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The Haralick texture features are a well-known mathematical method to detect the lung abnormalities and give the opportunity to
the physician to localize the abnormality tissue type, either lung tumor or pulmonary edema. In this paper, statistical evaluation
of the different features will represent the reported performance of the proposed method. Thirty-seven patients CT datasets with
either lung tumor or pulmonary edema were included in this study. The CT images are first preprocessed for noise reduction and
image enhancement, followed by segmentation techniques to segment the lungs, and finally Haralick texture features to detect the
type of the abnormality within the lungs. In spite of the presence of low contrast and high noise in images, the proposed algorithms
introduce promising results in detecting the abnormality of lungs inmost of the patients in comparisonwith the normal and suggest
that some of the features are significantly recommended than others.

1. Introduction

The lung is an organ that performs a multitude of vital func-
tions every second of our lives. This fact leads to considering
lung abnormalities, life-sustained diseases that have high
priority in detection, diagnosis, and treatment if possible.
Our focus in this paper will be on two popular abnormalities
within the lung, which are pulmonary edema and lung tumor.
Pulmonary edema (water in the lungs) is caused by fluid
building up in the air sacs of the lungs [1, 2]. On the other
hand, lung cancer/tumor is a disease where uncontrolled cell
growth in tissues of the lung occurred [3].

Computer-aided diagnosis (CAD) schemes for thoracic
computed tomography (CT) are widely used to characterize,
quantify, and detect numerous lung abnormalities, such as
pulmonary edema and lung cancer [4, 5]. An accurate lung
segmentation method is always a critical first step in these
CAD schemes and can significantly improve the performance
level of these schemes. Although manual or semiautomatic
lung segmentation methods for CT images were used in
some early CAD schemes [6–10], they are impractical for
current CAD schemes because multidetector CT (MDCT)

scanners can generate hundreds of CT slices for a patient.
An automated method for lung segmentation is needed for
MDCT. In addition, the eye identification/detection of the
abnormality type (pulmonary edema or tumors) in computed
tomography (CT) images is very difficult even for the experi-
enced clinicians because of its variable shape along with low
contrast and high noise associated with it. As the final stage
of treating the lung cancer is surgical removal of the diseased
lung, hence it is necessary to identify the cancer location,
which can be useful before they plan for the surgery.

The aim of our work is to develop an automated novel tex-
ture analysis based method for the segmentation of the lungs
and the detection of the abnormalities, whether pulmonary
edema or lung tumor. Haralick’s features based on the gray
level cooccurrence matrix (GLCM) are applied to capture
textural patterns in lung images. The objective of this work
is the selection of the most discriminating and finding out
the significant texture features that can differentiate between
these two types of abnormalities, in comparison to normal.

Haralick features are statistical features that are computed
over the entire image. These measurements are utilized to
describe the overall texture of the image using measures
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Figure 1: (a) The lung CT image; (b) the histogram equalized image; (c) the Weiner filtered output image.

such as entropy and sum of variance. Chaddad et al. pro-
pose an approach, based on Haralick’s features, to detect
and classify colon cancer cells. This work aimed to select
the most discriminating parameters for cancer cells [11]. A
study to investigate the feasibility of using Haralick features
to discriminate between “cancer” and “normal” subimages
within a patient is illustrated in [12].

In this paper, CT images are first preprocessed for noise
reduction and image enhancement, followed by segmenta-
tion techniques, as the tools to segment the lungs, and finally
Haralick texture features [13–15] are calculated. Statistical
analysis is done to detect the most significant Haralick
features that will characterize the type of the abnormality
within the lungs. Despite the low contrast and high noise
existence in the images, the proposed algorithms introduce
promising results in detecting the abnormality of lungs in
most of the patients in comparison with the normal.

2. Materials and Methods

This paper presents a new automatic lung cancer detection
system based on Haralick texture features extracted from
the slice of DICOM Lung CT images. The proposed system
is accomplished in four stages: image preprocessing, lung
image segmentation, feature extraction, and classification.
Statistical analysis is used to obtain the best features for
classification to differentiate between lung cancer patients,
ordered edema patients, and control subjects. The following
sectionswill describe in detail these stages. All image analyses
were achieved without any knowledge of patient clinical
characteristics or status.

2.1. Dataset. Patients with either a lung cancer tumor or
pulmonary edema were encompassed in the study. This
study included two datasets, the first dataset referred to
the Radiology Department at New Elkasr ElAiny teaching
hospital, University of Cairo. The other dataset was obtained
fromThe Cancer Imaging Archive (TCIA) sponsored by the
SPIE, NCI/NIH, AAPM, and the University of Chicago [16].
The two datasets of 532 CT images from 37 different patients

were included. The images are 512 × 512 stored in DICOM
format. For each lung CT image, we separate the left lung
from the right lung automatically, and each separated lung
is labeled as normal or edema/cancer based on the dataset
information.

2.2. Preprocessing. The main goal of preprocessing is to
improve the quality of an image as well as make it in a form
suited for further processing by human or machine [17]. This
is accomplished by enhancing the visual appearance of an
image besides removing the irrelevant noise and unwanted
parts in the background.The proposed enhancement process,
which is based on combining filters and noise reduction
techniques for pre- and postprocessing as well, is carried out
applying histogram equalization (HE) [18–20] followed by
Wiener filtering [21, 22].

Figure 1 presents the enhancement in the lung image
contrast attained by applying the histogram equalization.
However, the obtained gray scale image contains noises such
as white noise and salt and pepper noise. Thus, Wiener filter
is utilized to remove these noises from the enhanced lung
image. Figure 1(c) shows the effect of applying Weiner filter
on the contrast enhanced lung image.

2.3. Lung Segmentation. Lung segmentation step aims to
basically extract the voxels corresponding to the lung cavity in
the axial CT scan slices from the surrounding lung anatomy.
The segmentation technique proposed in [23] is utilized.This
technique is based on the fact that there is a large density
difference between air-filled lung tissues and surrounding tis-
sues. Furthermore, both lungs are almost looking like mirror
images of themselves in a human body. The segmentation
of lung regions is achieved through the following steps. In
the first step, the preprocessed CT image is converted into a
binary image; a threshold of 128 was selected. Values greater
than the threshold aremapped towhite, while others less than
that are marked as black. Consequently, the two lungs are
marked and the area around them is cropped out. Second,
an erosion morphological operation is employed in order to
eliminate any white pixels within the two lungs. Afterward,
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Figure 2: (a)The threshold image; (b) the eroded image; (c) the lungmaskmirror; (d) themask projection of the corresponding lungs images;
(e) the extracted lungs.

the eroded and the original images are both divided into
two equal regions. Black pixels for each region in the eroded
image are counted; the region with the largest black area
will be deemed as a lung mask. The attained lung mask is
reflected in the opposite direction. As a result, right and left
lung masks are obtained. These masks are multiplied with
the corresponding original image regions; this will project
the lung masks on the original two lungs images. Finally,
update each black pixel in the obtained images by its original
value; other pixels are set to 255. Figure 2 illustrates the lung
extraction process.

2.4. Feature Extraction. Feature extraction is the process of
obtaining higher-level information of an image such as color,
shape, and texture. Texture is a key component of human
visual perception. Statistical texture methods analyze the
spatial distribution of gray values, by computing local features
at each point in the image and inferring a set of statistics
from the distributions of the local features. Haralick et al.
introduced Gray Level Cooccurrence Matrix (GLCM) and
texture features back in 1973 [13]. This technique has been
widely used in image analysis applications, especially in the
biomedical field. It consists of two steps for feature extraction.
The GLCM is computed in the first step, while the texture
features based on theGLCMare calculated in the second step.

GLCM shows how often each gray level occurs at a pixel
located at a fixed geometric position relative to each other
pixel, as a function of the gray level [13]. The horizontal
direction 00 with a range of 1 (nearest neighbor) was used

in this work. The 9 texture descriptions used are presented
in (4) to (13), where 𝑁𝑔 is the number of gray levels, 𝑝𝑑 is
the normalized symmetric GLCM of dimension 𝑁𝑔 × 𝑁𝑔,
and 𝑝𝑑(𝑖, 𝑗) is the (𝑖, 𝑗)th element of the normalized GLCM
[13].

Contrast (Moment 2 or standard deviation) is a measure
of intensity or gray level variations between the reference
pixel and its neighbor. Large contrast reflects large intensity
differences in GLCM:

Contrast = ∑
𝑖

∑

𝑗

(𝑖 − 𝑗)
2
𝑝𝑑 (𝑖, 𝑗) . (1)

Homogeneity measures how close the distribution of ele-
ments in the GLCM is to the diagonal of GLCM. As homo-
geneity increases, the contrast, typically, decreases:

Homogeneity = ∑
𝑖

∑

𝑗

1

1 + (𝑖 − 𝑗)
2
𝑝𝑑 (𝑖, 𝑗) . (2)

Entropy is the randomness or the degree of disorder present
in the image. The value of entropy is the largest when all
elements of the cooccurrence matrix are the same and small
when elements are unequal:

Entropy = −∑
𝑖

∑

𝑗

𝑝𝑑 (𝑖, 𝑗) ln𝑝𝑑 (𝑖, 𝑗) . (3)

Energy is derived from the Angular Second Moment (ASM).
The ASM measures the local uniformity of the gray levels.
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When pixels are very similar, the ASM value will be large.
Consider

Energy = √ASM

ASM = ∑
𝑖

∑

𝑗

𝑝
2

𝑑
(𝑖, 𝑗) .

(4)

Correlation feature shows the linear dependency of gray level
values in the cooccurrence matrix:

Correlation = ∑
𝑖

∑

𝑗

𝑝𝑑 (𝑖, 𝑗)

(𝑖 − 𝜇𝑥) (𝑗 − 𝜇𝑦)

𝜎𝑥𝜎𝑦

, (5)

where 𝜇𝑥; 𝜇𝑦 and 𝜎𝑥; 𝜎𝑦 are the means and standard
deviations and are expressed as

𝜇𝑥 = ∑

𝑖

∑

𝑗

𝑖𝑝𝑑 (𝑖, 𝑗)

𝜇𝑦 = ∑

𝑖

∑

𝑗

𝑗𝑝𝑑 (𝑖, 𝑗)

𝜎𝑥 = √
∑

𝑖

∑

𝑗

(𝑖 − 𝜇𝑥)
2
𝑝𝑑 (𝑖, 𝑗)

𝜎𝑦 = √∑

𝑖

∑

𝑗

(𝑗 − 𝜇𝑦)

2

𝑝𝑑 (𝑖, 𝑗).

(6)

The moments are the statistical expectation of certain power
functions of a random variable and are characterized as
follows.

Moment 1 (𝑚1) is the mean which is the average of pixel
values in an image and it is represented as

𝑚1 = ∑

𝑖

∑

𝑗

(𝑖 − 𝑗) 𝑝𝑑 (𝑖, 𝑗) . (7)

Moment 2 (𝑚2) is the standard deviation that can be denoted
as

𝑚2 = ∑

𝑖

∑

𝑗

(𝑖 − 𝑗)
2
𝑝𝑑 (𝑖, 𝑗) . (8)

Moment 3 (𝑚3) measures the degree of asymmetry in the
distribution and it is defined as

𝑚3 = ∑

𝑖

∑

𝑗

(𝑖 − 𝑗)
3
𝑝𝑑 (𝑖, 𝑗) . (9)

And finally Moment 4 (𝑚4) measures the relative peak or
flatness of a distribution and is also known as kurtosis:

𝑚4 = ∑

𝑖

∑

𝑗

(𝑖 − 𝑗)
4
𝑝𝑑 (𝑖, 𝑗) . (10)

Furthermore, difference statistics that are a subset of the
cooccurrence matrix are also used. These features are based
on the distribution of probability 𝑃𝑥−𝑦(𝑘) which is defined as
follows:

𝑃𝑥−𝑦 (𝑘) = ∑∑𝐶𝑑 (𝑖, 𝑗) , 𝑘 = 0, 1, . . . , 𝑁𝑔 − 1, (11)

where 𝐶𝑑(𝑖, 𝑗) is the (𝑖, 𝑗)th element of the GLCM. The most
basic difference statistic texture descriptions are the ASM,
mean, and entropy:

ASM = ∑
𝑘

(𝑃𝑥−𝑦 (𝑘))

2

. (12)

When the 𝑃𝑥−𝑦(𝑘) values are very similar or close, ASM is
small. ASM is large when certain values are high and others
are low:

Mean = ∑
𝑘

𝑘𝑃𝑥−𝑦 (𝑘) . (13)

When 𝑃𝑥−𝑦(𝑘) values are concentrated near the origin, mean
is small and mean is large when they are far from the origin:

Entropy = −∑
𝑘

𝑃𝑥−𝑦 (𝑘) log𝑃𝑥−𝑦 (𝑘) . (14)

Entropy is smallest when 𝑃𝑥−𝑦(𝑘) values are unequal and
largest when 𝑃𝑥−𝑦(𝑘) values are equal.

The calculation of the Haralick texture features using
the previous equations for the CT images volume sequences
for every segmented lung (right and left) separately was
performed. For each participant the gray level cooccurrence
texture features: contrast, homogeneity, entropy, energy, cor-
relation, and 𝑚1, 𝑚2, 𝑚3, and 𝑚4 accompanied by the dif-
ference statistical features: ASM, contrast, mean, and entropy
were obtained for each segmented lung (right and left).

2.5. Statistical Analysis. For the purpose of random lung
assignment in healthy volunteers, the left lung represented the
diseased lung in the same percentage of cases as the patient
population. For the acute data, two single factor analyses of
variance (ANOVA) tests were conducted for each Haralick
texture feature measurement between affected (either left
or right) and fellow lung (either left or right) for both
categories cancer and edema patients. A single factor analysis
of variance (ANOVA)was conducted aswell between patients
and controls. Other between-subject single factor analyses
were conducted to find out the significant Haralick features
that could differentiate cancer from edema.

3. Experimental Results

Two datasets of 532 CT images were included. For each lung
CT preprocessed image, we separate the left lung from the
right lung automatically as discussed before in Section 2.3,
and each separated lung is labeled as normal or edema/cancer
based on the dataset information. The Haralick texture
featuresmeasurements for each lung separately are calculated
(the gray level cooccurrence texture features: contrast, homo-
geneity, entropy, energy, correlation, andmoments alongwith
the difference statistical features: ASM, mean, and entropy).
The mean and the standard deviation of the Haralick texture
features measurements calculated as well as the ANOVA
results are given for tumor patients affected lung versus fellow
lung in Table 1 and for pulmonary edema patients in Table 2.
The ANOVA summary of statistics for either pulmonary
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Table 1: ANOVA (1 within-subject factor) results for cancer patients Haralick texture features (comparison between AL and FL). AL: affected
lung; FL: fellow lung.

Feature name AL (average ± SEM) FL (average ± SEM) AL versus FL
Homogeneity 0.511 ± 0.01 0.517 ± 0.01 F(1, 426) = 22.0 p < 0.000004
Energy 0.372 ± 0.01 0.374 ± 0.01 F(1, 426) = 15.1 p < 0.0001
Correlation 0.964 ± 0.001 0.965 ± 0.001 F(1, 426) = 6.15 p < 0.013
Contrast 231.98 ± 4.54 231.76 ± 4.54 𝐹(1, 426) = 0.012 𝑝 < 0.911

Entropy 8.0 ± 0.19 7.94 ± 0.19 F(1, 426) = 11.8 p < 0.0007
𝑚
1

0.003 ± 0.02 0.007 ± 0.02 𝐹(1, 426) = 0.029 𝑝 < 0.88

𝑚
2

231.13 ± 4.54 231.75 ± 4.01 𝐹(1, 426) = 0.012 𝑝 < 0.911

𝑚
3

−164 ± 190.79 −683.99 ± 155.33 𝐹(1, 426) = 2.65 𝑝 < 0.09

𝑚
4

1784467 ± 83311 1654941 ± 56455 𝐹(1, 426) = 6.25 𝑝 < 0.19

Diff ASM 0.226963389 ± 0.006 0.229353096 ± 0.005 𝐹(1, 426) = 3.18 𝑝 < 0.06

Diff Mean 6.195 ± 0.08 6.28 ± 0.09 𝐹(1, 426) = 2.16 𝑝 < 0.12

Diff Entropy 3.159 ± 0.03 3.55 ± 0.03 𝐹(1, 426) = 2.32 𝑝 < 0.10

Table 2: ANOVA (1 within-subject factor) results for edema patients Haralick texture features (comparison between AL and FL). AL: affected
lung; FL: fellow lung.

Feature name AL (average ± SEM) FL (average ± SEM) AL versus FL
Homogeneity 0.64 ± 0.013 0.60 ± 0.020 𝐹(1, 105) = 2.16 𝑝 < 0.15

Energy 0.428 ± 0.01 0.429.01 ± 0.01 𝐹(1, 105) = 0.029 𝑝 < 0.87

Correlation 0.006 ± 0.001 0.008 ± 0.001 𝐹(1, 105) = 2.32 𝑝 < 0.141

Contrast 177.07 ± 5.89 188.58 ± 4.26 F(1, 105) = 15.1 p < 0.0002
Entropy 2.10 ± 0.04 2.19 ± 0.067 F(1, 105) = 1.28 p < 0.269
𝑚
1

0.52 ± 0.03 −0.47 ± 0.02 F(1, 105) = 41.8 p < 0.000001
𝑚
2

199.975 ± 9.658 218.583 ± 10.085 𝐹(1, 105) = 2.20 𝑝 < 0.152

𝑚
3

5219 ± 1436 −7539 ± 885 F(1, 105) = 41.8 p < 0.000001
𝑚
4

2854294 ± 208886 2382237 ± 263250 𝐹(1, 105) = 2.12 𝑝 < 0.158

Diff ASM 0.377 ± 0.01 0.288 ± 0.08 F(1, 105) = 4.56 p < 0.043
Diff Mean 4.07 ± 0.4379 4.89 ± 0.48478 F(1, 105) = 7.87 p < 0.01
Diff Entropy 2.96 ± 0.05 3.29 ± 0.05 F(1, 105) = 4.73 p < 0.039

edema or tumor patients versus normal is given in Table 3.
The significant Haralick texture features that can differentiate
between pulmonary edema and tumor are found in Table 4.

From Table 1, we can conclude that Haralick texture
features measurements (homogeneity, energy, correlation,
and entropy) of the affected cancer lung were significantly
different than that of the fellow lung. The homogeneity,
energy, and correlation were significantly less than those of
the normal fellow lung. While entropy of the cancerous lung
is approaching being significantlymore than that of the fellow
lung, Moment 3 and the difference statistical feature ASM
(diff ASM) texture feature measurement of the cancerous
lung is approaching being significantly less than that of the
normal lung.

Table 2 showed that Haralick texture features measure-
ments (homogeneity, entropy, and moments calculated from
the cooccurrence matrix as well as mean and ASM computed
from the difference statistics) of the pulmonary edema
affected lung were also significantly different than those of
the control subject lung; moreover contrast and entropy
computed from the difference statistics were significantly
more than those of the fellow lung.

Considering Tables 1 and 2, we can conclude from Table 3
that the homogeneity, energy, entropy, 𝑚3, 𝑚4, diff ASM,
diff mean, and diff entropy are good biomarkers to sig-
nificantly differentiate between diseased and normal lungs
without any disease specification. On the other hand, the
results illustrated in Tables 1, 2, and 4 show that entropy and
the entropy calculated from the difference statistics would
be a good candidate to significantly differentiate between
pulmonary edema and cancer.

4. Conclusion and Discussion

The texture features analyses are well known approaches
to quantify and express the heterogeneity that may not be
appreciated by clinical naked eyes, and it was presented before
as good imaging biomarkers to differentiate between diseases.
In this paper an evaluation of the Haralick texture features
is done in order to identify the most significant features that
can be used in order to detect and differentiate abnormalities
within the lungs for cancer and edema versus normal.
Our results indicate that entropy determined by gray level
cooccurrence matrix and ASM is significantly different in
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Table 3: ANOVA (1 within-subject factor) results summary of statistics 𝑝 value for patients (either edema or cancer) Haralick texture features
versus normal controls.

Feature name Diseased versus normal controls (𝑝 value) Feature name Diseased versus normal controls (𝑝 value)
Homogeneity p < 0.00002 𝑚

2
𝑝 < 0.229

Energy p < 0.0006 𝑚
3

p < 0.0002
Correlation 𝑝 < 0.485 𝑚

4
p < 0.002

Contrast 𝑝 < 0.229 Diff ASM p < 0.000001
Entropy p < 0.0004 Diff Mean p < 0.000005
𝑚
1

p < 0.0007 Diff Entropy p < 0.0004

Table 4: ANOVA (1 between-subject factor) results summary of statistics 𝑝 value for patients Haralick texture features cancer versus edema
patients.

Feature name Cancer versus edema patients (𝑝 value) Feature name Cancer versus edema patients (𝑝 value)
Homogeneity p < 0.0002 𝑚

2
𝑝 < 0.69

Energy 𝑝 < 0.065 𝑚
3

p < 0.01
Correlation 𝑝 < 0.179 𝑚

4
𝑝 < 0.89

Contrast 𝑝 < 0.699 ASM 𝑝 < 0.73

Entropy p < 0.017 Mean p < 0.032
𝑚
1

p < 0.0004 Entropy p < 0.007

edemapatients versus normalwhile it is not in cancer patients
versus normal. Since the entropy is the degree of randomness
or the degree of disorder in the image, and the angular
second moment represents the uniformity in the image, this
may be interpreted as the cancer disease causing a localized
heterogeneity in the diseased specified area in the lung
while the edema causes heterogeneous disorder in the whole
lung image. High entropy values calculated implies that the
elevated level of disorder and disorganization occurred due
to the edema diseased lung versus the cancer diseased lung.
The energy feature that is derived from the angular second
moment measures and representing the local uniformity of
the gray levels is a good biomarker to differentiate between
cancer and edema diseases. From Table 2, contrast is a good
biomarker for the pulmonary edema disease and this agrees
with the texture feature meaning which means high contrast
values for heavy texture changes. Gray level cooccurrence
matrix textural properties such as homogeneity, correlation,
mean, and moments are good significant biomarkers for
diseased lung versus normal ones in general without any
specification for the disease type. Our results agree with other
articles indicating that textural analysis has the potential
to develop into a valuable clinical tool that improves the
diagnosis, tumor staging, and therapy assessment.

While our results are promising, there is still further work
that can be done in the detecting of the abnormality within
the lungs to detect the type of that abnormality whether it will
be a lung cancer or edema. A preliminary investigation has
been done using statistical analysis to identify themost useful
texture features that can be fed to any classification technique
later. This statistical analysis is done using ANOVA. After
selecting these features we can feed them for better localiza-
tion and classification as further work.
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