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Abstract: Mitochondrial redox metabolism is the central component in the cellular metabolic land-
scape, where anabolic and catabolic pathways are reprogrammed to maintain optimum redox
homeostasis. During different stages of cancer, the mitochondrial redox status plays an active role
in navigating cancer cells’ progression and regulating metabolic adaptation according to the con-
straints of each stage. Mitochondrial reactive oxygen species (ROS) accumulation induces malignant
transformation. Once vigorous cell proliferation renders the core of the solid tumor hypoxic, the
mitochondrial electron transport chain mediates ROS signaling for bringing about cellular adaptation
to hypoxia. Highly aggressive cells are selected in this process, which are capable of progressing
through the enhanced oxidative stress encountered during different stages of metastasis for distant
colonization. Mitochondrial oxidative metabolism is suppressed to lower ROS generation, and the
overall cellular metabolism is reprogrammed to maintain the optimum NADPH level in the mito-
chondria required for redox homeostasis. After reaching the distant organ, the intrinsic metabolic
limitations of that organ dictate the success of colonization and flexibility of the mitochondrial
metabolism of cancer cells plays a pivotal role in their adaptation to the new environment.

Keywords: mitochondrial redox metabolism; ROS signaling; tumor development; metastasis;
distant colonization

1. Introduction

The dynamics of oxidative stress navigates the cancer cell throughout its progression
in different stages- where higher reactive oxygen species (ROS) favor malignant transforma-
tion, then decrease during tumor formation to the optimum level required for maintaining
cellular redox homeostasis. It again increases during hypoxia and selects for aggressive
metastatic cells. These cells are capable of withstanding the highly stressful steps of
metastasis and the oxidative environment of the blood circulation. The redox status of the
metastatic cells dictates successful colonization in distant organs [1–3]. Technical challenges
in their detection and modulation in vivo have greatly limited our understanding on their
role [4]. The dynamics of ROS during cancer progression are reciprocated in the level
of TIGAR (TP53-induced glycolysis and apoptosis regulator), which is the P53-induced
modulator for cellular adaptation to oxidative stress-increasing NADPH production and
heightening the antioxidant defense. In pancreatic ductal adenocarcinoma development,
during the early stages, high TIGAR levels are needed to mitigate the ROS associated
with transformation. Then, as the tumor progresses, decreasing levels of TIGAR appear to
increase the malignancy of cancer cells consistent with the selection for invasive cells with
a higher ROS scavenging capacity. At a later stage, the TIGAR levels go up again to buffer
the oxidative stress experienced by metastatic cells [5]. Cancer cells need to develop higher
ROS scavenging capabilities to maintain their required level for initiation, adaptation and
progression and mitigate toxic accumulation [6–8].

The alteration of oxidative stress is associated with the reprogramming of cellular
metabolism during different stages of cancer progression to maintain redox homeosta-
sis and support the metabolic demand imposed in each stage [9]. Mitochondrial redox
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metabolism resides at the epicenter of this process and orchestrates different aspects of cel-
lular metabolism for adaptation and, in association with generating ROS signaling actively,
drives cancer cells’ progression through tumor development, metastasis and colonization
in distant organs [10,11]. The role of mitochondria in cancer development is primarily
focused on mutations in genes in TCA cycle enzymes, namely succinate dehydrogenase
(SDH), fumarate hydratase (FH) and isocitrate dehydrogenase 2 (IDH2), leading to the
accumulation of succinate, fumarate and 2-hydroxyglycerate (2HG). These metabolites
mediate epigenetic changes leading to the development of some subtypes of cancer. When
the mitochondrion is viewed in the context of its role in ROS signaling and reprogramming
cellular metabolism, its impact is much more complex and substantial in different stages
across all types of cancer [12–14]. This review focuses on the various aspects of mitochon-
drial redox metabolism and ROS generation during different stages of tumor development
and metastasis, with an emphasis on how it plays a central role in reprogramming cellular
metabolism for efficient transition and adaptation in each stage.

2. Mitochondrial Redox Metabolism

The mitochondrial electron transport chain (ETC)-mediated inner membrane elec-
trochemical gradient drives oxidative phosphorylation for energy production. It is also
the primary component for generating mitochondrial reactive oxygen species (ROS) and
maintaining the redox balance (Figure 1). In a situation where the sequential movement
of electrons through the ETC is delayed or halted or ATP synthase is inhibited, creat-
ing increased membrane hyperpolarization, it causes the electrons at complexes I, II and
III to interact with O2 to form a superoxide [2,15]. Due to the structural organization,
complex III is the primary site that can produce superoxide in the intermembrane space.
The Fenton reaction produces a highly reactive hydroxyl radical via the reaction between
Fe(II) and hydrogen per oxide (H2O2). This may interact with lipid species and generate
lipid peroxyl radicals. Several enzymes in the mitochondria that participate in oxidation-
reduction reactions, namely the 2-oxoglutarate dehydrogenase (OGDH), branched-chain
2-oxoacid dehydrogenase (BCKDH) and pyruvate dehydrogenase (PDH) complexes, may
also contribute to ROS generation [16].

ROS can also be produced in a regulated manner for signaling via NADPH oxidases
(NOX proteins), which generates a superoxide from O2 while oxidizing NADPH. Among
seven catalytic isoforms, NOX1, NOX2, NOX4 and NOX5 are associated with cancer
development, having different subcellular locations. NOX-derived ROS signaling induces
proliferation upon growth factor stimulation and promotes angiogenesis, cell migration
and invasion [17]. NOX4 localized in the inner mitochondrial membrane can produce
ROS, which can directly oxidize mitochondrial complex subunits, as well as mediate
mitochondrial DNA damage [18]. It also acts as an ATP sensor and mediates metabolic
reprogramming via regulating pyruvate kinase-M2 (PKM2) stability [19].

Mitochondrial superoxide is dismutated to H2O2 by manganese superoxide dismutase
(MnSOD/SOD2) in the matrix and by Cu/Zn superoxide dismutase (Cu/ZnSOD/SOD1)
in the intermembrane space and cytosol. H2O2 acts as diffusible signaling molecule and is
neutralized for water by enzymes, including peroxiredoxin-thioredoxin and glutathione
peroxidases (GPX) [20]. Recent studies have drawn attention towards the pathological
significance of mitochondrial peroxiredoxins, as their expression is associated with the
initiation and progression of multiple types of cancers [21]. These antioxidant systems de-
pend on NADPH as the final electron donor, and hence, the redox balance of mitochondria
relies on their NADP+/NADPH ratio.

NADPH is primarily generated in mitochondria via mitochondrial inner membrane
enzyme nicotinamide nucleotide transhydrogenase (NNT), which catalyzes the transfer
of a hydride from NADH to NADP+, producing NADPH and NAD+, coupled to the
translocation of one proton across the membrane (Figure 1) [22]. Since this enzyme is
energized by a mitochondrial inner membrane electrochemical gradient and uses NADH
as a reducing equivalent, it ensures the mitochondrial metabolism is dedicated to main-
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taining the optimum NADPH level in mitochondria required for antioxidant defense, as
well as the biosynthesis of macromolecules. In a recent study, where they employed a
genetically encoded tool to perturb the NAD+/NADH and NADP+/NADPH ratios in the
mitochondria and cytosol, they found that the redox states of mitochondrial NADPH and
NADH pools are connected, but they are asymmetrical. The oxidation of NADP+/NADPH
in the mitochondria leads to the oxidation of NAD+/NADH, but the reverse is not true.
This, along with the observation that perturbing the mitochondrial NADP+/NADPH ratio
increases the TCA cycle activity for the generation of NADH, indicates that the mitochon-
drial metabolism tends towards maintaining the optimum NADP+/NAPDH ratio [23].
Noteworthy to mention is that a similar connection has not been found for the cytosolic
NADPH and NADH pools. Analyzing compartmentalized NADPH production revealed
that NADH supports NADPH production in the mitochondria but not in the cytosol [24].
Since NNT plays a direct role in consuming NADH to generate NADPH and NAD+, it is
the central player in integrating mitochondrial energy metabolism to maintain the redox
balance. For this, NNT is considered a sensor of mitochondrial biology [25,26].
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Figure 1. Mitochondrial major NADPH-producing pathways. Nicotinamide nucleotide transhydro-
genase (NNT) located in the inner membrane produces NAPDH from NADP+. It is energized by
the inner membrane electrochemical gradient, produced by proton translocation via the electron
transport chain (ETC) during the sequential flow of electrons from reducing equivalent NADH and
FADH2 to O2 to form H2O. This enzyme plays a pivotal role in dedicating the mitochondrial NADH
pool towards maintenance of the optimum NADPH level. Isocitrate dehydrogenase 2 (IDH2) in
the TCA cycle catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate, and malic
enzymes 2 and 3 (ME2 and ME3) catalyze the oxidative decarboxylation of malate to pyruvate
while generating NADPH from NADP+ in the process. In the one carbon metabolism once serine is
catabolized by serine hydroxymethyl transferase 2 (SHMT2), it generates methylene-THF. The NAD
kinase (NADK2) phosphorylates NAD+ to NADP+, feeding other NADPH-generating reactions.
Methylene tetrahydrofolate dehydrogenase 2 oxidizes it to methenyl tetrahydrofolate and, finally, to
10-formyl-THF, which is coupled to the reduction of NADP+ to NADPH. CoQ, coenzyme Q; Cyt C,
cytochrome C; ICA, isocitrate; α-KG, α-ketoglutarate; OGDH, oxoglutarate dehydrogenase; MDH,
malate dehydrogenase; THF, tetrahydrofolate; I, II, III and IV represents complexes I, II, III and IV in
the mitochondrial electron transport chain.
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Other enzymes that play an important role in generating mitochondrial NADPH are mi-
tochondrial TCA cycle enzyme isocitrate dehydrogenase 2 (IDH2), catalyzing the oxidative de-
carboxylation of isocitrate to α-ketoglutarate, and mitochondrial malic enzymes 2 and 3 (ME2
and ME3), catalyzing the oxidative decarboxylation of malate to pyruvate (Figure 1) [27,28].
Serine catabolism via the mitochondrial one-carbon metabolism pathway is also important
to generate NADPH (Figure 1) [29]. Mitochondrial NAD kinase (NADK2) phosphorylates
NAD+ to NADP+, which is required for NADPH production. The loss of NADK2 is associ-
ated with reduced respiration and increased intracellular ROS, but its role in maintaining
the redox balance and cancer is yet to be investigated [30,31]. One important concept that
has emerged is that the maintenance of mitochondrial redox metabolism is not a separate
event; rather, it is intricately tied with energy metabolism and biosynthetic processes and
navigates metabolic reprogramming, bringing change to the mitochondrial biology and
overall cell fate.

Sirtuin proteins, specifically SIRT3 residing in mitochondria, act as a key regulator of
mitochondrial redox metabolism. It functions as a NAD+-dependent protein deacetylase,
which gets activated in high NAD+/NADH conditions. Thus, it acts as a sensor of the
mitochondrial metabolic state and activates pathways for maintaining the optimum ATP
and NADPH levels [32–34]. It reduces ROS generation from ETC and enhances the detoxifi-
cation through the activation of antioxidant enzymes, like SOD2, resulting in maintenance
of the redox balance in mitochondria [35–37].

A critical role of mitochondrial redox metabolism is to support proline biosynthesis as
it consumes NAD(P)H [31]. NAD+ generation during proline biosynthesis uncouples the
TCA cycle from respiration and could help minimize the generation of ROS from ETC [38].
The proline shuttle mediated by proline oxidase (POX) is important for transferring redox
equivalents between the mitochondria and cytosol and generating ROS for signaling [39,40].

How far the cytosolic pathways support maintaining the redox balance in mitochon-
dria is an area of active research. A compartmentalized NAD+/NADH ratio is maintained
in the mitochondria (NAD+/NADH ratio 7 to 8) and cytosol (NAD+/NADH ratio 60–700)
mainly by malate–aspartate shuttle, malate–citrate shuttle and glycerophosphate shut-
tle [41,42]. Cytosolic reductive carboxylation comes into play for supporting mitochondrial
NADPH generation for mitigating mitochondrial ROS. Here, IDH1 consumes NADPH
from cytosol-generating citrate, which goes inside the mitochondria for oxidation, where
IDH2 generates NADPH [43]. This cycle can also work in reverse and follow the path of
mitochondrial reductive carboxylation to support cytosolic NADPH production [44]. In
mitochondrial oxidative stress, the directionality of the cycle is maintained towards the
generation of NADPH in the mitochondria through regulation of the IDH2 enzyme [45].

In addition, mitochondrial plasticity comes into action when cells experience stress.
Fusion helps to alleviate stress by complementing the content of two damaged mitochon-
dria and, thus, maximize the oxidative capacity. Fission is needed to generate new mito-
chondria but, during stress, helps to remove damaged mitochondria as a measure of the
quality control [46]. Mitochondrial fission is also responsible for the generation of ROS in a
hyperglycemic condition, and the induction of fusion can reduce ROS accumulation [47].

3. Malignant Transformation

Mitochondrial DNA mutations reported in a wide range of cancers and associated
with impaired oxidative phosphorylation (OXPHOS) stimulate malignant transformation
via generating ROS [48,49]. The first evidence of mitochondrial ROS-induced tumori-
genicity was observed from a swap experiment where mtDNA of a prostate cancer cell
was exchanged with pathogenic mtDNA [50]. Pathogenic mtDNA mutations arise in
tumors almost at a similar rate to mutations in most common cancer driver genes, with
complex I accumulating the highest loss of function mutations [51]. Apart from mutations
impairing OXPHOS, mutations in other mitochondrial enzymes may also be responsible
for the accumulation of mitochondrial ROS. One such case is the cancer cells deficient
in fumarate hydratase (FH), where the accumulation of fumarate results in conjugation
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with glutathione to produce succinate glutathione. This acts as an alternate substrate to
glutathione reductase, exhausting NADPH in the process and causing the accumulation of
mitochondrial ROS [52]. Mitochondrial ROS generation can induce tumor formation in
ways similar to growth factor activation, like the phosphoinositide 3-kinase (PI3K) path-
way, central to the growth factor response. Mitochondrial ROS inactivates its antagonist
tumor suppressor PTEN (phosphatase and tensin homolog deleted from chromosome 10),
promoting the PI3K-signaling cascade [53,54].

Mitochondrial ROS signaling is a critical aspect of some oncogenic drivers for the
initiation of malignant transformation and control metabolic adaptation during various
stages of tumorigenesis. Notable among them is Kras dependent on mitochondrial ROS
generation for cancer initiation and progression corresponding with a metabolic switch
from oxidative phosphorylation to glycolysis [55,56]. Ras-induced transformation is also
associated with alterations of the mitochondrial dynamics promoting fission [57].

Failure of the mitochondrial ROS scavenging system may also promote tumorigenesis.
Mitochondrial ROS is responsible for signaling cell proliferation and quiescence where
MnSOD serves as a switch. Decreased MnSOD activity favors proliferation by increasing
the accumulation of superoxide, and increasing the activity of MnSOD facilitates the
proliferating cell transition into quiescence [58,59]. The accumulation of mitochondrial
ROS caused by a lack of MnSOD activity leads to an increase of double-stranded breaks
and chromosomal translocation, causing genomic instability and promoting oncogenic
transformation [60,61].

During the early phage of tumorigenesis, ROS appears to be mutagenic and, there-
fore, supports transformation [62,63]. ROS increases upon transformation and is quickly
scavenged with the concurrent activation of antioxidant programs, primarily mediated by
Nrf2. The investigation of ROS metabolism upon expression of the endogenous oncogenic
alleles of Kras, Braf and Myc showed that ROS are actively suppressed through the Nrf2-
mediated antioxidant response [64]. The ROS-dependent inactivation of PKM2 (pyruvate
kinase M2) diverts glucose carbon to the oxidative pentose phosphate pathway (PPP),
resulting in increased NAPDH production. This is one of the distinct mechanisms of ROS
signaling-induced metabolic reprogramming for maintaining the redox balance [65].

When mitochondrial ROS generation is too high, it can be toxic to the cell, and
cellular apoptosis and necrosis comes into play, inducing cell death. One of the ways
mtDNA mutation in ATP synthase subunit 6 gene (MTATP6) promotes tumor growth is by
preventing apoptosis [66].

One aspect of mitochondrial metabolism that contributes to maintaining the redox
homeostasis during cancer initiation is through its control of glutathione peroxidase [67].
Mitochondrial enzyme glutamate dehydrogenase (GDH1), upregulated in many cancers,
is important for maintaining the intracellular level of its product, α-ketoglutarate, and
its subsequent metabolite, fumarate, which binds to and activates the ROS-scavenging
enzyme glutathione peroxidase 1. Targeting GDH1 results in the depletion of fumarate, thus
inhibiting glutathione-mediated ROS scavenging, and it has shown therapeutic potential
in vivo in lung cancer models [68].

Mitochondria harboring mutation in the enzymes of the TCA cycle or ETC resulting
in the defective oxidative function of mitochondria relies on reductive carboxylation to
utilize glutamine for lipid and macromolecule synthesis [69].

4. Tumor Development

During aggressive cell proliferation leading to a clinically detectable tumor, mitochon-
drial redox metabolism comes into play, regulating various aspects of tumor development,
ranging from nutrient uptake to invasiveness. Cancer has been regarded as a metabolic
disease arising from impaired mitochondrial oxidative metabolism for almost 100 years,
from the initial observation of Otto Warburg about a lack of proportion between glycolysis
and respiration, where cells convert glucose to lactate for excretion and commits to an
inefficient way of ATP synthesis even when there is sufficient oxygen for respiration [70].
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Furthermore, the observation of a “spare respiratory capacity” in cancer cells indicates
that glucose carbon is diverted to lactate without reaching the maximum respirational
potential [71]. The increased consumption of glucose associated with unrestrained cell
proliferation, characteristic of most cancer cells, imposes demands on NAD+ for maintain-
ing a higher glycolytic flux and subsequent metabolism of glucose [72]. A recent study
suggested that an increased demand for NAD+ relative to mitochondrial ATP production
is what drives cells to commit to aerobic glycolysis [73]. Another major fuel for cancer
cell glutamine, regulated by oncogene Myc, is also excreted as lactate and alanine to sup-
port the redox balance via generating NADPH via the cytosolic malic enzyme [74–76].
Glutamine contributes to TCA cycle anaplerosis and regenerates NAD+ via the action of
cytosolic malate dehydrogenase (MDH1), enabling glucose carbon to be diverted from
energy production to anabolic processes [77,78].

Cancer cells’ commitment towards aerobic glycolysis vs. mitochondrial oxidation
depends largely on the tissue from which the cancer originated rather than their oncogenic
drivers. This preference for the bioenergetic route has a pronounced impact on the type of
fuel consumption. Recent 13C-glucose infusion studies in patients showed that Warburg-
like metabolic reprogramming is observed in clear cell renal cell carcinoma, making cells
dependent on glycolysis for energy production [79]. Contrary to this, robust glucose
oxidation is a major feature in tumors in the brain and non-small cell lung cancer (NSCLC)
patients [80,81]. When investigating the mitochondrial metabolism in the context of tumor
architecture, an even more complex picture arises, as tumors contain oxygenated and
hypoxic regions based on tissue perfusion, which contributes to the already heterogeneous
tumor metabolism [82]. Even though the poorly vascularized core of the solid tumor
has limited oxygen availability, some cancers still rely on mitochondrial respiration for
ATP generation, as ETC can function optimally at oxygen levels as low as 0.5% [83]. In
NSCLC patients, the glucose metabolism is heterogeneous within and between tumors,
depending on the tissue perfusion, which determines the contribution of various fuels
to the TCA cycle, with less-perfused regions depending on glucose and well-perfused
regions using alternate fuels [81]. Circulating lactate is the major contributor to TCA
cycle intermediates in most tissues, except in cases like pancreatic cancer, which prefers
glutamine over lactate to feed the TCA cycle [84]. Oncologic behavior is also associated
with fuel consumption, with aggressive NSCLC tumors taking lactate as a respiratory fuel
from plasma via monocarboxylate transporter 1 (MCT1) [85].

Oxygenated tumor cells use lactate as a prominent respiratory substrate, while hypoxic
tumor cells primarily follow a Warburg-like metabolism, converting glucose to lactate [86].
Thus, the glycolytic and oxidative subpopulations of cancer cells in a tumor exchange
lactate to support growth [87]. Tumors can also exploit the metabolism of associated stroma
and consume fuel from them in a phenomenon termed as “Stromal–Epithelial Metabolic
Coupling” or the “Reverse Warburg Effect”. Here, cancer cells induce mitophagy and
make the associated glycolytic fibroblasts generate excessive lactate and ketones, which are
taken up by the cancer cells from the extracellular space and used in mitochondrial energy
production [88–90]. When cancer cells have to compete for nutrients with tumor-infiltrating
immune cells, cell-intrinsic programs drive nutrient acquisition, where cancer cells depend
on glutamine metabolism, leaving glucose for the immune cells [91].

Apart from ATP production, another important role of the TCA cycle for which
functional ETC is needed is to provide oxaloacetate for the production of aspartate via
aspartate aminotransferase (AAT). Aspartate is then exported to the cytosol for nucleotide
biosynthesis for proliferation, as well as to provide NAD+. Cells rely on glutamine for this
as, in glutamine-deprived conditions, the cytosolic aspartate availability determines the
cell survival [92–95]. Cancer cells often downregulate the aspartate-consuming enzyme
argininosuccinate synthase (ASS1) in the urea cycle to increase the aspartate availability for
nucleotide biosynthesis [96]. Another role of respiration-derived aspartate is the produc-
tion of asparagine for maintenance of the mTOR complex I (mTORC1) for tumorigenesis.
The inhibition of respiration in a combination of treatments that limit the environmental
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asparagine availability, like asparaginase or dietary asparagine restriction, has shown
therapeutic potential in mouse models of lung, breast and pancreatic cancers [97]. More-
over, the ability of breast cancer cells to synthesize asparagine when the bioavailability
is compromised is strongly correlated with its metastatic potential [98]. Another way
ETC is interlinked with nucleotide biosynthesis is through the role of complex III in the
oxidation of ubiquinol to ubiquinone, which is an electron acceptor for dihydroorotate
dehydrogenase (DHODH), an enzyme essential for de novo pyrimidine synthesis [99].

Due to aggressive cell proliferation, the tumor size extends beyond the natural diffu-
sion limits of oxygen, and the core of the tumor becomes hypoxic. Even though tumors
acquire blood vessels by inducing angiogenesis, most solid tumors retain hypoxic domains
throughout disease progression, which, in effect, selects for aggressive malignant cells [100].
The exposure of hypoxia increases mitochondrial ROS generation by ETC, which is essen-
tial for hypoxia signaling. Upon oxygen sensing, mitochondrial ROS is generated via the
Rieske iron–sulfur protein (RISP) of complex III. This process is independent of OXPHOS,
as lacking complex III subunit cytochrome b impairs OXPHOS, with no impact on oxygen
sensing [101,102]. Hypoxia increases the release of a superoxide from mitochondrial com-
plex III, which is converted into H2O2 by SOD1 and inhibits prolyl hydroxylase (PHD),
resulting in HIF-1α (hypoxia inducible factor-1α) stabilization [103]. In normoxia, PHD
catalyzes the hydroxylation of two proline residues in the oxygen-dependent degradation
(ODD) domain of HIF-1α, promoting its subsequent degradation by VHL (von Hippel-
Lindau protein). Loss of the VHL gene associated with ~70% clear cell renal cell carcinoma
contributes to tumorigenesis by the HIF-mediated induction of hypoxia response elements
(HRE) [104,105]. The mechanism by which ROS inhibits PHD is yet to be defined. Several
mechanisms have been proposed, one of which might be inducing a shift in the iron redox
state from Fe2+ to Fe3+ (Fenton reaction), thereby limiting an essential cofactor of the
PHDs [106]. Another way of inhibition is via the oxidative modification of PHD’s cysteine
residue as, when the free intracellular cysteine level is high, PHD2 cysteine oxidation is
prevented, keeping it active and the HIF-1α level low. When the intracellular cysteine level
is depleted due to the glutamate-induced inhibition of xCT glutamate–cystine antiporter in
TNBC (triple-negative breast cancer), HIF-1α is stabilized in a normoxic condition due to
the oxidative self-inactivation of PHD [107,108].

The accumulation of mitochondrial metabolites, succinate and fumarate in SDH and
FH-deficient cancer inhibits PHD by competing with its substrate α-ketoglutarate and
causes the stabilization of HIF-1α in a normoxic condition, creating a pseudohypoxic con-
dition [109]. These tumors are glycolytic, and for generating TCA cycle intermediates, they
employ part of the oxidative TCA cycle, leading up to the deficiency and other metabolic
pathways, which differ from one another. FH tumors utilize glutamine-dependent “reduc-
tive carboxylation”, and SDH tumors have robust pyruvate carboxylase activity to generate
oxaloacetate for nucleotide synthesis [110,111]. Similar pseudohypoxic conditions may also
prevail due to the accumulation of competitive antagonist 2-hydroxyglutarate (D-2HG) in
IDH2 mutant cancers and in acidic pH, which enhances the production of L-2HG via the
noncanonical activity of lactate dehydrogenase [112].

Once HIF-1 is activated, it promotes the transcriptional activation of a set of genes that
carries out the adaptive process for survival under chronic hypoxia. Part of this process
is survival in reduced oxygen tension, feedback and dampen mROS, metabolic repro-
gramming, angiogenesis, invasion and metastasis, critical for tumor progression [100,113].
HIF-1 induces the subunit switch of cytochrome C oxidase (COX) that optimizes the effi-
ciency of respiration at a lower oxygen concentration [114]. Depending on the cell type,
hypoxia brings about changes in the mitochondrial morphology, inhibits mitochondrial
biogenesis by inhibiting Myc activity and induces mytophagy via mitochondrial outer-
membrane protein FUNDC1, which, in combination, reduces mROS generation [115–117].
Hypoxia suppresses the cellular ATP consuming processes via triggering the activation
of AMPK (AMP-activated protein kinase) through the ROS-mediated opening of calcium
release-activated calcium (CRAC) channels, leading to an increase in cytosolic calcium that
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activates the AMPK via upstream kinase CaMKKβ (Ca2+/calmodulin-dependent protein
kinase kinase β) [118].

Hypoxia signaling changes the metabolic landscape, resulting in diverting carbon
entry to the mitochondria and reducing the TCA cycle flux to ultimately suppress the
activity of the ETC (Figure 2). Pyruvate generated from glucose is secreted as lactate
via the HIF-mediated induction of lactate dehydrogenase A (LDHA) and pyruvate de-
hydrogenase kinase 1 (PDK1), which phosphorylates and inactivates pyruvate dehydro-
genase (PDH) [119,120]. Glutamine is metabolized via cytosolic reductive carboxyla-
tion [121,122] (Figure 2). The mechanism by which HIF1 induces reductive carboxylation
is via SIAH2-targeted ubiquitination and proteolysis of the oxoglutarate dehydrogenase
complex (OGDH2), leaving glutamine-derived α-ketoglutarate to be carboxylated by
IDH1 [123]. HIF-1 also mediates a metabolic switch that inhibits fatty acid beta oxidation
and promotes fatty acid synthesis, contributing to tumorigenesis [123,124]. An important
consequence of a reduced TCA cycle flux is the reduction in aspartate biosynthesis due
to the lack of the substrate oxaloacetate, which may impair tumor growth. Cancer cells
import it via a cell-specific SLC1A3, an aspartate/glutamate transporter, or synthesize it
from cytosolic oxaloacetate via GOT1 (glutamate-oxaloacetate transaminase 1) [94,125].
For the generation of oxaloacetate and lipids, they depend on glutamine-derived reductive
carboxylation and may increase its uptake [126]. Glutamine dependency opens a thera-
peutic opportunity based on the systemic administration of glutaminase inhibitors [127].
Hypoxia stimulates acetyl-CoA synthetase 2 expression, which catalyzes the production of
acetyl-CoA from acetate, making it a major carbon source in breast and prostate cancer cells
for lipid synthesis [128]. Hypoxia may also suppress the activity of fatty acyl desaturase
SCD, which may render the toxic accumulation of a saturated fatty acid precursor, and
uptake of an unsaturated lipid becomes important for maintaining the homeostasis in hy-
poxia [129,130]. Hypoxia induces mitochondrial fission via upregulating the expression of
dynamin-related protein 1 (Drp1). This contributes towards gaining aggressive metastatic
characteristics [131,132].

To mitigate the increased ROS produced during hypoxia, glucose carbon is diverted
towards serine and glycine biosynthesis in the cytosol via the increased expression of
phosphoglycerate dehydrogenase (PHGDH). This renders an increased glutathione biosyn-
thesis and NADPH production via one-carbon metabolism in the folate pathway [133,134]
(Figure 2). Serine hydroxymethyl transferase 2 (SHMT2), the first enzyme in the mitochon-
drial one-carbon metabolism pathway, mediates serine degradation to produce NADPH
in hypoxia in Myc-transformed cells. Its expression is correlated with an unfavorable
patient prognosis. Moreover, there is a positive correlation between mitochondrial serine
catabolism and cytosolic de novo serine biosynthesis, indicating the contribution of the
cytosolic serine biosynthesis pathway in maintaining redox metabolism in the mitochon-
dria [135] (Figure 2). Serine regulates carbon distribution in the anabolic vs. biosynthetic
route through the allosteric control of pyruvate kinase M2 (PKM2), overexpressed in cancer
cells. Serine deprivation reduces PKM2 activity, causing the accumulation of a precursor
for serine biosynthesis: 3-phosphoglycerate [133]. The constitutive activation of PKM2
renders cancer cells dependent on exogenous serine [136]. Since serine biosynthesis re-
quires NAD+, cancer cells expressing high levels of PHGDH are dependent on the NAD+

salvage pathway for their generation, creating a therapeutic potential for inhibitors of this
pathway [137]. Serine-deprived cells are sensitive to conditions that decrease the cellular
NAD+/NADH ratio [138].

Increased collagen matrix formation and ECM (extracellular matrix) stiffness are asso-
ciated with tumor growth and progression in different cancers [139]. The role of HIFs in
inducing the expression of both collagen and extracellular matrix remodeling enzymes that
promote the aberrant collagen deposition and acquisition of the prometastatic local extracel-
lular matrix has been well-defined [140,141]. Nearly 25% of the amino acids incorporated
into collagen are proline, thus indicating the important role of proline metabolism in colla-
gen synthesis and ECM remodeling. Oncogene c-Myc has been shown to increase proline
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biosynthesis for maintaining the redox balance [142,143]. The accumulation of hydroxypro-
line is also important for promoting hypoxia phenotype [144]. Mitochondrial NADPH is
required for generating pyrroline-5-carboxylate, a bottleneck in proline biosynthesis, and
this makes cells dependent on NADK2 for the generation of NADP+ in mitochondria [31].
ECM stiffening promotes kindlin-2 translocation into the mitochondria and interacts with
PYCR1 (Pyrroline-5-Carboxylate Reductase 1) for proline biosynthesis [145]. In cancers
associated with collagen-rich meshwork like pancreatic ductal adenocarcinoma, collagen
serves as a reservoir for proline, which can be taken up in a nutrient-limited condition.
One mechanism that emerges from this is mitochondrial-reducing equivalents that are
consumed during proline biosynthesis and exported for collagen formation, which can
then be imported and catabolized to support TCA cycle metabolism and provide reducing
equivalents for cellular respiration [146].
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Figure 2. Metabolic reprogramming supporting the redox balance in mitochondria during hypoxia.
ROS (reactive oxygen species) generated by the electron transport chain in the mitochondrial matrix
during hypoxia. The Rieske iron–sulfur protein (RISP) of complex III generates ROS in the cytosol,
which inhibits prolyl hydroxylase (PHD), resulting in HIF-1α (hypoxia inducible factor-1α) stabiliza-
tion followed by the induction of various hypoxia responses. Seine catabolized in the mitochondria in
one-carbon metabolism to generate NADPH to mitigate ROS in the mitochondria in Myc transformed
cancer cells. Cytosolic serine biosynthesis is upregulated via the upregulation of phosphoglycerate
dehydrogenase (PHGDH) to support mitochondrial serine catabolism. Glucose carbon is diverted to
lactate production, decreasing entry into the mitochondria and reducing the TCA cycle flux. The
induction of a hypoxia response causes the inhibition of oxoglutarate dehydrogenase (OGDH2),
rendering α-ketoglutarate (α-KG) to be carboxylated by isocitrate dehydrogenase 1 (IDH1) in the
cytosol, contributing to reductive carboxylation supporting the lipid and nucleotide biosynthesis
(via aspartate) in hypoxia. Dashed lines represent downregulation. Green and red represent up
and downregulated enzymes and pathways as part of the hypoxia response. OAA, oxaloacetate;
3-P-Glycerate, 3-phosphoglycerate.

SIRT3, a master regulator of mitochondrial metabolism, suppresses HIF-1α and tumor
growth by inhibiting mitochondrial ROS production from complex III [147]. The tumor
suppressive role of SIRT3 is mainly mediated by reversing the Warburg-like metabolic
reprogramming [148].
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5. Metastatic Dissemination

The role of mitochondria in metastasis first came to attention from a swap experiment
where the mtDNA of highly metastatic tumor cells conferred enhanced aggressiveness
and metastatic potential owing to the production of mitochondrial ROS [149]. This is
pronounced in cells deficient in mtDNA incapable of generating mitochondrial ROS that
fail to grow in an anchorage-independent manner [55]. Enhanced superoxide production
from mitochondrial ETC either by overload or partial inhibition promotes various aspects
of metastasis via protein tyrosine kinases Src and Pyk2 as downstream effectors [150].

While most studies focus on the overall success of metastasis by observing distant col-
onization, the dynamic metabolic adaptation during the different phases of the metastatic
cascade remains to be understood [151]. The small subpopulation of cells that can suc-
cessfully proceed through the stages of the metastatic cascade is difficult to trace and
isolate, making analyzing their metabolisms challenging. Technical advancements in ex-
perimental models representing an endogenous microenvironment and model organisms
could help gain insight into the metabolic alterations that must occur to proceed with
each step [152,153]. Metastatic cancer cells arising from different primary tumor sites
may have site-specific metabolic landscapes, which start changing once they are detached
from the primary site and invade depending on the constraints of the originating tissue.
They may tend to converge towards a specific metabolic signature when they arrive in the
circulation [9]. Such a type of converging metabolic adaptation is an attractive avenue for
potential therapeutic interventions.

The delamination of cells from the primary tumor, representing the first step of
the metastatic cascade, occurs through a process similar to epithelial-to-mesenchymal
transition (EMT) [154,155]. It is a reversible phenomenon that allows epithelial cells to
become motile and invade adjacent tissues to enter the circulation [156]. Mitochondrial ROS
plays an important signaling role in inducing EMT [157,158]. Matrix metalloproteinase 3
(MMP3) is upregulated in many cancers and responsible for the induction of EMT and
exerts its action by expression of an alternatively spliced form of Rac1, which causes
mitochondrial ROS accumulation [159]. Mitochondrial metabolites, like 2HG, succinate
and fumarate, accumulated in different cancers associated with mutations in enzymes
producing them, are involved in the transcription of a set of genes that carries out EMT
by inhibiting histone and DNA demethylases [160]. Similar phenomena happen during
the accumulation of acetyl-CoA due to suppressed mitochondrial oxidation, where acetyl-
CoA induces histone acetylation, leading to open chromatin and the expression of genes
associated with EMT [161]. The proline hydroxylation of collagen during ECM remodeling
for the progression of EMT requires vitamin C, which limits its availability for DNA and
histone demethylases, increasing the overall DNA and histone methylation and causing a
transition in the cellular state in EMT [162,163].

For efficiently metastasizing, the cancer cell must develop a resistance to anoikis,
defined as the induction of apoptosis owing to detachment from the extracellular matrix
(ECM), and amorphosis, cell death stimulated by loss of the cytoskeletal structure [164–167].
Cancer cells decrease glucose oxidation following detachment for anoikis resistance, and
when glucose oxidation is stimulated through inducing PDH in suspension, it makes
them susceptible to anoikis due to increased mitochondrial ROS production. Therefore,
suppressing mitochondrial oxidative reactions that, in effect, limit mitochondrial ROS
generation is one mechanism for cells to become resistant to anoikis [168,169]. Fatty acid
oxidation mediated by CPT1A is important for eliminating ROS, rendering colorectal
cancer cells resistant to anoikis [170].

To check the accumulation of mitochondrial ROS associated with anchorage-inde-
pendent growth, glucose and glutamine metabolism is modulated with two main goals,
decreasing mitochondrial oxidation for minimizing the production of ROS and increasing
mitochondrial NADPH pool for mitigating the ROS (Figure 3). An important phenomenon
observed here is the contribution of a cytosolic NADPH pool in reductive carboxylation for
supporting NADPH production in the mitochondria for mitigating mitochondrial ROS [43].
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NADK2 plays important role in this stage to produce NADPH in mitochondria [31]. When
cells start to get detached from the extracellular matrix, there is a loss of glucose transport.
Shunting a considerable amount of glucose through PPP for generating NADPH the in
cytosol becomes critical to support ROS detoxification and mitochondrial NADPH produc-
tion [171]. The induction of PPP for NADPH production is mediated through increased
Nrf2 expression, which is correlated with cancer metastasis [172,173]. Matrix deprivation
leads to a spike in the intracellular calcium, which triggers the CaMKKβ-mediated acti-
vation of AMPK signaling, leading to ATP conservation and anoikis resistance [174,175].
AMPK also inhibits acetyl-CoA carboxylases ACC1 and ACC2, inhibiting fatty acid syn-
thesis and sparing NADPH for maintaining the redox homeostasis [176]. Upon cell de-
tachment, there is increased dependency on SOD2 for the detoxification of mitochondrial
superoxide. The expression of SOD2 correlates with histologic tumor grades, further sup-
porting its role during metastasis [177]. Even though Sirt3 shows a tumor-suppressive role
during growth, it has a critical role during matrix detachment and colonization. In ovarian
cancer, Sirt3 expression and activity transiently increases in detached cells for mitigating
mitochondrial superoxide surges by regulating SOD2 [178]. Various oncogene-initiated
signal transductions also modulate the mitochondrial metabolism for adaptation, like Ras
activation induces a distinct PI(3)K effector, serum and glucocorticoid-regulated kinase-1
(SGK-1) for regulating the mitochondrial function to overcome the ATP deficiency induced
by ECM detachment [179,180].
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Figure 3. Cytosolic reducing equivalents supporting the mitochondrial redox balance during
metastatic dissemination. Glucose and glutamine metabolisms are attenuated during metastatic dis-
semination to mitigate the accumulation of mitochondrial reactive oxygen species (ROS). Glutamine
goes through reductive carboxylation, where isocitrate dehydrogenase 1 (IDH1) consumes NADPH
from the cytosol, and citrate generated in this process enters into the mitochondria to support
NAPDH production via isocitrate dehydrogenase 2 (IDH2) and fortify the ROS defense. Glucose is
metabolized through the pentose phosphate pathway to provide cytosolic NAPDH needed by IDH1.
Oxaloacetate (OAA) produced via reductive carboxylation is metabolized by malate dehydrogenase 1
(MDH1) in the cytosol to produce NAD+ to support the glycolytic flux. α-KG, α-ketoglutarate;
Asp, aspartate.

In a genome-scale metabolic model of the NCI-60 cell lines, the glycolytic-to-oxidative
ATP flux ratio was found to be highly positively correlated with cell migration, indicating
that ATP from glycolysis, rather than oxidative phosphorylation, supports cancer cell mi-
gration and more aggressive metastatic tumor development. Silencing genes that target this
ratio are good candidates for developing a therapy that targets more aggressive metastatic
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cells without the side effects associated with current antiproliferative treatments [181].
During cell migration and isogenic cell lines carrying varying degrees of mtDNA mutation
impacting oxidative phosphorylation, where an enhanced reliance on glycolytic ATP syn-
thesis is observed, reductive carboxylation has been proven to support the glycolytic flux
via recycling cytosolic NADH. Malate dehydrogenase 1 (MDH1) is a novel link between
reductive carboxylation and glycolysis and may interact with GAPDH, which helps en-
hance glycolytic NADH recycling (Figure 3) [182]. Mitochondrial fission mediated by Drp1
is required for lamellipodia formation during cell migration [131,183].

Discrepancies are observed in the bioenergetic profile of the mitochondria during
metastasis in different cancers. Invasive breast cancer cells employ transcriptional coac-
tivator PGC-1α (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha)
to enhance oxidative phosphorylation and mitochondrial biogenesis, in effect relying on
mitochondrial respiration during metastasis [184]. A completely opposite phenomenon
is observed in prostate cancer, where the downregulation of PGC-1α is associated with
cancer progression and metastasis [185]. Alteration of the fuel preference is also observed
in metastasis, as metastatic TNBC cells rely on fatty acid beta oxidation for an ATP require-
ment [186]. The expression of fatty acid receptor CD36 has been associated with metastasis
initiation in numerous types of carcinoma, and they rely on beta oxidation from palmitic
acid or a high fat diet for successful metastasis [187].

During metastatic spread, mitochondrial ROS accumulation presents an additional
challenge in combination with the stressful environment of the circulation, where blood
represents elevated oxidative stress compared to lymph [188]. Clustering of the detached
cells accelerates the metastatic spread and survival in the circulation. Cell clustering limits
ROS by driving hypoxia and HIF-1α-mediated mitophagy, thus removing damaged ROS-
producing mitochondria. The resultant decrease in the mitochondrial capacity results in a
dependence on glycolysis that is supported by the reductive carboxylation of glutamine
to malate [189]. Studies on metastatic melanoma cells shed light on how metastatic cells
maintain the redox balance in the circulation. In the circulation, these cells depend on the
folate pathway to generate NADPH, and it opens an option for therapeutic intervention
with methotrexate or via genetic alteration [190]. Similar studies with a mouse model
of malignant melanoma showed the beneficial effect of antioxidants to promote metasta-
sis [191]. Efficient metastatic melanoma cells depend on MCT1-dependent lactate uptake,
which serves as a fuel for mitochondrial oxidative metabolism [192].

6. Distant Colonization

Once the circulating tumor cells (CTCs) exit the circulation at their metastatic site,
they again have to alter their metabolism to adapt to the new environment of the host
organ. Out of the millions of cancer cells shed in the circulation by primary tumors, only a
very small portion could successfully withstand the harsh environment of the circulation
and have the necessary adaptive capabilities to colonize and form metastatic lesions in
distant organs [9]. As anoikis also prevents cells from attaching to foreign or inappropriate
matrixes, developing a resistance or inhibition to anoikis is important for colonization at
distant organs [193].

Different tumor-secreted factors and tumor-shed extracellular vesicles actively modify
the organs of future metastasis to create a premetastatic niche amenable for the growth
of metastatic cancer cells [194–196]. Once the metastatic cancer cells reach their targeted
metastatic organ, they must actively breach the vasculature in a process called extravasation
to leave the circulation and colonize [197]. The increased accumulation of cellular ROS
plays a major role in extravasation by inducing signaling pathways like ERK1/2 [198].
Upon anchorage to the organ of metastasis, incoming metastatic cells require undergo-
ing reversing the EMT process required for invasion to MET (mesenchymal-to-epithelial
transition) for colonization [199–201].

In the circulation, metastatic cells are exposed to oxygen limited conditions, which
hampers their energy production. For colonizing in the targeted metastatic site, cancer
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cells actively modify the metabolism of the host organ to utilize them for the generation
of energy. Cancer cells secrete microRNA and actively modify the energy metabolism of
recipient premetastatic niche cells by downregulating pyruvate kinase, in effect decreasing
the glucose uptake and promoting glucose availability for metastatic cells [202]. This
process is further aided by hypoxia signaling [203]. This phenomenon is observed when
colorectal cancer cells metastasize to the liver. Upon metastatic dissemination into the liver,
colorectal cancer cells experience hepatic hypoxia and secrete creatine kinase, brain-type
(CKB) in the extracellular matrix of the liver, which catalyzes the generation of high-energy
phospho-creatine and is taken up by the metastatic cell for the production of ATP [204].

The microenvironment of the distant organ also plays role in colonization of the
metastatic cells [205]. A hypoxic microenvironment often selects disseminated metastatic
cells that have the ability to withstand hypoxic stress and metabolically adapt to colonize
in distant organs [203]. How organ-specific metastatic traits arise in primary tumor cells
remains an area of active research, and many factors are emerging that play a critical
role [206]. Mitochondrial redox metabolism plays a central role in determining the adapt-
ability of tumor cells according to the metabolic constraints of the metastatic site. Some
primary tumors only metastasize to specific organs, like prostate cancer to the bone and
pancreatic cancer to the liver, while others are capable of metastasizing in different organs,
like breast and lung cancers [207]. The heterogeneity of the mitochondrial metabolism
within breast cancer cells determines their site of metastasis, like liver metastatic cells
display increased HIF-1α activity and lactate production with decreased mitochondrial
oxidative metabolism compared to bone and lung metastatic cells [208].

The rewiring of the mitochondrial metabolism in metastatic cells and preference for
fuel also depend on the nutrient availability of the distant organ where metastasis occurs,
like the availability of pyruvate in the lungs activates pyruvate carboxylase in the metastatic
breast cancer fueling TCA cycle [209]. They also rely on pyruvate metabolized by part of
the TCA cycle to produce α-ketoglutarate for collagen hydroxylation to actively modify
the ECM for creating a lung metastatic niche. Worth mentioning is that importing pyruvate
instead of lactate would be preferable in cellular NAD+-restricted conditions, indicating
the redox status of the incoming metastatic cells [210]. Another important pathway for
fueling the metastatic growth of breast cancer in the lungs is proline catabolism via proline
dehydrogenase generating FADH2 [211].

Organ-specific metabolic constrains mainly depend on the tissue architecture, microen-
vironment, nutrient availability, redox status and activity of the organ [212]. A low glucose
concentration in the brain interstitial space requires incoming metastatic cells relying on the
oxidation of glutamine and branched-chain amino acids [213]. Cancer cells that metastasize
in the brain from a wide variety of primary tumors, like breast cancer, non-small-cell lung
cancer (NSCLC), clear-cell renal cell carcinoma, melanoma and endometrial cancer, also use
acetate as a bioenergetic substrate to fuel growth, which is a brain-specific adaptation [214].
Breast cancer cells metastasizing into the brain may also show a GABAergic phenotype,
which renders them able to catabolize GABA into succinate with the resultant formation
of NADH [215].

As the lungs are the primary organ for respiration in humans, they are exposed to high
levels of oxygen, as well as toxic compounds, which contribute to increased oxidative stress,
presenting a challenge for metastatic cells to colonize [216]. To withstand and survive in this
oxidative stress condition, mitochondrial complex I is modulated and antioxidant programs
activated in breast cancer cells, forming micrometastasis in the lungs [217,218]. PGC-1α-
mediated transcriptional regulation associated with increased mitochondrial biogenesis
is required for breast cancer cells to metastasize in the lungs, possibly through increasing
the overall efficiency of the ETC machinery in the oxidative conditions of the lungs and
reducing ROS generation [184,219].

The liver is a key organ for maintaining the energy balance of the body by regulating
the blood glucose level through tightly regulating the glucose consumption and production.
The liver is also divided in metabolic zonation, which corresponds to varying oxygen gra-
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dients. The liver microenvironment is naturally more conducive to cells that display a high
glycolytic profile and are adapted to a low-oxygen state, as seen in studies with primary
hepatocellular carcinoma showing a preference for engaging in glycolytic metabolism [220].
Breast cancer cells that metastasize in the liver upregulate PDK-1, causing a decrease in
the TCA cycle flux and overall suppress mitochondrial oxidative metabolism and increase
hypoxia signaling [208].

During bone metastasis, invading cells mostly induce osteolytic mechanisms as de-
struction of the niche tissue renders more nutritional sources available. Regulatory path-
ways that modulate the bone metabolism, such as bone growth and resorption, are, there-
fore, likely to be key in determining whether cancer cells can colonize to the bone and
establish metastatic lesions. Osteoclasts responsible for bone resorption require serine,
making it critical for osteolytic bone metastasis. Bone metastatic breast cancer cells express
high levels of serine biosynthesis genes for efficient metastasis, and since serine biosynthe-
sis requires a supply of oxidized NAD+, this may indicate that the cellular redox status
determines the efficiency of bone metastasis [138,221]. Another feature of highly glycolytic
bone metastatic breast cancer cells is that they secrete large amounts of lactate, which is
taken up by osteoclasts via the MCT1 transporter for fueling its oxidative metabolism,
rendering them highly active [222].

7. Concluding Remarks

Emerging studies are pointing to the fact that the metabolic needs and vulnerabilities
of cancers change throughout different stages of tumor development, from tumor initia-
tion and growth to metastasis and colonization. The central role of mitochondrial redox
metabolism governing the reprogramming and adaptability of metabolic processes during
cancer progression makes it a prime target for developing therapeutic strategies (Table 1).

Table 1. Key aspects of mitochondrial redox metabolism during different stages of cancer progression.

Mechanism/Features Effects

Malignant transformation

Mitochondrial DNA mutations

Impair oxidative phosphorylation [48,49,51]

Increase in ROS production [48–50]

ROS-induced inactivation of PTEN and activation of the PI3K pathway [53,54]

Inhibition of ROS-induced apoptosis [66]

Defect in MnSOD Increase in genomic instability mediated by ROS [60,61]

Oncogenic Kras activation Increase in mitochondrial ROS generation and metabolic switch from oxidative
phosphorylation to glycolysis [55,56]

Tumor development

Impaired oxidative phosphorylation Increase in glycolytic flux for ATP synthesis [70,79]

Tumor specific bioenergetic pathways Govern the type of fuel consumption by specific tumors [81,84]

Hypoxia

Mitochondrial ROS-mediated HIF-1α stabilization [101–103]

ROS-induced metabolic reprogramming enhance the reliance on glycolysis and
reductive carboxylation [119–123]

NADPH production via serine degradation in mitochondria to
mitigate ROS [135]

Increase in collagen matrix formation and extracellular matrix (ECM)
remodeling via proline metabolism [142–146]

Metastatic dissemination

MMP3 upregulation Mitochondrial ROS-mediated induction of epithelial-to-mesenchymal
transition (EMT) [157–159]
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Table 1. Cont.

Mechanism/Features Effects

Metastatic dissemination

Inhibition of mitochondrial oxidative reactions Decrease in mitochondrial ROS production conferring resistance
to anoikis [168,169]

Stress associated with detachment from ECM Cytosolic NADPH is consumed in reductive carboxylation to support NADPH
production in the mitochondria to fortify the ROS defense [43,171–173]

Clustering of the detached cells Decrease mitochondrial ROS generation via hypoxia signaling-mediated
mitophagy and glycolysis induction [189]

Distant colonization

Pyruvate metabolism by part of TCA cycle Produce α-ketoglutarate for collagen hydroxylation to modify ECM for
creating metastatic niche [209,210]

Heterogeneity of mitochondrial metabolism
Dictate adaptability when colonizing in specific organs, like breast cancer cells
metastasizing in the liver, have decreased mitochondrial oxidative metabolism
compared to bone and lung metastatic cells [208]

There has been a lot of efforts in recent years to target different aspects of mitochon-
drial metabolism for cancer treatments (Table 2). These efforts mainly fall under three
avenues: targeting bioenergetics, biosynthetic and redox metabolism of the mitochon-
dria [223]. Targeting mitochondrial ATP production could be effective for cancers that
rely on mitochondrial oxidative phosphorylation or in poorly perfused tumors. Efforts to
decrease mitochondrial ROS production have shown limited potential due to diminished
localized effects. Contrary to this, recent studies have demonstrated that targeting antiox-
idant machineries has shown greater potential as an anticancer therapy. This approach
relies on the cytotoxic effect of enhanced ROS accumulation when the antioxidant capacity
is compromised in cancer cells [224].

Table 2. Notable anticancer agents targeting mitochondrial metabolism.

Anticancer Agents Target Site Effect on Mitochondrial Metabolism

Metformin/Phenformin Complex I Decrease ATP production [225]

VLX600 ETC Decrease ATP production [226]

C-968 Glutaminase Suppress contribution of glutamine to the
TCA cycle [227]

Chloroquine Autophagy Suppress contribution of autophagy to the
TCA cycle [228]

ATN-224 SOD1 Increase accumulation of ROS causing
cell death [224]

CPI-613 TCA cycle Induce mitochondrial ROS production
causing cell death [229]

Leflunomide DHODH Inhibit ETC-dependent pyrimidine
biosynthesis [230]

We still need a plethora of works to decode the reprogramming of metabolism that hap-
pens during each stage, which will elucidate vulnerabilities for stage-specific metabolism-
targeted therapies. Tumor metabolisms are heterogeneous between different types of
cancers. Distinct region-specific metabolic reprogramming within a tumor adds to the com-
plexity and presents an additional challenge for finding a therapeutic target. Once cancer
cells disseminate from primary tumor sites, they converge towards a specific metabolic
characteristic for survival in the circulation and colonize in a distant organ. Targeting this
critical stage might be a promising therapeutic strategy for controlling metastasis, which is
the primary cause of cancer-related mortality.
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