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Arbitrary shaped beam 
scattering from a chiral-coated 
conducting object with arbitrary 
monochromatic illumination
Mingjun Wang1, Huayong Zhang2, Xizheng Ke1, Guosheng Liu3 & Xiaoping Ouyang1

An exact semi-analytical method of calculating the scattered fields from a chiral-coated conducting 
object under arbitrary shaped beam illumination is developed. The scattered fields and the fields within 
the chiral coating are expanded in terms of appropriate spherical vector wave functions. The unknown 
expansion coefficients are determined by solving an infinite system of linear equations derived using 
the method of moments technique and the boundary conditions. For incidence of a Gaussian beam, 
circularly polarized wave, zero-order Bessel beam and Hertzian electric dipole radiation on a chiral-
coated conducting spheroid and a chiral-coated conducting circular cylinder of finite length, the 
normalized differential scattering cross sections are evaluated and discussed briefly.

The electromagnetic (EM) properties of chiral media have been extensively investigated in past several decades, 
for their wide applications in so many fields1–5. Undoubtedly, EM scattering is a canonical problem for analyz-
ing the interaction of EM waves with chiral media. Utilizing the vector wave functions (VWFs), Bohren exam-
ined the plane wave scattering from an optically active sphere or cylinder6,7. The extended boundary condition 
method (EBCM) or T-matrix method has been effectively applied to the scattering by a chiral object or aggregated 
optically active particles8–10. The method of moments (MoM) with surface formulations has been presented by 
Worasawate et al.11, and the bi-isotropic finite difference time domain technique by Semichaevsky et al.12, for 
treating the plane wave scattering by a chiral object. Dmitrenko et al. proposed a numerical method of discrete 
sources to calculate the scattered fields by a conducting body with a homogeneous chiral coating13. Recently, we 
have developed an approach for computing arbitrary shaped beam scattering from a chiral object by combin-
ing the field expansions in terms of the spherical VWFs and the MoM scheme14. However, the EM process in a 
chiral medium coated on a conducting object is often of great importance in our research on antenna radomes, 
microstrip substrates and waveguides. In this paper, based on our previous work a semi-analytical solution is 
introduced on the scattering from a chiral-coated conducting object.

We provide the theoretical analysis in section 2 for the determination of the scattered fields of an EM beam 
from a chiral-coated conducting object. In section 3, the far-field scattering cross sections are computed for a 
Gaussian beam, circularly polarized wave (CPW), zero order Bessel beam (ZOBB) and Hertzian electric dipole 
(HED) radiated field striking a chiral-coated conducting spheroid and finite-length circular cylinder. The con-
clusion is in Section 4.

Formulation
As shown in Fig. 1, an EM beam is propagated along the positive z′ axis in O′x′y′z′. The system Ox″y″z″ is parallel 
with O′x′y′z′, the point O is at (x0, y0, z0) in the Cartesian coordinate system O′x′y′z′. A conducting object having 
a chiral coating is attached to the system Oxyz, which is rotated with respect to Ox″y″z″ through Euler angles α 
and β15. An exp(−iωt) time-harmonic convention is assumed for the EM fields in this paper.

Since the scattered wave behaves as a spherical diverging wave emanating from the center of the scatterer, the 
scattered fields from the chiral-coated conducing object can be expanded in an infinite series of spherical VWFs 
with regard to in coordinate system Oxyz, as following14:
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where ω µ ε=k0 00 , η µ ε= /0 0 0  are respectively the wavenumber of the incident wave and the characteristic 
impedance of free space, and αmn, βmn are the unknown expansion coefficients to be determined.

A chiral medium can be characterized by the following constitutive relations16

ε ε κ µ ε= + iD E H (3)r0 0 0

µ µ κ µ ε= − iB H E (4)r0 0 0

where κ, εr and μr denote, respectively, the chirality parameter, relative permittivity and permeability of the chiral 
medium.

The EM fields existing within the chiral coating (internal fields) can be represented by a combination of the 
spherical VWFs, in the following form16
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where η η µ ε= /r r0 , µε κ= ±± ( )k k r r0 .
Eqs (1, 2, 5 and 6) are obtained in the MoM scheme, i.e., expanding the scattered and internal fields by using 

appropriate spherical VWFs as basis functions.
If the boundary conditions is writed, i.e., continuity of the tangential components of the EM fields at interface 

S between the chiral coating and free space

Figure 1.  Geometry for the scattering problem.
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× + = ×ˆ ˆn nE E E( ) (7)s i w

× + = ×ˆ ˆn nH H H( ) (8)s i w

and vanishing of the tangential components of the electric field at S1 (inner conducting object’s surface)

× =n̂ E 0 (9)w
1

In Eqs (7–9), Ei and Hi denote the incident electric and magnetic fields, and, n̂ and n̂1 are respectively the out-
ward unit normals to S and S1.

By virtue of Eqs (1, 2, 5 and 6), the boundary conditions in Eqs (7 and 8) are written as
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Eqs (10 and 11) are respectively multiplied (dot product) by the spherical VWFs ′ ′ kM ( )m n
(1)

0  and ′ ′ kN ( )m n
(1)

0 , and 
then integrated over S, the following equations are obtained
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The explicit expressions of Um′n′mn, Vm′n′mn, Km′n′mn and Lm′n′mn are given by
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Eqs (12–15) are interpreted as follows. The scattered and internal fields are excited due to the incident fields Ei 

and Hi. So, the incident EM beam can be considered as a “source”, and the scattered and internal fields as the 
subsequent “responses”. The spherical VWFs ′ ′ kM ( )m n

(1)
0  and ′ ′ kN ( )m n

(1)
0  are usually used to expand an incident EM 

beam, and then they are chosen as the weighting functions to derive Eqs (12–15) following the MoM procedure.
A substitution of Eqs (5 and 6) into Eq. (9) leads to

∑ ∑× + + +

+ − + − =

=−∞

∞

=

∞

+ +
′

+ +

− −
′

− −

ˆ {

}

n c k k c k k

d k k d k k

M N M N

M N M N

[ ( ) ( )] [ ( ) ( )]

[ ( ) ( )] [ ( ) ( )] 0 (20)

m n m
mn mn mn mn mn mn

mn mn mn mn mn mn

1
(1) (1) (3) (3)

(1) (1) (3) (3)

The combinations of the spherical VWFs ++ +k kM N( ) ( )mn
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describe two eigenwaves (right and left-handed Beltrami waves) within the chiral coating8, and they also respec-
tively represent the Beltrami waves propagating towards or scattered from the inner conducting object when the 
superscript j = 1 or 3. Motivated by the derivation of Eqs (12–15), we have Eq. (20) multiplied (dot product) by 
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Eqs (12–15 and 21 and 22) provide an infinite system of linear equations to determine the expansion coeffi-
cients αmn, βmn, cmn, ′cmn, dmn and ′dmn, as the explicit expressions of Ei and Hi are known.

Since the beam description of EM field components is usually obtained in its own system O′x′y′z′, to evaluate 
numerically the surface integrals including Ei and Hi in Eqs (12–15) the following transformations ought to be 
carried out from O′x′y′z′ to the scatterer system Oxyz
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where A is described the electric or magnetic field, and the transformation matrix T is computed by
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We apply Simpson’s 1/3 rule to evaluate numerically the surface integrals in Eqs (12–15 and 23–26), where the 
expressions of both n̂dS and n̂ dS1 1 follow17. In order to solve the infinite system consisting of Eqs (12–15 and 21 
and 22) for the unknown expansion coefficients, it can be truncated the series by setting n = |m|, |m| + 1, …, 
|m| + N and n′ = |m′|, |m′| + 1, …, |m′| + N, given each of m = −M, −M + 1, …, M and m′ = −M, −M + 1, …, M. 
In our computations, M and N (usually larger than 8 and 20 respectively) are so chosen to ensure a solution accu-
racy better than three or more significant figures, and the Gaussian eliminated technique is utilized in the 
MATLAB environment for solving these 6(2M + 1) (N + 1) unknowns. When both the chiral coating and inner 
conducting object have the z axis as a rotation axis (axisymmetric object), the different m indices will decouple 
since the surface integrals in Eqs (16–19 and 23–26) are zero when m ≠ −m′9,17. Then, Eqs (12–15 and 21 and 22) 
become a 6(N + 1) matrix equation for each of m = −m′ = −M, −M + 1, …, M.

Generally, compared with the usual MoM solution such as in11, the advantages of the above MoM based 
semi-analytical theoretical procedure are obvious. Instead of using the triangular rooftop vector functions, the 
corresponding spherical VWFs are adopted as the basis and weighting functions, so most of the formulations are 
described by analytical expressions. As a result, the number of unknowns that have to be determined is greatly 
reduced, especially for an axisymmetric object, and then a significant saving of computer time and memory can 
be achieved to solve for them. Moreover, the current MoM scheme is directly applied to the boundary conditions 
rather than to the combined field integral equations based on the surface equivalence principle, which is simple 
in theory and also easy to manipulate mathematically.

Numerical Results
In this section, we will focus on the far-zone scattered field which is often of practical significance. By using the 
asymptotic form of Es as k0r → ∞, the differential scattering cross section (DSCS) is defined in8,9
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In the following calculations, we are restricted to the Gaussian beam, CPW, ZOBB and HED radiated field illu-
minating from a chiral-coated conducting spheroid and finite-length circular cylinder, i.e., a conducting spheroid 
coated with a chiral spheroid layer (semimajor and semiminor axes denoted by a and b for the spheroid coating, 
and by a1 and b1 for the inner conducting spheroid) and a conducting cylinder coated with a chiral cylinder layer 
(length and cross section radius denoted by 2l0 and r0 for the cylinder coating, and by 2l1 and r1 for the inner 
conducting cylinder).
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Figure 2 is shown that the normalized DSCS πσ(θ, 0)/λ2 for a conducting spheroid either with a chiral or die-
lectric spheroid coating, illuminated by a Gaussian beam (TE mode) following the Davis first-order expression18. 
In Fig. 2, the numerical results calculated by the present solution are also compared with those by the generalized 
Lorenz–Mie theory (GLMT) that gives an exact analytical procedure for a coated conducting spheroid in19 and20. 
As expected, excellent agreements are observed in Fig. 2, which to a certain extent validates the proposed method.

The normalized DSCSs πσ(θ, π)/λ2 are shown in Fig. 3 for a conducting circular cylinder coated either with a 
chiral or dielectric cylinder layer, under Gaussian beam illumination as in plotting Fig. 2.

From Figs 2 and 3 we can see that the conducting spheroid and finite-length circular cylinder, whether with 
a chiral or dielectric coating, have the maximum DSCS around θ = β, i.e., the maximum forward scattering. In 
addition, compared with the case of a dielectric coating, the difference in the normalized DSCS is obvious for a 
chiral-coated layer.

It is well-known that the left- and right-hand CPWs (electric and magnetic fields described as 
= ′ ± ′ ′ˆ ˆE x iy eE ( )i ik z

0
0 , = ′ + ′

η
′


ˆ ˆix y eH ( )i E ik z0

0

0  in O′x′y′z′) are different in their action on chiral media21. The 

difference in the normalized DSCS πσ(θ, π)/λ2 is shown in Fig. 4 for a chiral-coated conducting spheroid and 
finite-length circular cylinder as in Figs 2 and 3.

As a diffraction free beam, the ZOBB has gained growing attention in various fields22–24. A detailed description 
of the ZOBB propagating along the positive z′ axis in O′x′y′z′ has been given23,24. Figure 5 is shown the normal-
ized DSCS πσ(θ, π)/λ2 of a chiral-coated conducting spheroid and finite-length circular cylinder as in Figs 2 and 3  
but under the illumination of a ZOBB. From Fig. 5 we can find that, as opposed to the case of a Gaussian beam, 
the maximum forward scattering dose not appear in the numerical results. In addition, the maximum DSCS for a 
Gaussian beam is usually larger than that for a ZOBB.

Figure 2.  Normalized DSCS πσ(θ, 0)/λ2 for a chiral-coated conducting spheroid (k0a1 = 6, a1/b1 = 2, k0a = 9.14, 
a/b = 2, εr = 4, μr = 1, κ = 0.5) and that for a dielectric-coated conducting spheroid (similarly as the former but 
κ = 0), both illuminated by a Gaussian beam (TE mode, w0 = 2λ, α = β = 0, x0 = y0 = z0 = 0).

Figure 3.  Normalized DSCS πσ(θ, π)/λ2 for a chiral-coated conducting cylinder (k0l1 = π, l1/r1 = 1, k0l0 = 1.5π, 
l0/r0 = 1, εr = 4, μr = 1, κ = 0.5) and that for a dielectric-coated conducting cylinder (similarly as the former but 
κ = 0), both illuminated by a Gaussian beam (TE mode, w0 = 5λ, α = 0, β = π

3
, x0 = y0 = z0 = 0).
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The EM fields radiated from a HED oriented along the z′ axis and located at origin O′ are expressed as25:

′ =

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
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∂
∂ ′
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0

where ′ = ′ + ′ + ′r x y z2 2 2 , ωµ=
π

E i Il k0 4
0 , and the prime denotes that the EM field expressions are written in 

O′x′y′z′.
The normalized DSCS πσ(θ, 0)/λ2 is shown in Fig. 6 for the same models as in Figs 2 and 3 under the illumi-

nation of the HED radiated field.

Figure 4.  Normalized DSCSs πσ(θ, π)/λ2 for a chiral-coated conducting spheroid (spheroid) and a chiral-
coated conducting finite-length circular cylinder (cylinder) respectively as in Figs 2 and 3, but illuminated by 
the left-hand (left-hand) and right-hand (right-hand) CPWs (α = 0, β = π

3
, x0 = y0 = z0 = 0).

Figure 5.  Normalized DSCSs πσ(θ, π)/λ2 of a chiral-coated conducting spheroid and a chiral-coated 
conducting finite-length circular cylinder respectively as in Figs 2 and 3, under the illumination of a ZOBB 
(α = 0, β = π

4
, half-cone angle ζ = π

3
, x0 = y0 = z0 = 0).
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Conclusion
Based on a combination of the EM field expansions in infinite series of the spherical VWFs with the MoM 
scheme, a semi-analytical solution of the EM beam scattering from a chiral-coated conducting object is proposed. 
By taking as examples an incident Gaussian beam, VPW, ZOBB and HED radiation striking a chiral-coated 
conducting spheroid and finite-length circular cylinder, the normalized DSCS is calculated. The correctness of 
the present theory to a certain extent is validated by comparing the normalized DSCS for a conducting spheroid, 
either with a chiral or dielectric coating, illuminated by a Gaussian beam with those obtained by the GLMT that 
gives an exact analytical solution. Theoretically, the present MoM based scheme can be used to treat arbitrary EM 
beam scattering given their explicit expressions, even extended to an infinite cylinder when appropriate cylindri-
cal VWFs are chosen as the basis and weighting functions.
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