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Abstract: The lytic and lysogenic life cycles of marine phages are influenced by environmental
conditions such as solar radiation, temperature, and host abundance. Temperature can regulate phage
infection, but its role is difficult to discern in oligotrophic waters where there is typically low host
abundance and high temperatures. Here, we study the temporal variability of viral dynamics and the
occurrence of lysogeny using mitomycin C in a eutrophic coastal lagoon in the oligotrophic Red Sea,
which showed strong seasonality in terms of temperature (22.1–33.3 ◦C) and large phytoplankton
blooms. Viral abundances ranged from 2.2 × 106 to 1.5 × 107 viruses mL−1 and were closely related to
chlorophyll a (chl a) concentration. Observed high virus-to-bacterium ratio (VBR) (4–79; 16 ± 4 (SE))
suggests that phages exerted a tight control of their hosts as indicated by the significant decrease in
bacterial abundance with increasing virus concentration. Heterotrophic bacterial abundance also
showed a significant decrease with increasing temperature. However, viral abundance was not
related to temperature changes and the interaction of water temperature, suggesting an indirect effect
of temperature on decreased host abundance, which was observed at the end of the summertime.
From the estimated burst size (BS), we observed lysogeny (undetectable to 29.1%) at low percentages
of 5.0% ± 1.2 (SE) in half of the incubations with mitomycin C, while it increased to 23.9% ± 2.8 (SE)
when the host abundance decreased. The results suggest that lytic phages predominate, switching to
a moderate proportion of temperate phages when the host abundance reduces.

Keywords: phage; marine bacteria; marine viruses; temperature; mitomycin C; viral production;
lytic; lysogeny; Red Sea; eutrophic

1. Introduction

Viruses are the most abundant organisms in the oceans, and high proportions are bacteriophages [1].
Thus, they exert significant control on bacterial mortality, responsible for killing 10 to 50% of the total
concentration of bacteria in surface waters [2,3]. The number of marine viruses varies between 105

viruses per mL in oligotrophic and deep-sea ecosystems [4–6], to 108 viruses per mL in productive
systems, with a total number of ~1030 virus particles estimated in the entire ocean [2,3]. Viral infections
can be divided into two main categories: the lysogenic and the lytic cycles. In the lysogenic cycle,
the phage DNA establishes stable interactions within the host cell, characterized as a temperate phage,
and it allows the phage genome to integrate into the host cells until being induced by certain signals
to become lytic [1,7]. In the lytic cycle, the virus reproduces, eventually leading to the destruction of
the host cell, producing virions [7,8]. Both lytic and lysogeny cycles are reported to occur in marine
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bacteria, with losses of bacterial biomass due to viral lytic infections ranging from 20 to 50% [9].
Lysogeny promotes phage and host survival, especially under adverse conditions [8]. Viral infections
decrease under exposure to ultraviolet (UV) radiation and other stressors [10,11], such as elevated
temperature [12]. Additionally, temporal changes, such as low nutrients or low cell biomass, are usually
associated with the lysogenic cycle [13]. The incidence of temperate phages is reported to differ
depending on the trophic state of marine ecosystems. Lysogeny has been shown to be predominant in
the oligotrophic waters of the Gulf of Mexico, whereas prophage induction was much lower in the
highly productive waters of the Mississippi River plume [1,14,15]. Lysogeny in oligotrophic systems
was identified as a survival strategy of viruses because of the low host abundance [16], although
lysogeny was found more dominant in eutrophic estuarine waters than in oligotrophic waters [7,17],
and temperate dynamics become increasingly significant at high host densities [18]. The occurrence of
lysogeny was also found in warm oligotrophic waters, such as the Red Sea [19] and the Mediterranean
Sea [20], although with strong seasonal variability.

It has been reported that temperature may also regulate the dynamics of infection and can differ
among viruses that infect the same host. Although viruses are dependent on their hosts for replication,
they may be more tolerant than their hosts to thermal stress, determining that the temperature
distribution of the virus-host system is set by the host [21]. Most viruses are capable of surviving
at low temperatures, whereas high temperatures may result in the loss of viral infectivity, leading
to an inactivation of virus particles [22–25]. In Tampa Bay, Florida, the occurrence of lysogenic
bacteria was found to have a significant proportion of bacterial population during certain times
of the year, which contrariwise reflected temperature, host abundance, and bacterial and primary
production [14]. The prevalence of lysogeny was found in low water temperature environments,
including North Atlantic Oceans [26], polar, mesopelagic, and deep-sea waters or periods of low host
abundances [14,15,27–29].

The effect of temperature on viral infection can modify the kinetics of viral lysis, which in turn
develop viral resistance [22,30,31] or influence the switch from lysogenic to lytic cycles [32]. However,
it is still far from understood whether the shift from lysogeny to lytic viral replication that is regulated
by temperature illustrates a global pattern or is related to local processes [29]. Environments that are
comprised of mutagenic pollutants may have a frequent occurrence of prophage induction, including
a sudden temperature change that could be an essential inducing agent for natural lysogenic viral
production in marine environments [17]. A significant positive effect of temperature was found on the
total abundance of viruses in the coastal waters of northeastern Taiwan [33]. Bacteriophage 9A was
isolated from particle-rich Arctic seawater and was found stable at low temperatures and extremely
thermolabile at 25 ◦C and above [34]. However, increases in temperature and rates of cell growth have
been identified as inducing the lytic cycle [17].

The Red Sea is one of the warmest seas on earth [35], is a semi-enclosed sea experiencing warming
rates exceeding global ocean warming [36], and is considered to be mostly oligotrophic [35,37].
Temperatures vary seasonally between 22 and 32 ◦C [35]. Some areas of the Red Sea have higher
nutrient concentrations, as reported for some shallow coastal lagoons [38], or the Southern Red Sea,
which receives nutrient inputs from the Indian Ocean through the Gulf of Aden [39]. Temperature
variation might affect the virus and host dynamics in the Red Sea [36]. However, the role of water
temperature on viral dynamics and/or in the shift of viral life strategies in the Red Sea is still unexplored.
Although several studies have been performed on microbial communities and bacteria [40–42], studies
on viral dynamics in the Red Sea are still limited to communities in coral reefs [43,44] and in the
deep-sea brines [45]. A previous study in oligotrophic Red Sea coastal waters showed high viral
dynamics, with more than 50% of inducible lysogenic bacteria occurring during the wintertime
when host abundance was low [19], suggesting that lysogeny may be an important mechanism for
viral replication.

Here, we aim to quantify the planktonic viral abundance and lytic-lysogeny seasonal dynamics
in a coastal lagoon of the central Red Sea. Temperature variability in the study area exceeds the
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maximum reported for the Red Sea, and nutrient dynamics allow for the formation of phytoplankton
blooms [38,46]. Our goal is to discern whether temperature changes and host abundance determine
changes in the proportion of lysogenic bacteria and to identify the influence of temperature and host
abundance on viral infections.

2. Materials and Methods

2.1. Study Sites and Sample Collection

Time-series sampling was conducted biweekly from October 2017 to October 2018 at a coastal
lagoon in the central Red Sea of Thuwal, Saudi Arabia, at 22.39◦ N, 39.14◦ E (Figure 1). Seawater
samples were collected from sea surface water (1 m) in a 5 L polypropylene container, presterilized
with 4% of HCl, and prerinsed with the same collected seawater on the same day of collection for
analysis of microbial communities, viral production (VP), and lysogeny proportion. The collected
seawater samples were transported to the lab, and duplicated subsamples (1.5 mL each) were taken for
the enumeration of natural viral and heterotrophic bacterial abundances by flow cytometry (FCM-the
BD FACSCanto™ II,© 2006, Becton, Dickinson and Company). The remaining water was prefiltered
(20 µm and 2 µm, respectively) and was used for virus-free water (VFW) preparation and the different
incubation experiments.
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Figure 1. Location of the sampling station in the coastal central Red Sea (Saudi Arabia).

2.2. Environmental Parameters Measurements

Sea surface water temperature (◦C) and salinity (PSU) were measured using an Ocean Seven
305 Plus CTD device (Idronaut, Brugherio, Italy) for 5–15 min. Chlorophyll a (Chl a) concentrations
were analyzed as described by [46], by filtering 300 mL of seawater through a Whatman glass microfiber
GF/F filter (Sigma-Aldrich, Taufkirchen, Germany). The filtered water was extracted in 90% acetone
and estimated with the nonacidification technique using a Turner Design Trilogy Fluorometer.

2.3. Virus Reduction

The virus reduction method [47–49] was performed to measure VP rates and lysogenized bacterial
cells, as described by [19]. The collected prefiltered seawater samples were first filtered through a
0.2 µm-pore-size membrane (described below) and then were ultrafiltrated through an ultrafiltration
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cartridge with a 30,000 Daltons molecular-weight cutoff to reduce viral particles and obtain 500–600 mL
of VFW [48,50].

2.4. Incubations for Measurements of Lytic Viral Production and Lysogeny Induction

Three liters from each of the prefiltered seawater samples (20 µm and 2 µm) were concentrated
to obtain a volume of 50–70 mL using an ultrafiltration system (Amicon® Stirred Ultrafiltration
Cell 8050 Millipore 50 mL-Merck Millipore) with a 0.2 µm-pore polycarbonate filter to maintain
heterotrophic bacterial cells and reduce virus concentrations [50]. The concentrated heterotrophic
bacterial cells were rinsed five to six times with 100 mL of VFW and then resuspended until a volume
of 250–300 mL was reached [50–52]. The Amicon® stirred ultrafiltration cell is an advantageous
concentration system as it gives high flow rates and is capable of concentrating samples rapidly but
gently, as was successfully used previously in quantifying living cells [53,54]. The system uses magnetic
stirring and pressure-driving filtration, resulting in a short time required for cell concentration (i.e.,
less than half an hour in our samples). After the dilution of heterotrophic bacterial cells with the
VFW, the recovery percentage of the concentrated heterotrophic bacteria was high and calculated as
70% ± 0.08 (mean ± SE) of the initial concentration.

The washed heterotrophic bacterial concentrates with VFW were divided into six acid-rinsed glass
flasks with a volume of 40–50 mL and were used for the incubation experiments. For inducing the
lysogenic phase, three replicates were treated with 1.0 µg mL−1 of the chemical treatment, mitomycin
C (Sigma Chemical Co. catalog no. M-0503; 1 mg mL−1 stock solution, dissolved in deionized water
[DI]) [50,55], and the other three replicates were kept as untreated controls for the quantification of
viral and heterotrophic bacterial abundances compared with mitomycin C-treated samples. Mitomycin
C is an effective inducing agent for several marine ecosystems that is not found naturally in marine
environments [56]. Mitomycin C is a chemical compound that damages the DNA of the host cell and
activates a DNA repair mechanism such as the RecA protein, which cleaves a repressor to induce
prophages, thereby converting lysogenic cycles to lytic cycles [50]. The flasks were then incubated
for 24 h in the dark [47,55,57] at the same in situ water temperature measured at the station at the
time of sampling, which varied across the study between seasons from ~21 to 34 ◦C. From time 0 to
24 h (T0 to T9), 2 mL was taken every three hours from each flask, and preserved using 80 µL of 25%
glutaraldehyde [58] and stored at −80 ◦C until enumeration of the viruses and heterotrophic bacteria.
For overnight sampling, a fraction collector, Gilson, Inc-FC204 with multiple heads and peristaltic
pumps, was used for the programmed automatic sampling. Eight cryovials (2 mL each) with 80 µL of
25% glutaraldehyde were placed (without lids) in the designed racks surrounded by dry ice to preserve
the samples in cold conditions. The fraction collector was monitored to transfer the samples from
the flasks to the cryovials every three hours automatically. The effectiveness of fixing and storing the
samples automatically compared to manually fixing was tested previously by [19] and no significant
differences were found.

2.5. Viral Production Rates

The virus reduction method was prepared as described above to estimate lytic viral production
(LVP) rates [47]. LVP rates were corrected for possible heterotrophic bacterial loss or increase during the
concentration process by dividing the in situ bacterial concentrations by the initial bacterial abundances
in both VP measurements. LVP rates were estimated following [59] from the slope of the relationship
between the minimum and the maximum viral abundance versus time for the first six to 12 h of
incubation in order to exclude viruses produced by new infections during the incubation.

2.6. Flow Cytometry

Subsamples for enumeration of viral and heterotrophic bacterial populations were analyzed
using a BD FACSCanto™ II flow cytometer (© 2006, Becton, Dickinson and Company). Currently,
flow cytometry (FCM) is a well-established, relatively straightforward [60], and high-throughput
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technique [61] in estimating the abundances of aquatic microbes, including viruses and bacteria [60,61].
A series of simplified protocols to identify and enumerate virus populations were carried out as
described by [19] following the protocols of [60,61], with some modifications such as the following:
The samples were removed from storage (−80 ◦C) and kept melting at room temperature. Sample
preparation for viral abundance was carried out under sterilization conditions. In the beginning,
a water bath was turned on at 80 ◦C. Control samples (a blank that was subtracted from all counts)
were prepared by adding 50 µL of an autoclaved and prefiltered 0.2 µm seawater sample and diluted
into 475 µL of Tris-EDTA buffer (TE, 10 mM Tris and 1 mM EDTA, pH = 8) in order to obtain an event
rate ranging from 300 to 700 events s−1 [58], with an addition of 5 µL of SYBR Green I (1:2000). Then,
the samples were prepared using the same preparation steps for the control samples but with the
addition of 50 µL of the time series samples instead of the autoclaved seawater. The tubes were then
incubated for 10 min in the 80 ◦C water bath and were allowed to cool down for 5 min in the dark at
room temperature.

The flow rate was measured before and after running in the FCM using 1 mL of autoclaved
Milli-Q that included 10 µL from a total concentration of 104 fluorescent beads. An adequate collection
time of 60 seconds was used at the low flow rate speed. The threshold of FCM for determining and
identifying virus populations was applied for green fluorescence (GF) versus side scatter (SSC) and
versus red fluorescence (RF). FCM analysis differentiated three viral subpopulations with different
fluorescence properties, as described by [61]. The virus subpopulations that we distinguished are as
follows: V1, with the lowest green fluorescence, V2, with the midlevel fluorescence, and V3, with the
high fluorescence. Heterotrophic bacteria were analyzed and prepared following the protocol of [60]
by adding 400 µL of each sample stained with 4 µL of SYBR Green I (1:1000), and then the samples
were kept in the dark for 10–20 min before running in the FCM. The BD FACSCanto™ II threshold was
set up as the RF versus the GF. Data were recorded and saved in the BD FACSCanto™ II and then
were analyzed by quantifying the events of viral and heterotrophic bacterial populations using FlowJo
(Version 10.1-Tree star. Inc, USA) as [62]. For data analysis, refer to methods section (statistical analysis).

2.7. Burst Size and the Percentage of Lysogenic Bacteria

Control samples of natural seawater (no virus reduction) were incubated in parallel to the viral
reduction incubations for the calculation of the burst size (BS) (i.e., the number of phages produced
per infected bacterium). The BS was assessed from viruses produced during incubations. BS was
then calculated by subtracting the produced virus (VPc) in the untreated control samples from the
number of produced virus in the virus-reduced samples (VPr), which demonstrates the net increase in
the number of phages that were released from infected bacteria, and then dividing by the number of
bacteria killed (Bdead) during the incubations by infection [63], as follows:

BS = (VPc −VPr)/ (Bdead) (1)

Lysogenic bacterial percentage (%) was calculated following [50]:

(Vmc−Vc) /BS/BA× 100 (2)

where Vmc represents the maximum viral abundance in the mitomycin C-treated samples during
incubation, and Vc refers to the maximum viral abundance in the control untreated samples. BS applies
to the burst size, and BA is related to bacterial abundance at the onset of each incubation experiment.

2.8. Statistical Analysis

JMP PRO 14 software (JMP®, Version < 14 > SAS Institute Inc., Cary, NC, 1989–2019) was used
for statistical analysis. The bivariate test was applied to FCM normalized data to determine linear
regression between viral and heterotrophic bacterial abundances, and environmental conditions,
and the significance (p-value) of this correlation. Correlation between variables was tested with a
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multivariate analysis using a nonparametric Spearman’s ρ correlation test. For the r-ratio, values in
the range of −0.5 < r < 0.5 were considered weakly correlated, while values in the range of r ≤ −0.5
and r ≥ 0.5 were considered strongly correlated. In addition to these thresholds, r = 0 indicated
no correlation, r < 0 is a negative correlation, and r > 0 is a positive correlation. For p-values,
the significance threshold was ≤ 0.05. Multiple linear regression test was used to learn more about
the interactions between the several environmental variables with phage infections and heterotrophic
bacterial abundance.

3. Results

3.1. Environmental Parameters Measurements and Microbial Abundances

Mean monthly records of water temperature and chl a parameters, in addition to viral and
heterotrophic bacterial abundances together with virus-to-bacterium ratio (VBR), are presented in
Figure 2. Sea surface water temperature during the sampling period ranged from 22.1 to 33.3 ◦C
(28.7 ± 1.0 ◦C, mean± SE) with the minimum value detected in January and the maximum in September
(Figure 2). Chl a concentrations ranged from 0.5 to 5.1 µg L−1 (1.5 ± 0.4 µg L−1, mean ± SE), showing
a large bloom in October 2018 with the lowest value in February (Figure 2A). We determined the
three subpopulations of viruses; however, the low fluorescence viruses (V1) dominated the viral
community along with the study with averaged percentages as V1: 76.7% ± 3.7, V2: 19.7% ± 3.1,
and V3: 3.6% ± 0.6 (mean ± SE). Viral abundances ranged from 2.2 × 106 to 1.5 × 107 cells mL−1

(5.7 × 106
± 9.8 × 105 cells mL−1, mean± SE), showing an increase in September, with a large peak at the

beginning of October 2018 and lower values during the winter and the spring (Figure 2B). Abundances
of heterotrophic bacterial cells ranged from 2.2 to 6.7 × 105 cells mL−1 (4.7 × 105

± 3.6 × 104 cells mL−1,
mean ± SE), as the peaks were observed in October and November 2017, with increased values in the
spring and the lowest in September (Figure 2C). From viral and heterotrophic bacterial abundances,
we calculated VBR as they ranged from relatively low to high values (Figure 2D). The lowest VBR
values were observed in spring 2018 and the highest in fall 2018 (Table 1).

Table 1. Average (±SE) with the minimum and the maximum values of lytic virus production (LVP)
obtained from viral reduction, estimation of lysogenic bacterial percentages based on induction by
mitomycin C, burst size (BS) for monthly individual incubation experiments since December 2017 to
October 2018, and virus-to-bacterium ratio (VBR) from viral and heterotrophic bacterial abundances
during the time series sampling from October 2017 to October 2018.

Lytic Virus Production (VP) (mL−1 h−1) Lysogeny (%) Burst Size (BS) VBR (Ratio)

Mean ± SE (MIN/MAX) Mean ± SE (MIN/MAX) Mean ± SE (MIN/MAX) Mean ± SE (MIN/MAX)

2.6 × 105
± 6 × 104 N/D–5.8 × 105 7.2 ± 2.9 N/D–29.1 15 ± 5.3 2.4–44.9 16 ± 4 4–79

N/D = Not detected.
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Figure 2. Temporal variability (monthly average ± SE) on different environmental parameters studied
during the time series sampling in the coastal lagoon in the Red Sea (2017 to 2018). (A) Chl a
concentration (green line and dots), (B) Viral abundance (orange line and dots), (C) Heterotrophic
bacterial abundance (blue line and dots), and (D) Virus-to-bacterium ratio (VBR) (purple line and dots).
The black line in all the plots corresponds to the surface water temperature of the Red Sea coastal
lagoon area.
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3.2. Correlations between Environmental Parameters and Microbial Communities

The nonparametric Spearman’s rank correlation test was used to determine the correlation between
all the environmental parameters and viral and bacterial abundances (Figure 3). According to the
monthly records of the environmental parameters, a positive and significant correlation was suggested
only between salinity and water temperature (ρ = + 0.7214, p ≤ 0.0001); however, the relationships
between the other environmental variables were all insignificant. For microbial communities, viral
abundance had a positive and significant correlation with chl a concentration (ρ = + 0.6073, p = 0.0008);
and bacterial abundances with water temperature were shown to have a significant negative relationship
(ρ = − 0.4348, p = 0.0234). Additionally, the correlation between the percentage of lysogenic bacteria
and chl a showed positive and significant relationship (ρ = + 0.6009, p = 0.0388) (Figure 3).
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Figure 3. Correlation matrix between all the environmental parameters, viral and bacterial abundances,
the percentage of lysogenic bacteria (%), and lytic viral production (LVP) rates (mL−1 h−1) observed
during the study.

The relationship between microbial communities with respect to environmental parameters,
including water temperature, chl a concentration, and salinity was also detected using linear regression
analysis. There was a significantly positive linear relationship between viral abundance and chl a
concentration (R2 = 0.4578, p < 0.0001) (Figure 4A), while it was negatively correlated with heterotrophic
bacterial abundance but significant (R2 = 0.1841, p = 0.0255) (Figure 4B). Heterotrophic bacterial
abundance had a significant negative relationship with water temperature (R2 = − 0.1783, p = 0.0282)
(Figure 4C). Additionally, the linear regression analysis between the percentage of the low fluorescence
subpopulation viruses (V1) and the total viral abundance determined a significant positive relationship
(R2 = 0.5666, p < 0.0001), indicating that V1 increased to dominate viral community with the increase in
the total virus abundance. However, there were no significant relationships between viral abundance
and water temperature (R2 = 0.0578, p = 0.2271, Figure 4D), and between heterotrophic bacterial
numbers and chl a concentration (R2 = 0.0853, p = 0.1394, Figure 4E). We found strong positive and
negative significant relationships between VBR with viral and heterotrophic bacterial abundances,
respectively (R2 = 0.8313, p = 0.0001); (R2 = − 0.5764, p = 0.0001). VBR was positively significantly
correlated to chl a concentration (R2 = 0.3849, p = 0.0006) and salinity (R2 = 0.1535, p = 0.0432).



Viruses 2020, 12, 761 9 of 17

Viruses 2020, 12, x FOR PEER REVIEW 9 of 18 

 

regression analysis. There was a significantly positive linear relationship between viral abundance 

and chl a concentration (R2 = 0.4578, p < 0.0001) (Figure 4A), while it was negatively correlated with 

heterotrophic bacterial abundance but significant (R2 = 0.1841, p = 0.0255) (Figure 4B). Heterotrophic 

bacterial abundance had a significant negative relationship with water temperature (R2 = − 0.1783, p 

= 0.0282) (Figure 4C). Additionally, the linear regression analysis between the percentage of the low 

fluorescence subpopulation viruses (V1) and the total viral abundance determined a significant 

positive relationship (R2 = 0.5666, p < 0.0001), indicating that V1 increased to dominate viral 

community with the increase in the total virus abundance. However, there were no significant 

relationships between viral abundance and water temperature (R2 = 0.0578, p = 0.2271, Figure 4D), 

and between heterotrophic bacterial numbers and chl a concentration (R2 = 0.0853, p = 0.1394, Figure 

4E). We found strong positive and negative significant relationships between VBR with viral and 

heterotrophic bacterial abundances, respectively (R2 = 0.8313, p = 0.0001); (R2 = − 0.5764, p = 0.0001). 

VBR was positively significantly correlated to chl a concentration (R2 = 0.3849, p = 0.0006) and salinity 

(R2 = 0.1535, p = 0.0432). 

Figure 4. The significant relationships observed between viral abundance with (A) Log chl a 

concentration (p = 0.0001), and with (B) Log heterotrophic bacterial abundance (p = 0.0255); and 

between (C) Log heterotrophic bacterial abundance with water temperature (p = 0.0282). No 

significant relationships between (D) Log viral abundance with water temperature (p = 0.2271), and 

between (E) Log heterotrophic bacterial abundance with log chl a concentration (p = 0.1394). The red 

line fits the linear regression. 

Figure 4. The significant relationships observed between viral abundance with (A) Log chl a
concentration (p = 0.0001), and with (B) Log heterotrophic bacterial abundance (p = 0.0255); and between
(C) Log heterotrophic bacterial abundance with water temperature (p = 0.0282). No significant
relationships between (D) Log viral abundance with water temperature (p = 0.2271), and between
(E) Log heterotrophic bacterial abundance with log chl a concentration (p = 0.1394). The red line fits the
linear regression.

The multiple linear regression analysis of the interactions among heterotrophic bacterial abundance,
viral abundance, and the environmental parameters indicated that there is a strong negative significant
relationship between viral and bacterial abundances and between bacterial abundances and viruses
with chl a (Table 2). Although chl a concentration showed a positive relationship with bacterial
numbers, the relationship between the two variables was weakly significant (Table 2). The finding that
the abundance of heterotrophic bacteria was not significantly related to water temperature (Table 2)
may suggest that the significant negative correlation observed (Figures 3 and 4) is an indirect effect of
temperature on bacterial numbers.
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Table 2. Multiple linear regression test model showing the interactions among the environmental
parameters (Water temperature and chl a concentration) and viral abundance with heterotrophic
bacterial abundance.

Independent Variables and
Viral Abundance Heterotrophic Bacterial Abundance

Interactions/Units Parameters Estimates ± SE t-ratio p-value

Intercept 8.3505 ± 1.0653 7.84 <0.0001
Virus/log10 −0.3900 ± 0.1742 −2.24 0.0367

Water temperature/ (◦C) −0.0015 ± 0.0099 −0.15 0.8829
Chl a/Log10 (µg L−1) 0.3144 ± 0.1371 2.29 0.0328

Virus ×water temperature −0.0298 ± 0.0397 −0.75 0.4612
Water temperature × Chl a 0.0693 ± 0.0343 2.02 0.0573

Chl a × Virus −0.013019 ± 0.5258 −2.48 0.0224

3.3. Viral Production and the Percentage of Lysogeny

After viral reduction and during the 24 h incubation experiments, variable changes were observed
in viral abundances in both mitomycin C-treated and untreated control samples, which can be expected
as a result of inducible lysogenic bacteria (Figure S1). The increase in viral abundance in the mitomycin
C-treated samples was higher than in the controls for the incubations made in December, March,
June, August, and October, indicating the induction of prophages. A peak in prophage induction
was observed after three to six hours for most of the incubations (Figure S1). The estimated average
BS (n = 7) was ~15 ± 5.3 (mean of the new phages per lysed bacteria) (Table 1). The BS was not
estimated for each incubation experiment, and thus we could not obtain it for all the study period.
The percentage of lysogenic bacteria varied from undetectable in the winter, in the spring, and in July,
with low percentages occurring in March, August, and September, to higher percentages observed
in the fall of 2017 (beginning of December) and June 2018, with the maximum of 29.1% detected
in October 2018 (Table 1, Figures 5 and 6). VP rates were estimated from the initial slope of viral
abundances of the untreated controls for each incubation experiment in order to predict lytic infections
in the time of lysogeny absence. LVP rates (Table 1 and Figure 6) varied highly during the study from
negative values to a maximum of two peaks detected in April and September with 5.8 × 105 and
5.6 × 105 viruses mL−1 h−1, respectively. We found negative correlations between the percentage of
lysogenic bacteria and bacterial abundances (R2 = 0.0876, p > 0.05) and between the percentage of
lysogenic bacteria and the LVP rates (R2 = 0.1073, p > 0.05).Viruses 2020, 12, x FOR PEER REVIEW 11 of 18 
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Figure 5. Percentages of lysogenic bacteria (blue line and dots) and bacterial abundance (green line
and dots) quantified in the natural microbial communities of the coastal Red Sea lagoon (December
2017 to October 2018). The vertical bars encompassed the error bars. The error bars of the bacterial
abundances were generated from two replicates. The error bars of lysogenic bacterial percentage were
calculated for only the detectable lysogeny proportion.
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Figure 6. Lytic viral production (LVP) (orange line and dots) and percentages of lysogenic bacteria (blue
line and dots) during the incubation experiments from December 2017 to October 2018. The vertical
bars encompassed the error bars.

4. Discussion

The big trophic changes of the Red Sea lagoon under study highlights the significant role of trophic
conditions and high temperature on heterotrophic bacterial dynamics, where periods of high water
temperature influenced the lysogenic cycle by decreasing the abundance of host cells. Our results show
that lytic phages dominate prophage production in the warm coastal waters of the study area over
time. Moreover, the results suggest that the induction of lysogenic bacteria occurred primarily during
times of decreased host abundance. We identified prophage induction in almost half of the incubation
experiments performed in the coastal Red Sea, although percentages were not high, with a maximum
of 29.1% of lysogenic bacteria observed in October when bacterial abundance was relatively low
(2.7 × 105 cells mL−1) and water temperature was high (>32 ◦C). In contrast, we detected the lowest
lysogeny percentage in March at 2.8% when bacteria reached higher abundance (6.0 × 105 cells mL−1)
and water temperature was relatively low (25.8 ◦C). Our results confirmed other previous observations,
which supported our goals, indicating the indirect effect of temperature on host abundance, as shown
by the significantly negative relationship between bacterial abundance and water temperature.

The high VBR found here agrees with the predominance of lytic replication phase. The VBR
values were similar to those reported for eutrophic waters [4], although there was a large variation
in VBR corresponding to the strong temporal variability observed in the lagoon. High VBR values
could also be influenced by the presence of benthic communities (seagrass meadows) in the lagoon,
as well as big seasonal changes in trophic conditions, as the system changed from oligotrophic to
periods of phytoplankton blooms during the fall [46]. Chl a concentrations revealed high levels
ranging from 0.5 to 5.1 µg L−1 in the lagoon, higher than those reported for surrounding coastal
waters (0.1 to 0.6 µg L−1, [46]). We found a significant positive correlation between viruses and chl a
concentrations, indicating a substantial influence from the phytoplankton blooms. This is in contrast
with the results of [19] for an oligotrophic coastal Red Sea area and other oligotrophic areas such as
the NW Mediterranean [20], where viral abundances were not significantly correlated with chl a and
other measured environmental parameters. The peaks in viral abundance did not correspond with
bacterial peaks, as was observed in the NW Mediterranean Sea [20] and in the oligotrophic Red Sea
open waters [19], but they were influenced by the phytoplankton blooms.

Seasonal studies on viral abundance in Tampa Bay, Florida [64] and other eutrophic subtropical
environments [57] have suggested that there is a probable correlation between viral concentration and
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water temperature as indicated by the maximum virus concentrations during spring and summer
months and the minimum in the winter. Nevertheless, in our seasonal study, viral abundances were
not positively correlated with water temperature; however, the number of viruses reached a peak
in the fall when water temperatures were still high. Viral abundance in this study ranged widely,
from 106 viruses per mL, similar to those found in oligotrophic Red Sea areas [19], to 107 viruses per mL,
as reported for eutrophic coastal waters elsewhere [33,65,66]. As observed in other studies [26,61],
the viral community here was dominated by the lower fluorescent bacteriophages (V1), which associated
with bacterial abundances [26]. We found that bacterial abundances were significantly and negatively
correlated with water temperature and the lowest abundance was observed at the end of September
2018 (late summer) when water temperature reached a maximum of 33.3 ◦C. The highest bacterial
abundance was, however, recorded in fall 2017 (October) when water temperature decreased to 30 ◦C
and the phytoplankton bloom receded. Bacterial numbers were lower when compared to other coastal
eutrophic waters [66] but were similar to bacterial numbers in the Red Sea coastal harbor [42].

Over twelve months, we used the viral reduction method and the chemical inducing agent,
mitomycin C [50,64,67], to examine lysogenic proportions. The difference in VP between mitomycin
C-treated and untreated control samples was attributed to the induction of lysogenic bacteria [50,68].
Prophage induction often occurred between three to 12 h of incubation after adding (1 µg mL−1) of
mitomycin C, showing earlier induction occurrence than in the previous study in the Red Sea [19],
where prophage induction resumed after 18 h of incubation. This is similar to [68], which demonstrated
that in mitomycin C-treated samples, total viral abundances had the largest increase between six
and 12 h of incubation relative to untreated controls. The BS in this study was estimated at 15 ± 5.3
viruses per bacterium, which was similar to the BS estimated in the oligotrophic coastal Red Sea [19].
These values are also similar to those reported for the oligotrophic ocean and the Gulf of Mexico (15 to
54 [50]; and 18.9 [69], respectively), 12 for the Sargasso Sea and North Atlantic [70], and an average BS
of 19.8 from various estimates from other oligotrophic marine environments [71].

Although lysogeny is believed to be more prevalent in eutrophic estuarine waters than in
oligotrophic waters [7,17], our results show that lysogenic phage production was less dominant in a
eutrophic coastal lagoon than in Red Sea oligotrophic waters [19]. This study showed the percentage
of lysogenic bacteria was low, representing on average, 7.2% ± 2.9 (SE) and ranging from undetectable
to 29.1% although lysogeny in oligotrophic Red Sea waters reached 50% [19]. Those results agree with
those of [14,50], which found a higher percentage of lysogeny in oligotrophic waters than in coastal
eutrophic waters of the Gulf of Mexico, as was also shown by [72] for the coast of California. In contrast,
the study of [17] reported that inducible prophage was found in 43% of marine heterotrophic bacterial
isolates, indicating that lysogens contained a significant proportion of the heterotrophic microbial
population. Likewise, Weinbauer et al. [28] detected that up to 84% of bacteria in the Mediterranean and
Baltic Seas were induced, with the highest percentages found in deeper waters (800–2000 m). Despite
the persistent phytoplankton blooms in the lagoon area, LVP rates in this study showed moderate
values averaging 2.6 × 105 viruses mL−1 h−1 (±6.0 × 104 SE), similar to those reported for oligotrophic
coastal Red Sea waters [19]. The values were comparable to those reported by [70] for the oligotrophic
Sargasso Sea and showed lower rates than those reported for temperate coastal waters [47,73,74],
where VP rates ranged from 106 to 107 viruses mL−1 h−1. Based on the statistical analysis results of our
study, the lytic viral infections were undetectable during the occurrence of the maximum proportion of
lysogenic bacteria, suggesting the decaying of viral abundances.

Water temperature plays an essential role in microbial growth regulation, and therefore it may
affect both viral lifecycles and production [75,76]. In our study, the final model of multiple regression
analysis test showed a nonsignificant relationship between heterotrophic bacterial abundance and
water temperature; however, the significant results from the other statistical analysis tests used suggest
that the effect of water temperature on prophage induction in the Red Sea was indirect, by negatively
affecting the host. The study of [18] suggested that the dynamics of temperate phages become
increasingly significant at high host densities, where we observed a small percentage of lysogenic
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bacteria. Nonetheless, during the periods of declining host abundance, lysogeny becomes a more
relevant strategy for the viral population. Our findings are consistent with other studies reporting that
lysogeny in cyanobacteria was primarily correlated with ambient host abundance [14,15,27].

In our study, during August and September when the water temperatures were high, we recorded
an increase in lysogeny associated with a decrease in bacterial abundance, suggesting some temperate
phage integrate into the host genome. This suggests that they are capable of being stable until
environmental conditions improve. As suggested by several authors [14,15,27,29,77], lysogeny
predominance may occur either in low-temperature marine environments, such as polar, mesopelagic,
and deep-sea waters or during low host abundance. However, Lara et al. [6] found a predominance
of lytic phages over the lysogenic cycles in the bathypelagic ocean. Our results show that for warm
tropical waters, lytic phages predominate, switching to a moderate proportion of temperate phages
when the host abundance decreases. The big trophic changes within the lagoon enabled us to identify
the role of trophic conditions and high temperature on bacterial dynamics, where periods of lysogeny
under high water temperature conditions were induced by reducing host abundance. Declines in
bacterial numbers during the summer may be related to the consistent decrease in phytoplankton
and the associated reduction of organic carbon available for bacteria, although other aspects such as
increased protist grazing [20,40] or UV radiation damage [78] can also reduce bacterial abundances.

Lysogeny can also benefit the host by improving the host’s resistance to stressors through the
expression of advantageous genes carried by the virus [14,68]; thus, the host may be provided protection
by the virus from stressors, such as UV radiation [8]. Considering the high variability of conditions
in nature, the conditions that are controlling the switch from the lysogenic to the lytic phase need to
be identified and understood, yet they remain mostly unknown [8,14]. Another aspect that is poorly
addressed is the analysis of the relative contribution of archaea and heterotrophic bacteria to the
observed viral production [79]. The methodology we used does not allow discrimination between
archaea and heterotrophic bacteria and their viruses, where recent studies indicate that marine archaea
and archaeal viruses are active and relevant components of marine microbial assemblages [79].

5. Conclusions

In summary, our results indicate that, in a coastal lagoon in the tropical Red Sea, lytic cycles
dominate the infection of bacteria and the associated phages exert a tight control of the bacterial
population in waters studied. Our findings suggest that high summer temperatures and the associated
reduction in bacterial population indirectly induced lysogeny, although lysogeny did not represent a
high proportion of total phage infection. Our study contributes to understanding the changes in viral
abundance and lysogeny, which are highly dynamic in the warm and saline waters of the Red Sea and
helps to discern the role of host and temperature in the switching of viral phases. However, further
studies are necessary to determine natural environmental factors that could increase the impact of
lysogeny in controlling the abundance and genetic diversity of marine microbial communities.
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