses 
were given during acute hypovolemic states and hemodynamic 
instability. It is possible, therefore, that the fluid bolus given (7 mL/kg) 
to the patient may have been inadequate to produce the desired 
response in our patients or they may have responded better to 
bigger fluid boluses.

Co n c lu s i o n
We found poor agreement and weak correlation between both 
VTi_TAP and VTi_flow measured at carotid and brachial arteries, 
suggesting that the readings at brachial vessel cannot be used 
interchangeably with those at carotid artery. The PPV and SVV were 
better than these parameters for predicting fluid responsiveness; 
however, their predictive ability (AUROC), sensitivity, and specificity 
were much lower than previously reported. Further studies in this 
area are therefore required.
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