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In recent years, the joint models have been widely used for modeling the longitudinal and time-to-event data simultaneously.
In this study, we proposed an approach (PA) to study the longitudinal and survival outcomes simultaneously in heterogeneous
populations. PA relaxes the assumption of conditional independence (CI). We also compared PA with joint latent class model
(JLCM) and separate approach (SA) for various sample sizes (150, 300, and 600) and different association parameters (0, 0.2, and
0.5).The average bias of parameters estimation (AB-PE), average SE of parameters estimation (ASE-PE), and coverage probability of
the 95% confidence interval (CP) among the three approaches were compared. In most cases, when the sample sizes increased, AB-
PE and ASE-PE decreased for the three approaches, and CP got closer to the nominal level of 0.95. When there was a considerable
association, PA in comparison with SA and JLCM performed better in the sense that PA had the smallest AB-PE and ASE-PE for
the longitudinal submodel among the three approaches for the small and moderate sample sizes. Moreover, JLCM was desirable
for the none-association and the large sample size. Finally, the evaluated approaches were applied on a real HIV/AIDS dataset for
validation, and the results were compared.

1. Introduction

In many studies, the repeated measures of a biomarker are
recorded together with time to an event of interest. For
example, inHIV/AIDS studies, the trajectories of CD4 counts
and time-to-death are collected. In such studies, the interest
often lies in understanding the relationships between the
longitudinal history of a process and its effect on the risk of
an event [1–9].

Classical models such as the separate analysis were per-
formed for these types of data; consequently, the association
between the longitudinal and survival outcomes is neglected
because the linear mixed model for repeated measurements
and the Cox model for time-to-event are conducted sepa-
rately [6, 10, 11]. In addition, some practices consider the
dependency between the two outcomes. Hence, the extended
Cox model is used to incorporate the repeated measures as
time-varying covariates [4]. In this method, time varying
covariates are assumed to be observed continuously till

the study terminated using this approach. In practice, this
assumption usually does not stratify. Moreover, longitudinal
biomarkers tend to be measured with error; thus, modeling
the longitudinal measures by amixedmodel accounts for this
measurement error, which is neglected in the extended Cox
model, thus leading to biased and inefficient estimates [4, 10,
12–14].

In recent years, joint model has been used to analyze
the longitudinal and survival outcomes simultaneously to
consider association between the two outcomes [1, 14, 15].
Joint model enjoys some advantages as compared to classical
approaches such as Cox and linear mixed models alone and
provides more powerful, accurate, efficient, and robust esti-
mations [4, 10, 12, 16].

Most of the joint models allow subjects to just follow one
pattern [5, 6, 13], and the baseline hazard is considered the
same for all subjects. Thus, they become inappropriate when
there are subgroups with different patterns of response pro-
files [13].
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Joint latent class model (JLCM) is a type of joint models
that assumes the population of the subjects to be heteroge-
neous with multiple homogenous patterns; it is known as the
latent class (subpopulation, subtype, or subgroup), having its
own longitudinal trajectory and survival curve [2, 5, 6, 17].

Conditional independence (CI) as a fundamental as-
sumption of the JLCM shows that the entire association
between longitudinal and survival outcomes is captured by
the latent class structure. Thus, given these latent classes, the
two types of outcomes are independent [17–20]. However,
the CI assumption may not sufficiently show the strength of
association andmight underestimate the association between
the longitudinal and survival processes [13]. Furthermore,
to ensure the CI assumption, JLCM has to be examined for
various numbers of latent classes, which may ultimately lead
to choosing an inappropriate and meaningless size of class-
es.

We designed a simulation study to combine the joint
model with the latent class framework which proposed an
approach (PA) for heterogeneous population of subjects free
from the CI assumption. At first, the class membership for
each subject based on the latent class framework was identi-
fied for appropriate number of latent classes. Then, the joint
model for longitudinal and survival processes was conducted
separately in each latent class for PA. In addition, the separate
approach (SA), the linear mixed model for the longitudinal
data, and the extended Cox model for the survival outcome
were applied separately in each latent class. Finally, we
compared PAwith JLCM and SA for various sample sizes and
different association parameters. In addition, we focused on
both the longitudinal and survival outcomes in this study.

2. Materials and Methods

2.1. Models Framework

2.1.1. Joint Latent Class Model (JLCM). JLCM assumes that
the subjects in each latent class have their own specific lon-
gitudinal trajectory and risk of the event, which is useful in
many types of research with different patterns of the lon-
gitudinal and survival outcomes. In addition, JLCM can be
performed for normal andnonnormal distributions and ordi-
nal outcomes [6, 21]. This model does not require normal
distribution of random-effects assumption, since it consists of
several subpopulations, where this assumption is not realistic
[22].

JLCM includes three components: the latent class mem-
bership, the longitudinal, and survival submodels. Given the
latent class𝑔, there is no association between two processes of
the longitudinal and survival outcomes; consequently, depen-
dency between time-to-event and longitudinal processes is
captured by the structure of latent class [5]. Several methods
were introduced to evaluate the CI assumption: evaluation
based on the posterior classification, analysis of the residuals
conditional on the event, and a score test [19, 23, 24]. Among
these approaches, the score test is more powerful than the
other methods to assess the CI assumption [2, 5].

In practice, JLCM is applied to a number of latent classes
from one to three; the appropriate number of latent classes

is determined using the best Bayesian information criterion
(lower BIC) and satisfactory CI assumption [6, 20].

Each subject is assigned to each latent class, which has
the highest class membership probabilities [25]. A case that is
wrongly classified is called misclassified on a categorical vari-
able [13].

2.1.2. Separate Approach (SA). Commonly, the linear mixed
model is used for continuous longitudinal measurements.
Also, the parametric or semiparametric survival models are
used for modeling the time-to-event data [11]. In SA, the
probability that a subject belongs to a latent class structure
can be modeled via a latent class framework. Next, the linear
mixed model for modeling the longitudinal measurements
and the extended Cox model by incorporating repeated
measurements into the survival data were conducted for each
latent class.

2.1.3. Proposed Approach (PA). We incorporated the latent
class framework to identify its subgroups behind the ob-
served longitudinal measurements and survival outcome. PA
provides an approach that achieves appropriate number of the
latent classes in heterogeneous populations without requiring
the CI assumption. Appropriate number of latent classes are
determined by a suitable and easier interpretation according
to researcher’ comments. For PA, each subject was allocated
to an appropriate class according to the highest class mem-
bership probabilities. Then, joint model was conducted for
each class; additionally, in each latent class, the association
between the longitudinal and time-to-event data was mod-
eled by the entire longitudinal trajectory as a covariate in the
survival submodel.

(1) Latent Class Framework.The classmembership probability
for a subject belonging to a latent class can be modeled via
a multinomial logistic regression with vector of covariate
𝑋𝑝𝑖:

𝜋𝑖𝑔 = 𝑃 (𝑐𝑖 = 𝑔 | 𝑋𝑝𝑖) =
exp (𝜂0𝑔 + 𝑋𝑇𝑝𝑖𝜂1𝑔)

∑𝐺𝑙=1 exp (𝜂0𝑙 + 𝑋𝑇𝑝𝑖𝜂1𝑙)
. (1)

Let 𝑐𝑖 represent the latent variable with 𝑔 = 1, . . . , 𝐺 latent
classes.

𝜂0𝑔 is the intercept for class 𝑔 and 𝜂1𝑔 is the vector of
class-specific parameters associated with the set covariates
𝑋𝑝𝑖. Also, to ensure identifiability, 𝜂0𝐺 = 0 and 𝜂1𝐺 = 0, that
is, last latent class as [2, 5, 25].

In the application, parameters from latent class frame-
work are estimated bymaximizing the log likelihood function
with iteration of Expected-Maximization (EM) algorithm
with steps of Newton-Raphson [26, 27].

(2) Longitudinal Submodel. The longitudinal submodel is
specified as a class-specific linear mixed model. Let𝑁 be the
total number of subjects and let 𝑗 = 1, 2, . . . , 𝑛𝑖 be the number
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of repeated measurements for subject 𝑖. The longitudinal
submodel given to each latent class can be written as

𝑌𝑖 (𝑡𝑖𝑗)
𝑐𝑖=𝑔 = 𝑍𝑖 (𝑡𝑖𝑗) 𝑏𝑖𝑔 + 𝑋𝑖 (𝑡𝑖𝑗) 𝛽𝑔 + 𝜖𝑖 (𝑡𝑖𝑗)

= 𝑍∗𝑖𝑔 (𝑡𝑖𝑗) + 𝜖𝑖 (𝑡𝑖𝑗) .
(2)

Given the latent class 𝑔, 𝑌𝑖(𝑡𝑖𝑗) is the longitudinal outcome
for subject 𝑖 at the time of 𝑡𝑖𝑗, and 𝑍𝑖(𝑡𝑖𝑗) represents the
random effect covariate vectors at the time 𝑡𝑖𝑗 for subject
𝑖, associated with the 𝑝-vector of random effect 𝑏𝑖𝑔, where
𝑋𝑖(𝑡𝑖𝑗) is the fixed effects covariate vectors at the time 𝑡𝑖𝑗,
which is associated with the 𝑞-vector of fixed effect. The
random error term, 𝜖𝑖(𝑡𝑖𝑗) is usually assumed to be normally
distributed.

(3) Survival Submodel. The survival submodel is specified as
a Cox or any parametric survival model. Given latent class 𝑔,
the survival submodel is specified as

ℎ𝑖 (𝑡 | 𝑐𝑖 = 𝑔) = ℎ0𝑔 (𝑡) exp (𝑋𝑒𝑖 (𝑡) 𝛿𝑔 + 𝛾𝑔𝑍
∗
𝑖𝑔 (𝑡𝑖𝑗)) , (3)

where ℎ0𝑔(𝑡) is the baseline hazard function for class 𝑔 and
𝑋𝑒𝑖(𝑡) is the covariate vector associated with the 𝑟-vector
parameters 𝛿𝑔 for the latent class 𝑔.

The quantity, 𝑍∗𝑖𝑔(𝑡𝑖𝑗) = 𝑍𝑖(𝑡𝑖𝑗)𝑏𝑖𝑔 + 𝑋𝑖(𝑡𝑖𝑗)𝛽𝑔, is the tra-
jectory of the longitudinal function for class 𝑔 to connect the
longitudinal process with the survival outcome. The param-
eter 𝛾𝑔 links the longitudinal and time-to-event outcomes in
each class.

2.2. Simulation Studies. We conducted this simulation study
to examine bias, SE, the average bias of parameters estimation
(AB-PE), the average SE of parameters estimation (ASE-PE),
and coverage probability of the 95% confidence interval (CP)
for three approaches (PA, JLCM, and SA) for the longitudinal
and survival submodels. AB-PE shows the average of absolute
bias of all parameters estimation. CP shows the proportion of
time that confidence interval contains the true value.

A multinomial logistic model was considered for the
latent class membership for each subject:

𝜋𝑖𝑔 = 𝑃 (𝑐𝑖 = 𝑔 | 𝑥1, 𝑥2) =
exp (−0.5 + 𝑥1 + 𝑥2)

∑2𝑙=1 exp (−0.5 + 𝑥1 + 𝑥2)
. (4)

We considered a binary and a continuous covariate, where 𝑥1
is called a treatment effect, which was assumed as a binomial
distribution with 𝑃 = 0.5 and 𝑥2 ∼ 𝑁(0, 1). We assumed
two latent classes (𝑔 = 2), where approximately 50% of the
subjects belonged to class 1.

The longitudinal outcome was generated from a linear
mixed model, where time of measurements was fixed at 𝑡 =
0, 0.5, 1, 1.5, 2, 2.5, 3, . . . , 5 with a maximum of 11 measure-
ments. The longitudinal submodel given to each latent class
is

𝑌𝑖 (𝑡𝑖𝑗)
𝑐𝑖=𝑔 = 𝛽0𝑔 + 𝛽1𝑔𝑡𝑖𝑗 + 𝛽2𝑔𝑥1 + 𝛽3𝑔𝑥2 + 𝑏𝑖𝑔 + 𝜀𝑖𝑗,𝑔

= 𝑍∗𝑖𝑔 + 𝜀𝑖𝑗,𝑔.
(5)

To achieve appropriate heterogeneous classes and to decrease
misclassification rate, we considered the parameters with
opposite direction in two classes from a previous study
[13]. Thus, in the first class, we set coefficients to be
(𝛽01, 𝛽11, 𝛽21, 𝛽31) = (1, −1, 0.5, 1) and assumed subject-
specific unobservable heterogeneity in class 1, 𝑏𝑖1 ∼ 𝑁(0, 1).
The error term had normal standard distribution. In the
second class, we set coefficients to be (𝛽02, 𝛽12, 𝛽22, 𝛽32) =
(−1, 1, −0.5, −1) and assumed that 𝑏𝑖2 ∼ 𝑁(0, 1), and 𝜀𝑖𝑗,2 ∼
𝑁(0, 0.5) where the random intercept effect was assumed
independent from the error term. The 𝑍∗𝑖𝑔 = 𝛽0𝑔 + 𝛽1𝑔𝑡𝑖𝑗 +
𝛽2𝑔𝑥1 +𝛽3𝑔𝑥2 +𝑏𝑖𝑔 is called trajectory function for each class.

The survival submodel assumed a Cox model with a
Weibull baseline hazard function. The event time was gener-
ated using an inverse cumulative hazard function [15, 28, 29].
The censored time is noninformative and is uniformly dis-
tributed random variable on 2.5+ uniform [0, 3]. Therefore,
the observed failure time for the 𝑖th subject was considered as
the minimum of true event time and censored time [20, 30].
As some previous studies, the censoring rate was considered
around 60% in this simulation study [13, 28].

The survival submodel was generated for each latent class
as follows:

ℎ𝑖 (𝑡 | 𝑐𝑖 = 𝑔) = 𝛼𝑔𝜆𝑔𝑡
𝛼𝑔−1 exp (𝛿𝑔𝑥1 + 𝛾𝑍

∗
𝑖𝑔) . (6)

The treatment effect on the time-to-event was 𝛿 = 0.5 and
−0.5 in classes 1 and 2, respectively. The shape and scale
parameters, (𝛼, 𝜆), of baseline hazard function were (0.6,
0.001) and (1, 0.001) in classes 1 and 2, respectively.

Sets of simulated data were performed for three sample
sizes (150, 300, and 600 as small, moderate, and large sample
sizes). Similar to previous study, three association parameters
between longitudinal and survival outcomes were considered
𝛾 = (0, 0.2, 0.5) for none, moderate, and considerable asso-
ciation, respectively [12]. The magnitude of the association
parameters was assumed the same in the two classes. For each
simulation, the three approaches of PA, SA, and JLCM were
fitted. We ran 1000 replications for each set of simulated data.

There are several methods to estimate parameters in joint
models, including ML, restricted maximum likelihood
(REML), and Bayesian method [18]. In PA, Gauss-Hermite
integration method for maximizing the log likelihood of
the joint distribution and EM iterations algorithm or quasi-
Newton iterations were used. In JLCM, ML with EM algo-
rithm was implemented to estimate parameters. For SA ap-
proach, ML in the longitudinal submodel and REML in the
survival submodel were used for parameters estimation. The
JM and LCMMpackages in R version 3.1.1 software were used
in this study.

3. Results of Simulation Study

3.1. Effect of Sample Size. Simulations results showed that in
most cases when the three approaches were used the sample
size increased, while AB-PE and ASE-PE decreased, and the
CPwent close to nominal level of 0.95. Tables 1–3 and Figures
1 and 2 present detailed information.
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Figure 1: Comparisons of AB-PE and ASE-PE for the longitudinal submodel for the three approaches with different sample sizes (150, 300,
and 600) and different association parameters (0, 0.2, and 0.5). PA: proposed approach; JLCM: joint latent class model; SA: separate approach.
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Figure 2: Comparisons of AB-PE and ASE-PE for the treatment effect on the survival submodel for the three approaches with different
sample sizes (150, 300, and 600) and different association parameters (0, 0.2, and 0.5). PA: proposed approach; JLCM: joint latent class model;
SA: separate approach.

3.2. Effect of Association between the Longitudinal and
Survival Outcomes

3.2.1. None-Association (𝛾 = 0). For JLCM, the model with
the best BIC and the CI assumption satisfied included two
latent classes (𝑔 = 2) for the moderate and large sample sizes,
while in the small sample size, 𝑔 = 1 was the best-fit model.
For the small sample size, results were reported for the two
classes, since we can compare the models together. The av-
erage misclassification rates for the two latent classes for
sample sizes of 150, 300, and 600 were 24%, 5%, and 1.4%,
respectively.

AB-PE and ASE-PE for the longitudinal submodel of PA
and SA for the small sample size were the same and the
lowest among the three approaches. Additionally, PA had
lower ASE-PE than SA for the moderate and large sample
sizes. For the large sample size, AB-PE of the longitudinal

submodel for the three approaches was the same, and JLCM
had the lowest ASE-PE (Figure 1).

AB-PE for the treatment effect on time-to-event in the PA
and SAwas approximately the same for the small andmoder-
ate sample sizes. In addition, PA had better CP as compared
with SA. Besides, for the large sample size, AB-PE and ASE-
PE for the treatment effect on the survival submodel of JLCM
were the lowest (Figure 2) and had a good CP amongst the
three approaches.

The average of absolute bias and SE for the association
parameter of PA and SA was approximately the same,
and by increasing the sample size, bias and its SE de-
creased.

Bias, SE, and CP estimated parameters for the three ap-
proaches are presented in Table 1. AB-PE and their ASE-PE
for the longitudinal and survival submodels are shown in
Figures 1 and 2.



8 BioMed Research International

3.2.2. Moderate Association (𝛾 = 0.2). For JLCM, the average
misclassification rate for the two latent classes in the small
sample size was approximately 20%, which was greater than
the other sample sizes.

PA had the smallest AB-PE and ASE-PE for the longitu-
dinal submodel among the three approaches for small and
moderate sample sizes. As for the large sample size, PA and
JLCM had the same AB-PE, but JLCM had smaller ASE-PE
in comparison with the other approaches for the longitudinal
submodel (Figure 1).

AB-PE for the treatment effect on the survival submodel
of PA was lower than JLCM and SA for the all sample
sizes. In addition, ASE-PE of PA was the lowest among the
three approaches for the small and moderate sample sizes.
Furthermore, JLCM had the lowest ASE-PE, and SA had the
highest AB-PE among the three approaches for the large
sample size (Figure 2).

Figures 1 and 2 show the results. In addition, by increasing
the sample size, CP for PA and JLCM were close to 0.95
(Table 2).

3.2.3. Considerable Association (𝛾 = 0.5). JLCM with one to
three numbers of latent classes was performed. For the mod-
erate and large sample sizes, the three appropriate numbers
of latent classes were detected based on the best BIC, and
satisfaction CI assumption, and for the small sample size,
one latent class was preferred. We reported the estimation of
parameters for the two classes in order to compare the three
approaches together. The average misclassification rates for
the two latent classes were 47%, 26%, and 10%, for the small,
moderate, and large sample sizes, respectively.

PA had the lowest AB-PE and ASE-PE and plausible CP
for the longitudinal outcome, as well as the treatment effect
on the survival submodel for the three sample sizes. In the
three approaches, if sample size increases, AB-PE and ASE-
PEdecrease (Figures 1 and 2) and theCP get closer to nominal
level of 0.95. In addition, bias of association parameter for
PA and SA was negative in two classes. Moreover, the average
absolute bias of association parameter for SAwas higher than
PA.The average of CP for PA, JLCM, and SAwas 0.970, 0.837,
and 0.833, for the large sample size, respectively. For bias,
SE, and CP information of parameters estimation, refer to
Table 3.

4. Empirical Example

4.1. The Data and Methods Description. The number of new
HIV infections has declined by 38% worldwide from 2001 to
2013, followed by a significant decline in AIDS-related deaths
[31]. According to theWorldHealthOrganization [32] report,
36.7 million people will be living with HIV/AIDS by the end
of 2015 [32].

Among infectious diseases, the HIV/AIDS studies are a
good example to be used in jointmodeling of the longitudinal
and survival processes. There are some literatures available
that have used the joint modeling on such data [3, 6, 33, 34].
In HIV/AIDS studies, CD4 cells are considered as a sign
of disease progression in HIV-infected people. CD4 cells

help to coordinate the immune system’s response to certain
microorganisms such as viruses; a low CD4 count is an
indication of a higher risk of infection [6, 33, 35].

In this study, the HIV/AIDS dataset from Community
Programs for Clinical Research on AIDS (CPCRA) was used
[36], and a total of 467 patients infected with HIV were in-
cluded in this study. The two outcomes were the longitudinal
measurements of CD4, recorded at different time points: at
the study entry, 2, 6, 12, and 18months, and the time-to-death
outcome. In CPCRA study, patients received two treatments,
Zalcitabine (ddC) or Didanosine (ddI), randomly. Only a
brief description of the dataset used in this study was men-
tioned here, since they have been fully described elsewhere
[36].

In the present study, theHIV/AIDS dataset was used as an
example to evaluate PA. To predict the class membership, an
intercept-only-model or different covariates such as baseline
hemoglobin (Hgb), treatment, and gender were considered
from the literature [6, 13, 18]. In this study, based on Hgb and
the treatment covariates, the class membership probability
for each patient was identified via latent class framework.
Then the patients were divided into two latent classes based
on their highest posterior class membership probabilities.
The number of latent classes was chosen in a way that there
were enough observations in each latent class for easier
classification, consistency with our simulation-based study,
and easier interpretation.

PA and SA for modeling the influence of effective covari-
ates on CD4 count and time-to-death were conducted in
each class. In addition, we fitted JLCM for longitudinal CD4
measures and time-to-death with the number of latent classes
varying from 1 to 3.

Due to the skewed distribution of CD4 cell level, and the
presence of zero values, log(CD4+1) was used as the longitu-
dinal outcome.The baseline hazard functions were estimated
by Weibull distribution.

We used latent GOLD software ver. 4.5 to identify the
probability of the class membership for each subject and in-
fluential covariates on classes.

4.2. Results of Application Data. The results of latent class
framework, using the PA and SA, showed thatHgbwas signif-
icant (𝑝 value < 0.001), while the treatment (𝑝 value = 0.170)
was an insignificant covariate on the subtype classification.
Based on the classification, 51% of the patients were in the
first class.

The PA on HIV/AIDS Dataset. In both classes, CD4 values
decreased with time.The estimates of association parameters
between CD4 and the time-to-death (𝛾) were significant and
negative in both classes. Treatment had a significant effect
on time-to-death in the second class. The effective covariates
on the longitudinal and survival submodels are presented in
Table 4.

The Kaplan-Meier survival plot and the mean of
log(CD4+1) stratified by posterior classification are presented
in Figures 3 and 4. Patients in the second class had a better
survival rate and higher log(CD4+1) values.
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Figure 3: Kaplan-Meier survival plot for the two classes on the
HIV/AIDS patients.
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Figure 4: Mean log(CD4+1) over time for the two latent classes on
the HIV/AIDS patients.

The SA on HIV/AIDS Dataset. In the longitudinal submodel,
time effect in the first class occurrence reduces CD4 cells
significantly. Hgb had a small, but significant effect onCD4 in
the first class and a strong significant effect in the second class.
In the survival submodel, the treatment had a significant
effect on time-to-death in the second class. The estimated
association parameters between CD4 and the time-to-death
were significant and negative in both classes. The results for
SA are presented in Table 4.

The JLCM on HIV/AIDS Dataset. BIC calculated for two
latent classes was 4280.560, which was smaller than one
class (4417.210) and three classes (4304.480). Also, the CI
assumption was not rejected (𝑝 value = 0.250) for this
model; thus, the model with two latent classes was preferred.

The probability of belonging to the latent classes was not
significantly associated with the treatment (𝑝 value = 0.370)
and Hgb (𝑝 value = 0.566).

In the longitudinal submodel, the time effect was negative
and significant in the two latent classes. In the survival
submodel, the treatment in the second class and Hgb in the
first class were significantly associated with risk of death for
HIV/AIDS patients (Table 4).

Overall, ASE-PE for the longitudinal submodel was 0.024,
0.024, and 0.039 for the PA, SA, and JLCM, respectively.
Furthermore, ASE-PE for the survival submodel among the
three approaches were 0.106, 0.394, and 0.343 for the PA, SA,
and JLCM, respectively.

5. Discussion

5.1. Discussions about Simulation Results. According to the
simulations results, in most cases, in the three approaches
when the sample size increased, AB-PE and ASE-PE de-
creased, and CP got closer to nominal level of 0.95. This
finding is consistent with a simulation-based study for a para-
metric latent class jointmodel of the longitudinal and survival
outcome [2].

Our main finding occurred when there was a consider-
able association (𝛾 = 0.5) between two processes. PA pro-
vided lower AB-PE and ASE-PE than JLCM and SA for the
three sample sizes; hence, PA yielded unbiased and more
efficient estimation of parameters than JLCM and SA for the
longitudinal and survival submodels. The results of a similar
study are consistent with those of PA for heterogeneous
populations [13]. However, PA used the full longitudinal
trajectory to connect the longitudinal and survival data,
whereas in the similar study, only the shared random effect
was used. This study showed that the model worked well in
estimating longitudinal and survival parameters in a sample
size of 400 and for the considerable association between the
two processes.

To the best of our knowledge, no comparison has been
made between JLCM and other approaches for the het-
erogeneous populations. However, to compare with similar
studies, we used the ones that had assumed that the subjects
exhibited one pattern. For comparison between PA and SA,
the results are consistent with previous studies that had
conducted simulation-based studies where there was a strong
association between the two outcomes. Their results showed
that the joint modeling that utilizes information from both
outcomes tends to produce almost unbiased estimates and
smaller SEs of all the parameters than separate model [8, 37,
38]. Furthermore, since AB-PE and ASE-PE in JLCM were
higher than PA, it seems that JLCM cannot contain the
strength of association entirely by latent structures. In addi-
tion, the number of latent classes in JLCM could not be
estimated directly and for some sample sizes, the appropriate
number of classes is selected according to lower BIC, and
acceptance of the CI assumption was not consistent with
the true size of classes. Therefore, it led to biased estimation
of parameters, while PA achieved an appropriate number of
latent classes directly with no need for the CI assumption
and BIC criterion. In addition, the association parameter for
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SA was underestimated in comparison with PA. This result
concurs with those of a similar study which showed that
using the longitudinal outcome as a time-varying covariate
into the survival model is not recommended, due to severe
underestimation of the association parameter [15].

When there was the moderate correlation (𝛾 = 0.2) be-
tween the longitudinal and survival processes, PA was pre-
ferred over JLCM and SA for the small and moderate sample
sizes. In addition, the average misclassification rate for the
small sample size in JLCMwas high; hence, AB-PE and ASE-
PEwere increased. Furthermore, for the large sample size, the
average misclassification rate for JLCMwas low; thus, AB-PE
of the longitudinal submodel for JLCM and PA was the same
and JLCM was more efficient.

For the case of none-association (𝛾 = 0) between the
longitudinal and survival processes, results of the longitudi-
nal submodel of PA were similar to SA in the small sample
size. Our finding is consistent with a similar study for none-
association between the longitudinal and survival data [39].
Also, PAwasmore efficient than SA in themoderate and large
sample sizes. For the small and moderate sample sizes, the
results of the effect of the treatment on the time-to-event of
PA and SA were found to be similar. This result is consistent
with similar studies that had shown when there was no
association between the longitudinal and survival data; the
longitudinal information did not improve the estimation of
the treatment effect on the survival outcome [12, 39]. More-
over, JLCM was unbiased and more efficient than the other
two approaches in the large sample size. Computationally,
JLCM was faster and easier than the time consuming PA.
In addition, for the large sample size, the misclassification
rate was the lowest; hence, the entire association between the
longitudinal and survival outcomes can be considered with
the latent structure. Therefore, in this case, JLCM was more
desirable than the two other approaches.

We believe that our PA can address the heterogeneity and
consider the association structure behind the longitudinal
and survival processes. One of the advantages of using PA
was its capability to reduce AB-PE and ASE-PE by increasing
the sample size and intensity of the association parameter.
However, it leads to increased computation and time required
to fit the model, which is one of the disadvantages of PA.

Finally, this study had some limitations that have to be
addressed. First, in this study, we used the same magnitude
parameters with opposite direction to consider the two
heterogeneous classes. Second, association parameters for the
two classes were the same.Third, this studywas limited to two
latent classes and continuous longitudinal and single event
data. Further researches have to use PA with various options
for the survival and longitudinal processes such as a nonlinear
mixed model for the longitudinal data and a parametric or
recurrent survival model. Moreover, we used ML estimation,
while the Bayesian inference can be an alternative approach
for estimation of parameters. Also, further simulation studies
can be performed to evaluate statistical properties for PA
including the statistical power.

5.2. Discussions about HIV/AIDS Results. The results showed
that Hgb was a significant covariate in classifying subjects via

latent class framework, concurring with the results of a study
on this dataset [13].

According to the results of the application, the time effect
was significant in each class for CD4 longitudinal outcome in
PA and JLCM.This study produced results which corroborate
the findings of a great deal of the previous works that used
this dataset [3, 13]. There were no statistically significant dif-
ferences between the two treatments (ddC and ddI), on CD4
longitudinal outcome in the two latent classes in the three
approaches. This result agrees with the findings of similar
studies that had investigated the effect of the treatment on
CD4 longitudinal outcome [11, 13]. In addition, Hgb had a
significant positive effect on CD4 values in both classes in PA
and SA. This result matches those observed in earlier studies
on this dataset [13].

As for the survival submodel, the treatment was a sig-
nificant factor on time-to-death in the second class in the
three approaches. Patients in the second class had a better
survival rate when given ddC. Furthermore, Hgb was not a
significant factor of the death rate in the two classes for PA
and SA. This finding is consistent with a similar study where
Hgb was imported into the model [13]. In JLCM, Hgb was a
significant factor of death rate in the first class but did not
have a significant effect in the second class.

The estimated association parameters (𝛾1 and 𝛾2) between
CD4 and time-to-death were negative and significant in both
classes for PA and SA. This implies that a higher CD4 count
is associated with a lower death rate or a reduced number of
CD4 significantly increases the risk of death in patients [10,
40].

Overall, the results of PA in this study confirm those of
the previous studies on this dataset and with the biomedical
literature [11, 13, 14, 18]. Moreover, PA and SA had the same
ASE-PE approximately for the longitudinal submodel that
are consequently more efficient than JLCM. In addition, PA
had lower ASE-PE for the survival submodel; hence, PA is
more efficient than the other two approaches for indicating
the influence covariates on time-to-death in patients with
HIV/AIDS. The results of the three approaches on CPCRA
data confirm our result in the simulation study when there
was a considerable association parameter between the longi-
tudinal outcome and time-to-event in the large sample size.

The application study on CPCRA data shows the advan-
tages of our PA. Therefore, by using appropriate latent class
joint model, we can assign treatment ddC to patients with
a higher chance of being classified into the second class
based on their baseline hemoglobin (Hgb), thereby increasing
the survival rate. In other cases, when the treatments have
side effects, we could utilize an appropriate latent class joint
modeling to identify a subgroup of patients that are most
likely to have side effects. Hence, we can assign treatments
in a personalized manner to avoid such subgroup, which can
further benefit the patients.

6. Conclusion

This simulation-based study provided an approach for
the joint model, by considering the association between
the longitudinal and time-to-event data for heterogeneous
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populations which does not require the CI assumption. This
study concluded that for the three approaches when the
sample size increased, AB-PE and ASE-PE decreased to some
extent, and CP reached the nominal level of 0.95. Finally,
when there were a considerable association and the large
sample size, PA was preferred.
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