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Abstract: The human gut is inhabited by overcrowded prokaryotic communities, a major component
of which is the virome, comprised of viruses, bacteriophages, archaea, eukaryotes and bacteria.
The virome is required for luminal homeostasis and, by their lytic or synergic capacities, they can
regulate the microbial community structure and activity. Dysbiosis is associated with numerous chronic
human diseases. Since the virome can impact microbial genetics and behavior, understanding its biology,
composition, cellular cycle, regulation, mode of action and potential beneficial or hostile activities
can change the present paradigm of the cross-talks in the luminal gut compartment. Celiac disease is
a frequent autoimmune disease in which viruses can play a role in disease development. Based on
the current knowledge on the enteric virome, in relation to celiac disease pathophysiological evolvement,
the current review summarizes the potential interphases between the two. Exploring and understanding
the role of the enteric virome in gluten-dependent enteropathy might bring new therapeutic strategies
to change the luminal eco-event for the patient’s benefit.

Keywords: virus; bacteria; virome; phageome; microbiome; gut; intestinal lumen; horizontal gene
transfer; celiac disease

1. Introduction

Several human chronic disease incidences are increasing in the last few decades—cancer,
allergy and autoimmune diseases are some of these [1]—and all have proven genetic backgrounds,
but they are induced and influenced by the changing environment. The arguments about the differential
influences of the genes/environment are endlessly expanding. Since genetic, inter-generation, eukaryotic
vertical changes are long-term events and the environment is changing constantly, intra generationally
and epigenetical environmental changes may play the major role in disease development [2]. A major
environmental factor that exerts a driving force on human health are prokaryotes [3–6]. It appears
that the human enteric compartment is an ideal niche for the coevolution of numerous prokaryotes
cohabiting eukaryotic guts in a bi-directional symbiotic environment. In fact, human evolution started
billions of years after the unicellular creatures appeared on earth and they diversified to colonize all
of Earth’s habitable environments before invading the human gut [7]. A plethora of information is
available on the intestinal microbiome/dysbiome composition and diversity in human homeostasis
and morbidity. However, not much is known on the enteric viruses. In this regard, the present review
will concentrate on the human enteric virome, its cross-talks with the microbiome and its potential
importance in autoimmune diseases, with celiac disease (CD) taken as an example.
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1.1. The Microbiota–Dysbiota–Mobilome Networks

Single-cell microorganisms shaped our planet, multicellular organisms and the human gut ecology.
Microbiome/dysbiome compositional and diversity balances change across the human lifespan and are
associated with specific chronic diseases, although, no causality has, as yet, been established [8,9].
Increasing information is being accumulated, presenting intestinal luminal eco-events as prime sites in
a melting pot with irradiating consequences to remote organs [10]. Gut axes to the brain, liver, kidney,
thyroid, heart, bone, joints, skin, or even to stomach or gut itself, for example, were suggested [10–14].
Playing a crucial role, the luminal microbial communities consume, tie and bind the nutrients, induce
enzymatic and metabolic events, secrete mobilome, transmit foreign genetic cargo, and change
epigenetic phenomenon, thus affecting the evolutional struggle between bugs and humans [8,10,15–17].
Certain gut microbes can degrade compounds such as drugs, providing a mechanism by which they
may regulate a multitude of aspects of health [18]. In this regard, the gut microbiota impacts a plethora
of animal or human diseases, such as neuroimmune and neurodegenerative, enteric and central, motility,
behavioral, cardiovascular and metabolic diseases [19]. The microbial mobilome that modulates or
affects the microbiome–gut–brain axis is just starting to unravel.

In fact, intestinal microbes were shown to secrete and/or consume a plethora of neurotransmitters,
and norepinephrine, dopamine, gamma-aminobutyric acid (GABA), and serotonin are some of
them [11,19]. More so, preliminary studies indicate that enteric microbiota manipulations can impact
neurotransmitter levels [19,20].

Intriguingly, viruses and bacteriophages are now being recognized as abundant and diverse gut
community members. They might orchestrate the above-mentioned human compartmental occurrences
and participate in luminal homeostasis or abnormalities.

1.2. The Enteric Viruses, The Phageome

The intestinal virome is part of the microbiome and includes members that target human cells
and microorganisms, including archaea, fungi, protozoa and bacteria—the best studied of which are
human viruses and those that infect cultivable bacteria. However, cultivation-independent sequencing
methods are developing and bring to light many bacteriophage, probably mostly double-stranded
DNA varieties. Much less studied are single-stranded and RNA viruses, although increasing
transcriptome sequencing will likely uncover many more new types.

Numerous publications exist on the human microbiome and the place of the corresponding
dysbiota in specific human chronic conditions. However, the role of the gut virome has just started
to be considered. Noteworthy is the fact that the gut viruses outnumber microbes in a ratio of
10:1 [21]. Their main impacts occurring by predation of the microbiota and via integration into the host
genome [22–24]. The fate of the infected microbiota can be either cell death by lysis or transient
symbiosis, called lysogeny, resulting in chronic infection [22,24]. The stable, balanced and homeostatic
microbiome cannot maintain itself without the enteric phageome (collection of bacteriophages).
The core and common prophages and bacteriophages are globally distributed and comprise the healthy
gut phageome that is crucial in maintaining normal microbiotic diversity and functionality [25].
Interestingly, as dysbiosis is related to specific intestinal and extra-intestinal entities [8], phageomic
aberrations are, similarly related to human diseases. In ulcerative colitis and Crohn’s diseases, core
phages are reduced [25], while an increase was recently observed in type 2 diabetes [26].

In reality, the intestinal lumen can be considered as an optimal environment for microbial
community interactions and prokaryotic–eukaryotic cell-to-cell cross talk. The high cell density,
continuous inflow of nutrients (including proteins and metabolites), stable temperature, moisture,
conjugation opportunities and biofilm structures set the stage for viral evolution, predation, replication
and survival [17]. The local virome biodiversity changes along the human life cycle. The phage load
decreases, while the abundance and complexity of the microbial populations increases substantially
during aging [22]. It seems that intestinal bacterial composition and diversification occurs at the expense
of the virome communities [27]. Several endogenous and environmental factors can affect virome
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composition and diversity. Prophage reservoir, enteric microbial community, human host immune
systems, life cycle, geography and nutrition are influential [22–24].

Due to next-generation sequencing technologies and sophisticated bioinformatics tools,
the metagenomic sequence data of the virome is expanding, but the gene functions are lagging behind.
The metagenome of human feces yielded an estimate of 2.5–6.5% for horizontal gene transfer, analyzed
by compositional methods [28], and part of it is originates from viruses. No doubt that lateral gene
transfer is a powerful means by which the virome can genetically restructure gut holobionts [17,28–30].

1.3. Virus–Microbiota Cross Talk

Being absolute parasites, the phageome has to penetrate living cells, be it pro or eukaryotes.
The virome–microbiome cross interactions regulate the lumen gut communities, shaping their taxonomy
and functional diversity and impact microbial cell evolution that can acquire or spread genetic
cargo [17,23–30], thus impacting the homeostatic environment and avoiding its imbalance (Figure 1).
By lysing, the phages promote the prokaryote evolution and biodiversity and ameliorate the resource
usage of the intestinal dwellers. Further, lysis can release cell constituents such as LPS that can trigger
immune response by activating their binding receptors [31]. By lysogeny, however, the prophage
carrier microbes can acquire beneficial genes for evolution, survival and overcoming competing species.
Acquiring toxic or hostile factors might help the lysogens to fit into the luminal compartment and execute
their biological functions. Finally, host substrate utilization can be reduced [24]. Figure 2 schematically
describes the lysogenic and lytic cycles, and their consequences. The bidirectional relations between
the microbiome and the virome, or more specifically, between the enteral viruses and the microbial
host was revolutionized by the discovery of the Clustered Regulatory Interspaced Short Palindromic
Repeats (CRISPR). It is a multi-functional, evolutionary evolving bacterial and archaeal memory
immune mechanism that defends prokaryotic cells against invaders such as phages, plasmids or
other mobile genetic sequences [32,33]. There is never a dull moment in the highly populated gut
lumen, where the virome with its pathogenic or beneficial capacities needs to confront the antiviral
machinery, thus, boosting microbiome robustness. Unsurprisingly, recent research has uncovered
a variety of mechanisms by which phages can fight back, including via the acquisition of their
own CRISPR-Cas systems and various anti-CRISPR systems [34]. Monozygotic twins are a human
genetic model to study the interaction between the intestinal phageome and the microbiome [35].
When microbiome–discordant twins were compared to concordant ones, the authors found that a more
dissimilar virome was lodged in the discordant ones and the richer is the microbiome, the richer is
the corresponding phageome. The phenomenon was driven by bacteriophages and not by eukaryotic
viruses [35]. Studying gut bifidobacteria, a bacterium known to be associated with CD, and its relation
to phages, it was revealed that the incidence of integrated prophages in Bifidobacterium genome
is quite substantial [36]. This opens a window to the potential modulatory role of those synergic
phages on the human gut-associated bifidobacteria populations. Finally, a totally unexplored topic
is the bacteriophages repertoire associated with probiotics. It might represent an additional facet
to the multiple adverse effects that were recently described [37]. Finally, bacteria facilitate enteric
virus co-infection of mammalian cells, thus promoting the genetic recombination between viruses
and restoring intestinal phageome fitness [38]. It can be concluded that the luminal gut virus–microbe
cross relations are bidirectional and are part of the luminal compartment homeostatic balance.
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Figure 2. The lysogenic and lytic cycles of the enteric phageome and their local and systemic consequences.

2. Viruses That Might Be Involved in Celiac Disease Development

The exploration of infections as an environmental trigger for celiac disease (CD) initiation or
progression experienced highs and lows [39,40]. With regards to viruses, several were suggested
as causative agents, although this remains debatable. The adenovirus 12 E1A was mentioned as involved
in CD pathogenesis [41] but was disqualified later on [42]. Some advocated the role of rotavirus [43],
but the association was denied [44]. Hepatitis C and enteroviruses were also suggested, but not
proved to be important [39,40]. The latest suggested viruses to be involved in CD development are
reoviruses [45]. In fact, in a mice model, viral infection induced a break of oral tolerance to dietary
proteins, promoted a proinflammatory phenotype in dendritic cells, resulting in pathogenic T cell
response [45]. Higher anti-reovirus serological reactivity was shown in CD patients, thus, supporting



Microorganisms 2019, 7, 173 5 of 12

the role of infection with an innocuous virus in triggering CD development. Future studies need to be
performed to answer the question: Does CD “go viral”? [46].

3. Celiac Disease in Short

Celiac disease is a frequent, life-long autoimmune disease mainly targeting the proximal
small intestine with multiple systemic extra intestinal manifestations, in genetically susceptible
individuals [47]. It affects 1–1.5% of the Western world and its epidemiology is changing constantly.
In recent decades, the typical presentation of infant chronic diarrhea, protuberant abdomen, weight loss
and malabsorption is replaced by extra intestinal presentations at a higher age. Gluten is, so far, its only
causative offending environmental factor and withdrawal of wheat, barley, rye and oat containing
nutrients is its only approved therapy. The endogenous enzyme, tissue transglutaminase (tTG),
is the autoantigen of the disease and IgA-anti tTG is the most frequently used diagnostic serological
marker [48]. Lately, a new serological marker, targeting neoepitope complexes formed when gliadin
docks the tTG enzyme was described [15]. More recently, a microbial enzyme, namely, microbial
transglutaminase (mTG), a heavily used industrial processed food additive, that functionally imitates
the tTG, was shown to induce specific antibodies in CD patients [49]. Potentially, it might represent
a new environmental factor that drives CD autoimmunogenesis [50]. Genetically, the HLA-DQ2
and HLA-DQ8 genes are the most important, predisposing factors [48].

The pathogenesis of the disease is dominated by the interplay between the intestinal innate
and reactive immune systems, resulting in gut inflammation and destruction. In fact, each pathogenic
step in the CD mucosal destructive cascade forms the basis for the development of future therapeutic
strategies to replace the existing gluten-free dietary therapies [48].

4. The Microbiome Signature in Celiac Disease

Multiple studies exploring the celiac microbiome were summarized recently [48,51]. It is
generally accepted that the altered microbiome/dysbiome balance may exist as a luminal modifier
of CD evolvement. Many reports described the decrease in Bifidobacterium and Lactobacillus species,
while the proportions of Bacteroides and Proteobacteria were increased. At least in a Swedish CD
epidemic, Clostridium spp., Prevotella spp. and Actinomyces spp. were identified in the proximal
small bowel in the patients. More recently, other microbes that were suggested to be associated with
the disease were: Campylobacter jejuni, virulent Escherichia coli, Staphylococcus spp., Bacteroides fragilis
and Neisseria flavescens [51]. Despite the fact that the dysbiosis is established in CD, the causative
factors and their mechanisms are far from being elucidated. For now, CD and its enteric dysbiosis are
associative and no cause and effect relationship was determined.

5. Potential Virome Impacts on Celiac Disease Intestinal Eco-Events

Based on the current knowledge on CD environmentally induced pathogenesis and the latest
association of the enteric virome affecting luminal prokaryotic homeostasis, there is a strong
logical background to explore the intestinal phageome in CD development. Table 1 summarizes
the pathophysiologic events or pathways by which gut phageome might play a role in CD genesis.

Several additional mechanisms might be induced or enhanced by phages in CD genesis.
Alternatively, phage therapy may represent a new therapeutic strategy for the treatment of this
autoimmune condition.
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Table 1. Potential enteric virome effects on the intestinal and systemic effect in CD development.

Potential Enteric Virome Role Potential Effect in CD Reference

Regulators of microbial diversity and composition Maintenance of altered enteric microbiota [24]

Affecting microbiota/dysbiota ratio Decreased balance [23,24]

Horizontal transfer of genetic mobile elements Increase microbial hostility [17,22–30]

Providing lysed bacterial components Enhanced local /systemic inflammation [24,31]

Viral genetic and metabolic mobilome with potential
systemic effects Pro-inflammatory factors and state [17,22,23]

Boosting the altered microbiome robustness. Induction/maintenance of intestinal dysbiosis [32,33]

Reduction of microbial substrate utilization Induction of stressful environment [24]

Induction of life cycle alteration in microbiome
composition and biodiversity Age-dependent microbiome abnormalities [22,24]

Specific lysis of Lactococcus and Bifidobacterium spp. Decreased diversity of physiologic microbiota [52–61]

1. The gut phageome may select microbes that do not digest gluten or lack the glutenase capacities,
thus increasing the luminal gluten load to the chagrin of the affected patients.

2. Bacteriophages are used in the nutritional and processed food industries, representing
an additional phageomic cargo that enters the gut lumen [52,53], potentially changing
the viral–bacterial equilibrium.

3. Bacteriophages or prophages can increase microbiome antibiotic resistance [62–65], which could
be disadvantageous for CD patients.

4. Lytic and synergic enteric phage treatment modulated the composition and diversity of
the microbiome. Lysis promoted a beneficial and equilibrated luminal ecosystem, while
the temperate phage can promote conditions enabling pathogenic conditions, at least as shown in
a mice model [66]. Can phage therapy reverse the dysbiosis associated with CD?

5. Lytic bacteriophage are suggested to control multidrug or antibiotic resistance and pathogenic
invasive bacteria. The strategy might help to fight enteric infections or gut-originated autoimmune
diseases, as was suggested for Crohn’s disease [67,68].

6. Recently, the mTG, a heavily used processed food additive, capable of cross-linking proteins,
including gliadins, was suggested to enhance CD development [15,49,50,69]. The enzyme is
considered as a bacterial virulence factor [69] and one wonders whether bacteriophage therapy
could reduce its bacterial-originated luminal enzymatic burden, potentially benefiting the patients.

7. A very interesting topic is the virus mTG activity. Long ago, the group of Prof. Aravind L. at NIH
detected an ancient core transglutaminase fold in prokaryotic enzymes [70,71]. Transglutaminase
activity is important to Candida albicans and Saccharomyces cerevisiae function and survival [72,
73]. Both were suggested to impact CD evolvement [74,75]. Interestingly, large viruses [76]
and the recently explored megaphages [77] might harbor transglutaminase-like sequences
(Jillian F. Banfield, personal communication). Intriguingly, those Prevotella-infected megaphages
occur in the human gut microbiome, and Prevotella jejuni spp. is one of the enteric bacteria
associated with naive CD [48,78]. Could the mTG viral cargo impact the immunogenicity or
the potential pathogenicity of the enzyme to post translate and modify gluten, making it less
tolerant and more toxic to CD patients?

8. Due to the emergence of viruses as triggers of CD [45,46,79] and the discovery of the CRISPR
machinery [32,33], anti-viral protective memory can protect against or counteract the suggested
CD-inducing viruses. Phages evolve their genomes to evade immunity. Several examples were
described. One of them is the phage genome evolution in Streptococcus thermophilus, driven by
CRISPR immunity [80]. The impact of the anti-viral CRISPR protective apparatus on the intestinal
CD phageome is far from being elucidated.
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9. Most recently, new light was shed on the role of bacteriophages in aggravating enteric
inflammation and colitis [81]. Gogokhia et al. reported novel mechanistic pathways whereby
the bacteriophages are operating. The phages activate interferon γ-mediated immune responses
via TLR9 and exacerbate colitis in mice and their increased abundance in ulcerative colitis
patients is correlated with mucosal interferon responses. Since the present review deals with CD,
those observations on colitis might also apply to CD intestinal inflammation. The pro-inflammatory
interferon γ is involved in mucosal damage, dictates epigenetic immune outcomes and is sensitive
to gluten challenge in CD patients [82–86]. Interestingly, mucosal TLR9 gene expression is
increased in CD, suggesting the contribution of the microbiota or dysregulation of the immune
response to the small bowel flora in the CD intestine [87,88]. The bacteriophage’s involvement in
intestinal inflammation in colitis can potentially take place in the CD gut mucosal compartment.

6. Conclusions

Increasing knowledge is accumulating on the importance of the gut virome, especially gut-associated
bacteriophage, in health and disease. Viruses are an integral part of biological diversity. They are
important in maintaining luminal homeostasis and their lytic or synergic activities clearly shape gut
microbiome function. Microbiome biodiversity is impacted by them throughout the human life cycle,
under normal and abnormal conditions. They may confer beneficial functions or detrimental activities.
Exploring their composition, diversity, lateral genetic transmission, mechanistic pathways and regulation
might bring new therapeutic strategies to change the interphase between bugs and humans for human
benefits. One wonders whether the recent review on the “Human Gut Microbiome—A Potential
Controller of Wellness and Disease” [89] will induce studies on the enteric phages’ place as an additional
controller of the human intestinal ecology [90]. Alternatively, could antiviral vaccinations open a new
therapeutic strategy to fight autoimmunity as most recently suggested in CD by rotavirus vaccination [91]?

The role of the intestinal virome in human chronic disease is just starting to unravel, but their role
in CD development remains obscure. This review highlights the potential interfaces between the gut
virome and CD pathogenesis with the goal of encouraging the scientific community to explore the topic
to provide pathways to renew the physiologically beneficial microbiome, lyse the offending microbes or
increase their resilience to hostile viruses. The biblical battle between David and Goliath was between
unequal men, where the smaller, but the more sophisticated one won. The virus is smaller compared
to the bacteria, both competing on the same overpopulated luminal niche. Respectfully, the biblical
battle between David and Goliath resembles the phageome–microbiome relationship, where the future
will tell us who is more sophisticated and dominates the arena.
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