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The scientific community generally agrees on the theory, introduced by Riemann and
furthered by Helmholtz and Schrödinger, that perceived color space is not Euclidean
but rather, a three-dimensional Riemannian space. We show that the principle of
diminishing returns applies to human color perception. This means that large color
differences cannot be derived by adding a series of small steps, and therefore, perceptual
color space cannot be described by a Riemannian geometry. This finding is inconsistent
with the current approaches to modeling perceptual color space. Therefore, the assumed
shape of color space requires a paradigm shift. Consequences of this apply to color
metrics that are currently used in image and video processing, color mapping, and the
paint and textile industries. These metrics are valid only for small differences. Rethinking
them outside of a Riemannian setting could provide a path to extending them to large
differences. This finding further hints at the existence of a second-order Weber–Fechner
law describing perceived differences.
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Color spaces are specific organizations of colors. Since humans have three cones to perceive
color, color spaces are usually three-dimensional (3D). Color spaces can be directly
related to the three cones: red, green, and blue, such as CIE RGB. However, most color
spaces are mathematical constructs or models, such as CIE XYZ and CIE L*A*B*, with
transformation formulas* converting one to another (1). Apart from assigning a unique
coordinate to each color and arranging them in a sensible way, perceptual color spaces
arrange colors in a way that the distance between two colors reflects how differently
humans perceive them.

Background and Theory

We show how the principle of diminishing returns contradicts the paradigm of a
Riemannian color space, illustrated in Figs. 1 and 2. The key idea is that for a space to
be Riemannian, distances ΔE between stimuli A,B ,C along a geodesic must satisfy
additivity: that is,

ΔE (A,B) + ΔE (B ,C ) = ΔE (A,C ), [1]
while diminishing returns require the strict inequality of this relation (Eq. 4).

Riemannian Geometry and Color. In his visionary lecture where he introduced a geome-
try that generalizes the notions of angle, curvature, and length to curved spaces, Riemann
(2) himself suggested that color forms a multidimensional manifold. This was probably
the largest step toward mathematical modeling of color since its description by means
of a vector space by Grassmann (3), which was rigorously formalized by Krantz (4). A
Riemannian manifold is a smooth manifold M with a metric g smoothly varying over M
that defines an inner product on the tangent space at point p ∈M . For a fixed basis in 3D,
we can express the metric at each point p as a matrix gp ∈ R

3×3 and the inner product of
two vectors u, v ∈ R

3 at p as

< u, v >p= uT gpv . [2]

In this setting, the length of a curve γ : [t0, t1]⊂ R→M ,

L(γ) =

∫ t1

t0

|γ′(t)|γ(t) dt =
∫ t1

t0

√〈
dγ(t)

dt
,
dγ(t)

dt

〉
γ(t)

dt , [3]

will be of central importance. The path between two points A,B that minimizes the
length is called a geodesic, and its length is the distance Δ(A,B) between these two
points, illustrated in Fig. 2.

*The transformation sometimes depends on additional parameters: for example, the white point.
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show that a Riemannian metric
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large color differences are
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called diminishing returns, cannot
exist in a Riemannian geometry.
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how we model color differences,
as the current standard, ΔE,
recognized by the International
Commission for Weights and
Measures, does not account for
diminishing returns in color
difference perception.
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Fig. 1. Diminishing returns imply that large color differences appear less
than the sum of their parts. This image is a purely figurative illustration of how
this phenomenon could potentially occur, even though this specific geometry
is not suggested in this paper. If an isoluminant plane through color space
(Upper) would, for example, have the shape of a curved two-dimensional
submanifold embedded in a 3D space (Lower), then the 3D Euclidean metric
would produce the inequality of diminishing returns.

von Helmholtz (5) was the first to describe the distance between
colors by means of a line element† in a Riemannian manifold. He
defines the shortest path in a color space to be the path for which
the sum of its just noticeable differences is minimal. He bases his
line element on the Weber–Fechner law (6).

Schrödinger (7) also assumes that color perception is Rie-
mannian, but Schrödinger (7) strictly rejects Helmholtz’s line
element because it produces surfaces of isoluminance that are not
orthogonal to the direction of intensity increase and suggests an
alternative one.

These works are based primarily on geometry and mathematical
reasoning and only partly on experiment. However, experimental
evidence against a Euclidean color space was found, for example,
in the Nickerson index of fading (8). Since then, many authors
have argued that color perception is not Euclidean but rather,

Fig. 2. Geodesics (shortest paths computed with the shooting method)
between the corners of the sRGB cube in CIE LAB with its non-Euclidean metric
ΔE∗

2000 (79) illustrate what has long been known for perceptual color spaces
in general, namely that in contrast to a Euclidean setting (e.g., ΔE∗

1976), the
geodesics do not form straight lines. In this paper, we go one step further
and show what CIE LAB does not capture: that in contrast to a Riemannian
setting, their lengths do not even coincide with the distances between their
endpoints.

†The concept line element, ds2 = g, is preferred in the literature over the concept of metric,
but they can be used interchangeably because each determines the other.

Riemannian (9–16), with experiments undertaken to determine
coefficients of a Riemannian metric describing the perceived
differences of colors (11, 17–21).

Lastly, the interested reader should review Wyszecki and Stiles
(1) for an introduction to color theory, Resnikoff (22) for an
excellent summary of the historical development of the idea of
color space, and Vos (23, 24) for superb visualizations of the
different line elements of color perception and a historical account
on their development.

The Principle of Diminishing Returns. The principle of dimin-
ishing returns in color refers to the phenomenon that large color
differences are underestimated by human perception, as shown in
Fig. 1. Even if a color B lies on the shortest path between A and
C, the sum of the perceived lengths of the two segments exceeds
the total perceived length:

ΔE (A,B) + ΔE (B ,C )>ΔE (A,C ). [4]

Importantly, Eq. 4 holds even along geodesics, making it distinct
from and stronger than the triangle inequality. The term “dimin-
ishing returns” was coined by Judd (13). He defines the concept
of an ideal color space as “a tridimensional array of points, each
representing a color, so located that the length of the straight
line between any two points is proportional to the perceived
size of the difference” (25). In his papers, he collects evidence
from the literature that such an ideal color space cannot exist
[e.g., referring to the experiments of Nickerson and Stultz (8)
and MacAdam (20)]. The latter describes an experiment in which
observers judged the perceived distances between neighboring
colors in three concentric, equiluminous hexagons of different
sizes in CIE xyY. He then determined the coefficients, H1, gij ,
p ∈ R, i , j ∈ {1, 2}, of the weighted adaptation to a Riemannian
distance formula

H̄ = H1(g11(Δx )2 + 2g12ΔxΔy + g22(Δy)2)
p
2 [5]

to best fit these perceived differences. He found that the exponent
p, which makes the formula non-Riemanninan if p �= 1, is gener-
ally smaller than 1, indicating diminishing returns.

At approximately the same time, Helm (26) conducted ex-
periments in which the observer estimated color distances and
ratios between colors of constant luminance and saturation while
varying hue. He then used multidimensional scaling (MDS) to
estimate the dimensionality of the underlying space (27). For the
ratio experiments, the result revealed a two-dimensional circle, but
for the distances, the dimensionality was 12. Helm (26) argued
that this was the consequence of the underestimation of large
distances. A logarithmic transformation of the distances in CIE
xyY resulted in the expected dimensionality of two and a strong
correlation to the outcome of the ratio experiments. In the context
of contrast constancy across frequencies of sinusoidal gratings,
Cannon (28) studied the relation between physical and perceived
contrast, with contrast defined as

(Lmax − Lmin)/(Lmax + Lmin), [6]

where L is physical luminance. In suprathreshold conditions, he
found a power law with an exponent of ∼0.5 to be a good fit,
similar to the results of MacAdam (20). Despite these findings, the
topic remains controversial. Using MDS, many researchers have
found good agreement between color difference experiments and
an additive 3D Euclidean space (29–33). Exceptions are Ekman
(34), Helm (26), and Izmailov and Sokolov (35). The lattermost
found that color space can be embedded into a 3D spherical
submanifold of a four-dimensional Euclidean space in analogy to
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Fig. 3. Thurstonian distance perception (58) of a triad modeled with (solid)
and without (dashed) additivity with an example scaling function f(Δψ) =√
Δψ. If additivity is assumed and the gray-shaded Gaussians are appropri-

ately centered, the difference between the means can be subtracted to give
the perceived difference between the standard and either test (shown as the
shaded green and orange triads). The difference between these means would
be the perceived difference of differences, which can be plotted on a Gaussian
centered at zero, as shown in Lower, to predict how often participants would
be incorrect. However, if diminishing returns should exist, the means of
the green and orange Gaussians should be scaled as demonstrated by the
dashed distributions in the second row. The effect of the scaling function is
an increased rate of predicted incorrect responses by more than an order of
magnitude.

the setting in Fig. 3. They argue that the Euclidean distances CAB

between colors A and B in their high-dimensional embedding
spaces provide the perceived differences and are related to the
arclengths DAB of the geodesics on the manifolds via

CAB = 2 sin(DAB/2). [7]

They explicitly note the principle of diminishing returns: “that
the integral of just noticeable differences between colors does
not coincide with direct estimations of the subjective differences
between the colors” (35).

Currently, there is no officially recognized color space that
models the lack of additivity resulting from diminishing returns
(36, 37). Summarizing existing literature, there is experimen-
tal evidence for diminishing returns (20, 26, 28, 35, 38, 39),
anecdotal evidence for the opposite [i.e., large color differences
are overestimated ΔE (A,B) + ΔE (B ,C )<ΔE (A,C )] (40),
and an overwhelming number of papers arguing against both
(i.e., small differences add up to large ones along the shortest
path) (Eq. 1) (29–33, 40–43). Proponents of diminishing returns
suggest three forms; Helm (26) assumes a logarithmic function,
MacAdam (20) assumes a polynomial function, and Izmailov and
Sokolov (35) assume a sinusoidal function between just noticeable
and large perceived color differences.

The Contradiction between Diminishing Returns and the
Paradigm of Riemannian Color Space. The principle of dim-
inishing returns has long served as an argument against the
existence of a Euclidean color space that models perceived color
differences (13, 25, 44, 45). So far, however, it has not been used as
an argument to reject a Riemannian color space. A possible reason

might be that the idea of Riemannian geometry is thought of as
the union of all geometries, including straight and curved spaces,
instead of a specific geometry satisfying rigid axioms. However,
we know with certainty that MacAdam (14) was aware of the
possibility of color space not being Riemannian. He describes
that the principle of hue superimportance‡ as captured in the
Nickerson index of fading (8) is in violation of Riemannian
geometry in his work on Judd in 1979 (14). Most fascinatingly,
MacAdam (14) summarizes that “there was no strong evidence
that those conditions for representation by a Riemannian (non-
Euclidean) space are violated,” which indicates that his own
findings from 1963 about diminishing returns (20) seem not
to evoke skepticism of color space being Riemannian.

While arguments against a Euclidean color space are ubiquitous
(8, 13, 25, 46) [e.g., Ennis and Zaidi (47) find that color per-
ception is approximately an affine space], there are few instances
in the literature that question the Riemannian nature of color
space. Exceptions are Zeyen et al. (48), who suggest an interpo-
lation algorithm for color maps that works in non-Riemannian
geometry, and Griffin and Mylonas (49), who express doubt when
they develop a Riemannian categorical metric from the probability
distributions of a crowdsourced color-naming experiment.

Yet, the principle of diminishing returns contradicts the pre-
vailing paradigm of a Riemannian color space. Assume that color
space is Riemannian and that γ is a geodesic between the colors
A= γ(t0) and C = γ(t2) containing the point B = γ(t1) with
t0 < t1 < t2. Then, the part of γ between A and B, γ1 = γ|t0,t1 ,
is a geodesic, as is the part between B and C.§ Therefore, the dis-
tances between the three points in a Riemannian setting coincide
with the lengths of the curve segments, and the contradiction with
the principle of diminishing returns, Eq. 4, follows immediately
from the additivity of integration boundaries via

Δ(A,C )
Eq. 3
=

∫ t2

t0

|γ′(t)|γ(t) dt

=

∫ t1

t0

|γ′(t)|γ(t) dt +
∫ t2

t1

|γ′(t)|γ(t) dt

Eq. 3
= Δ(A,B) + Δ(B ,C ).

[8]

In the remainder of this paper, we show that diminishing returns
do exist in human color perception, and we provide an estimate
of the shape through experiments on the neutral axis, which we
assume to be a geodesic. This, in turn, proves that the current
paradigm of Riemannian color space is incorrect.

Please note that it is sufficient to show one place in color space
where additivity is violated to prove that the whole space is not
Riemannian. We conduct our experiments on the neutral axis
because it is the location with the highest probability of being a
geodesic based on existing experiments and standards (36). We
do not rule out that there are loci somewhere in color space that
locally have a Riemannian structure, but the full 3D color space
itself is not Riemannian if the neutral axis is not.

Experiment

Ramsay (30) suggests that the principle of diminishing returns
or its opposite may have been spuriously identified by other

‡Hue superimportance refers to the phenomenon that an isoluminant circle centered at
gray has a circumference about π times its radius (8, 25). In our understanding of the
subject, hue superimportance can actually be modeled in a Riemannian space.
§If there was a shorter connection, γ′

1, connecting A and B, then replacing γ′
1 with γ1 in γ

would be shorter than γ, contradicting that it is a geodesic.
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researchers (daringly including his PhD advisor, Helm) because
of experimental procedures (successive intervals, paired compar-
isons) ill suited to the task. Indeed, open-ended and criterion-
dependent tasks give less accurate measures of similarity because
of individual factors (50) and the difficulty of the task (51). In
particular, humans are not good at judging questions of the type
“How big is the difference?” that form the basis for many large
difference experiments (31, 34, 35).

Instead, we use a more reliable two-alternative forced choice
(2AFC) task, where the participant simply answers the following
question: “Which is more different?” Specifically, we use a triad
arrangement of stimuli with the reference in the middle and one
test on either side. Each of 320 triads covering the neutral axis
was judged by at least 250 different participants in a crowdsourced
study on Amazon Mechanical Turk (MTurk) (52).¶

Because of its reliability, this task has been previously used to
study human color perception (27, 53–55). However, the analysis
of this type of experiment requires more assumptions to derive
a continuous scale from binary responses, compared with Likert-
scale or open-ended tasks. As a consequence, in all existing models,
additivity of small differences is inherent. Our analysis uses the
underlying theory without requiring this additivity.

Analysis

Regression to Investigate Diminishing Returns. We denote the
differences in a triad (t1, ref , t2) by di := |L∗

ref − L∗
ti |, i = 1, 2.

The existence of diminishing returns implies that as the average
difference of the triad d̄ := 1/2(d1 + d2) increases, the propor-
tion of selecting one test over the other should approach chance.
To illustrate this, consider the two triads in Fig. 4, which were
selected to have the same difference in differences Δd := ||d1| −
|d2||. If the differences were additive, as Thurstone (56) suggests,
participants should select t2 with the same frequency for both
triads.

To test for the existence of diminishing returns, we consider the
degree of consensus C,

C = |pt2 − 0.5|, [9]

where pt2 is the proportion that participants selected the lighter
test. As participants respond more at chance level, C approaches

Fig. 4. Two triads with the same difference in differences Δd = 12.5 in
L∗ units. (Upper) L∗ = 45, 50, 67.5, respectively. (Bottom) L∗ = 20, 50, 92.5,
respectively.

¶A detailed description of the experimental design can be found in Materials and Methods.

zero. If diminishing returns exist, the degree of consensus should
decrease with increased average difference in the triad. We can test
this using least-squares regression,

Ĉ = β0 + βΔd=5 × δΔd=5 + βΔd=10 × δΔd=10 + βd̄ × d̄ .
[10]

Here, Δd is the difference in differences, and d̄ is the average
difference. We use the differences in L∗ for this first analysis, so
Δd takes on three discrete values. We encode this variable as two
dummy variables using the Kronecker Δ,

δΔd=5 =

{
1, Δd = 5,

0, Δd �= 5.
[11]

Diminishing returns can be formalized as a negative coefficient for
the average difference, βd̄ , indicating responses approaching pure
chance as the average difference in the triad increases.

Maximum Likelihood Estimation to Model Diminishing
Returns. To transform binary responses from a 2AFC task into a
perceptual scale, certain assumptions about the underlying process
must be made. The most common analyses rely on Thurstone’s
theory of a Gaussian perceptual process (56). Here, the perception
of any stimulus, xi , is a normally distributed variable

Percept(xi)∼N (ψi ,σ
2) [12]

about its perceived strength (mean), ψi ∈ R, with some discrim-
inal dispersion (SD) σ ∈ R

+. The perception of the difference
between stimuli xi and xj takes the form

Percept(xi − xj )∼N (ψi − ψj , 2σ
2). [13]

This model revolutionized psychophysics because it explains how
different observers can judge stimuli differently and even how
one observer can judge them differently on different trials of an
experiment (56).

It follows that the perception of the difference of differences
in the triad is also a stochastic variable following a normal
distribution. The frequency of selecting one test should adhere to
the cumulative normal distribution where μ= 0,# as illustrated
in Fig. 3(58). The 2AFC experiment provides the proportion
of responses in which observers selected t1 as more different,
compared with the reference, than t2 [i.e., the probability
P(t1|ψref ,ψt1 ,ψt2 ,σ)]. This is shown as the shaded region in
the Gaussian in Fig. 3, Lower. From that, the perceived strengths,
ψref , ψt1 , and ψt2 , can be estimated using the inverse of the
cumulative normal distribution, Φ, or essentially by transforming
the proportions of selecting t1 over t2 into z scores to represent
interpoint distances

P(t1|ψref ,ψt1 ,ψt2 , 4σ
2)

= Φ4σ2(|ψref − ψt1 | − |ψref − ψt2 |).
[14]

There exist two suitable methods for this estimation. Torg-
erson (27) detailed how to solve MDS using these z scores.
This approach has been widely implemented using a variety of
algorithms to perform the matrix algebra (27, 41, 42, 55, 59).
More recently, maximum likelihood estimation (MLE) has been
used to construct a unidimensional perceptual scale from 2AFC
data using Thurstone’s theory (53, 57, 60). MLE estimates the set
of parameters, in our caseψi and σ, of a stochastic process, Eq. 14,
that is most likely to produce a given set of observations (here, the

#A more detailed derivation is in Maloney and Yang (57).
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responses from the 2AFC experiment). If the likelihood function
can be differentiated with respect to the parameters, MLE can be
performed analytically. Here, however, the parameters are discrete,
so MLE must be performed numerically. Both of these approaches
(MDS and MLE) directly rely on the additivity of normally
distributed variables, which implies that smaller differences can
be added to get larger differences (i.e., the absence of diminishing
returns).

If larger differences are overestimated when summing small
differences, the sum of small differences needs to be scaled. This
can be achieved using a more flexible MLE approach that directly
models the differences Δ(i , j ) = f (|ψi − ψj |) between stimuli
through a monotonic scaling function f : R→ R rather than
individual stimulus strengths. To do this, we replace Eq. 14,
describing the probability that t1 is selected as closer to the
reference, by

P(t1|ψref ,ψt1 ,ψt2 , 2σ
2, f )

= Φ2σ (f (|ψref − ψt1 |)− f (|ψref − ψt2 |))

=
1

2σ
√
2π

∫ f (|ψref −ψt1
|)−f (|ψref −ψt2

|)

−∞
e−

x2

4σ2 dx .

[15]

This probability can be used as the likelihood of f given a single
response:

L(f |t1,ψref ,ψt1 ,ψt2 , 2σ
2) = P(t1|ψref ,ψt1 ,ψt2 , 2σ

2, f ).
[16]

The likelihood of the dataset is the joint probability of all responses
given the parameter space. In practice, the logarithm is taken for
the individual likelihoods to be summed rather than multiplied.
This log likelihood is maximized through MLE to find the optimal
parameters, here the shape of f.

The model, adapted from existing methods validated through
simulations (57, 60), does not assume the existence of additivity or
diminishing returns. Rather, the shape of f will reveal one or the
other. A concave f [i.e., f (Δψi) + f (Δψj )> f (Δψi +Δψj )]
would indicate that diminishing returns exist. Alternatively, a
linear f [i.e., f (Δψi) + f (Δψj ) = f (Δψi +Δψj )] would in-
dicate that differences are additive and that diminishing returns
do not exist.

Our implementation uses a monotonic cubic spline function
as the structure for f, which makes no assumptions about the
concavity. For comparison, we have included MLE models of a
baseline case, which linearly scales the L∗ values, and a case where
the perceptual scale, g(L∗) = ψ, is estimated using a monotonic
cubic spline. When modeling the difference scaling function f,
we use the ψ-values determined by g. In addition to the spline
function for f, we can also use MLE to estimate a difference scaling
function using three previously proposed functions: logarithmic,
polynomial, and sinusoidal.

Using MLE to model a potential scaling function is an analysis
developed for responses to a 2AFC task that does not make the
assumption of additivity. As such, it is now possible to test the
existence of diminishing returns in color difference perception.

Results

Regression. The best-fit regression line produces the coefficients
in Table 1. The coefficient of interest is significantly negative
(βd̄ =−0.005, p < 0.001), supporting the existence of dimin-
ishing returns. This coefficient indicates that the frequency that
participants select a given test approaches chance when differ-
ences are larger. This effect can be seen in Fig. 5, showing how
participants’ responses are closer to chance with increased average

Table 1. Coefficients of the regression line
Coefficient Estimate t statistic Significance
β0 0.161 t(60) = 8.894 < 0.001
βΔd=5 0.048 t(60) = 2.815 0.010
βΔd=10 0.119 t(60) = 6.632 < 0.001
βd̄ −0.005 t(60) =−5.566 < 0.001

The regression model produced a good fit to the experimental data: R2 = 0.556, F(3, 60) =
25.00, P < 0.001. The β-coefficients are unstandardized for interpretability.

difference, d̄ , despite the value for the difference of differences,
Δd , being the same. This suggests the existence of diminishing
returns; however, it relies on the L∗ axis being nearly perceptually
uniform. This assumption may not be appropriate, so we inter-
pret the negativity of the βd̄ as weakly supporting our claim of
nonadditivity and as motivation to carry out further analysis.

MLE. To assess the validity and stability of the MLE-approximated
scaling function, we used a combination of cross-validation
and bootstrapping. We used 10 different test/train splits where
each test set included a random selection of 50 responses per
triad, leaving between 199 and 254 responses per triad in the
training set. The training set contained a total of 75,896 trials.
To obtain CIs around the learned scaling function, we used 100
bootstrapped samples of size 48,000 or ∼150 responses per triad
from each training set.

For each training set, a function g : R→ R mapping from L∗

to perceived strength and a function f : R→ R mapping from
the difference in perceived strengths to the perceived difference
were estimated. Their concatenation then provides the perceived
difference to two stimuli xi , xj via

f (|g(xi)− g(xj )|). [17]

This approach was introduced by Krantz (61) in 1967 but aban-
doned because of the large number of parameters to estimate.
We first estimate the perceptual function g to transform the L∗

Fig. 5. Degree of consensus is the absolute value of selecting a given
test minus 50%. The negative slope of the lines indicates that participants’
responses tend toward chance with increasing average difference in the triad,
despite the difference of differences remaining constant. A 95% CI around
each line is shown in gray.
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values to perceived strengths ψ and then, use the difference in ψ
to estimate the difference scaling function f.

The perceptual function g is modeled using a monotonic spline
with four nonzero control points. The values of these points are
estimated in the optimization. These control points, along with
the point (0, 0), completely determine the spline function. The
SD was set to σ = 1. After the estimation, g was rescaled to fit the
original domain [0, 100] since a new SD will be used to estimate
the scaling function.

Four functional forms of the difference scaling function f are
used in the MLE. The first is a spline of the same form used to
approximate g. The remaining three are parameterized forms of
the hypothesized functions previously suggested to account for
diminishing returns. For these functions, the differences in ψ
were first scaled to fall in [0, 1]. In each of these functions, the
polynomial (20), the logarithm (26), and the sine (35), there is a
parameter to determine the shape, a, and a parameter to determine
the range, b:

fpoly(Δψ) = bΔψa ,

flog(Δψ) = b
log(aΔψ + 1)

log(a + 1)
,

fsin(Δψ) = b
sin( Δψπ

2a+1 )

sin( π
2a+1 )

.

[18]

The optimal values of these parameters were found by the MLE.
In all functional forms of f, the SD was set to one.

All models, including the case of modeling only g and a baseline
case where the L∗ values are scaled linearly to the optimal range
for an SD of one, were evaluated based on their ability to predict
participant responses in the test set. The average accuracy of these
models and error bars are the 95% confidence level is shown in
Fig. 6. Models were trained using data from all triads; however,
accuracy is visualized across the five levels of the standard. We see
here that the baseline accuracy is much lower for triads with darker
standards.

The most accurate models are the ones that include both g and
f, specifically when f takes the spline form (green line) or the log

Fig. 6. Accuracy of optimal models.

Fig. 7. Optimal perceptual function g from Eq. 17 mapping L∗ values to
perceived grayness, ψ. The shaded region indicates the middle 95% of all
learned models across test sets and bootstrapped training sets.

(purple line). The models using the polynomial and sine for f have
a larger spread and are not significantly higher than when using
only the g transformation.

The average perceptual function g and a 95% CI are shown in
Fig. 7. The dashed line represents what would have been learned
if the L∗ axis perfectly described the data. The deviation from the
dashed line occurs near the L∗ of the background, suggesting that
this may be due to the crispening effect (62).

The average learned scaling function f using the flexible spline
form is shown in Fig. 8. The dashed black line indicates the
function that would have been learned if there was no evidence
of diminishing returns.

The average scaling functions using the parameterized hypoth-
esized forms of f are shown in Fig. 9, with the spline function
shown in black for comparison. The parameterized logarithm falls
closest to the spline, which is in accordance with their similar and
high accuracies in Fig. 6.

Limitations and Mitigations

There are two assumptions that we make throughout our work
that could limit the generality of our results. We discuss them here
and explain the design and verification choices that we made to
mitigate them.

Influence of the Background. The background can have a strong
influence on the way colors are perceived (63). We, therefore, keep
the background constant across all experiments.

The crispening effect causes colors in the vicinity of the back-
ground to appear more different from its neighbors than those
far away (64, 65). This effect could potentially interfere with the
measurement of diminishing returns. Schönfelder’s law suggests
that the crispening effect is strongest at the exact location of the
background color (63). We chose the background to be dark blue,
approximately equivalent to that used by Krantz (54). By using a
hue, the background is not in the direct vicinity of any stimulus
presented, and the crispening effect is significantly reduced (62).
Still, even a small crispening effect could violate the assumption of
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Fig. 8. Optimal difference scaling function f from Eq. 17 using the spline with
four control points. The shaded region indicates the middle 95% of all learned
models across test sets and bootstrapped training sets.

L∗ being a reasonable proxy for a perceptual scale. We, therefore,
model the transform g from L∗ to an actual perceptual scale
Ψ before estimating the effect of diminishing returns f. The
shape of our modeled g shows the expected compensation for
the crispening effect around the luminance of our background of
L∗ = 20 (Fig. 7).

Apart from crispening, it has been observed that increments
in the lightness of the background can be perceived differently
than decrements (62, 66). To see if this effect could potentially
explain the measured nonadditivity, we performed experiments
around five different centers on the neutral axis, some closer and

Fig. 9. Optimal difference scaling functions using the hypothesized func-
tions. The shaded region indicates the middle 95% of all learned models
across test sets and bootstrapped training sets.

some farther from the background and some involving stimuli
exclusively brighter than the background (L∗ = 50, 60, 70).

We compared the increase in predictive power due to account-
ing for the size of the differences using the scaling function across
each center individually. At each center, there was a significant
increase in predictive power when using both the g and f trans-
formations compared with using only g alone, as seen in Fig. 6.
While there is less of an increase at the centers with increments
only (L∗ = 50, 60, 70), the increase remains significant. This leads
us to the conclusion that the effect of diminishing returns is robust
to some degree against the influence of the background.

The Neutral Axis as a Geodesic. It is not trivial to verify whether
any given path through color space is a geodesic. We chose the
neutral axis because it is the one path on which all available data
agree that it is indeed a geodesic. For example, the neutral axis
is a geodesic in the commonly used color space CIE L*A*B* for
its 1976, 1994, and 2000 metrics. It is also a geodesic in the
Euclidean color spaces CIE CAM, CIE RGB, CIE XYZ, CIE
LUV, DIN99, Adobe RGB, and sRGB, where it is always a straight
line (the interested reader is directed to ref. 37 for a discussion of
the various color spaces). It is also a geodesic in the Euclidean
spaces CIE CAM, CIE RGB, CIE XYZ, CIE LUV, DIN99,
Adobe RGB, and sRGB, where it is always a straight line. It is
also a geodesic in Schrödinger’s theory of luminance, hue, and
saturation, in which he expects that paths of constant ratios of the
primaries form geodesics (7), and the theory that paths of constant
hue and saturation that differ only in luminance form geodesics,
even though these two theories do not generally agree everywhere
in color space because of the Bezold–Brücke effect (1). Still, we
acknowledge that there is no guarantee that the neutral axis is
indeed perceived as a geodesic in our experiment. It is possible, for
example, that the background could change the path of a geodesic.
Our findings rely on these theories and models to hold at least
approximately.

Since the measured effect of diminishing returns was signifi-
cant, we expect a small deviation from a geodesic not to invalidate
our overall findings. The following Gedankenexperiment provides
a coarse estimate of how far from neutral the perception of the
grays would have to be so that the measured effect could be
explained through the triangle inequality instead of through di-
minishing returns. To this end, we chose one example of measured
perceived distances from our experiments. These three gray stimuli
are spaced with ΔL∗ of 15, for which we measured perceived
distances of 1.36. For the ΔL∗ distance of 30 between the two
outer stimuli, we measured a perceived distance of 2.06 (compare
with Fig. 8). Now, assume that this effect would be produced
because they do not lie on a geodesic but on an actual triangle.
The sides of the triangle depicted here (�) have the same ratio as
these measured perceived distances. We find a perturbation of the
perception of the neutral axis of this magnitude hard to imagine.

Example

To illustrate that the impact of changing from an additive to a
nonadditive metric can be significant, we use the simple example
of computing the mean of a black-and-white photograph. In a
non-Euclidean setting, the mean cannot be computed by adding
the values. Zéraı̈ and Triki (15) suggest the use of the intrinsic
mean x̄ ∈M of a set of points xi ∈M in a manifold M,

x̄ = argminx∈M

n∑
i=1

ΔE (x , xi)
2, [19]
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Fig. 10. Photograph of Bernhard Riemann used to illustrate the impact of
the non-Riemannianness for the computation of the intrinsic mean.

in the context of image quality measures in non-Euclidean color
spaces. Even though their work is intended for Riemannian spaces,
this formula does not require the assumption of additivity and
trivially generalizes to general metric spaces. We compute the
intrinsic mean of the photograph of Bernhard Riemann shown in
Fig. 10. The additive distance ΔL results in a mean of x̄ΔL = 42,
while the nonadditive formula generated by the highest likelihood
logarithmic curve from Eq. 18 with the parameters a = 5.34, b =
2.34 (Fig. 9) results in x̄flog = 54.

Discussion

The concavity of the scaling function f in Fig. 9 is significant,
demonstrating the hypothesized existence of diminishing returns
in color difference perception. This reveals the non-Riemannian
structure of perceptual color space, contradicting the current
scientific paradigm.

It is particularly interesting that the best fit suggests a loga-
rithmic relationship between perceived differences and absolute
differences, supporting Helm (26), because this is the known
relation between perceived strengths of stimuli and their corre-
sponding physical strengths as described by the Weber–Fechner
law (6). Our findings hint at the potential existence of a second-
order Weber–Fechner law stating that the perceived differences, or
their derivatives as the case may be, grow logarithmically with the
physical differences of the stimuli as well.|| More research must
go into the validation of this conjecture, however, because the
measurement of the absolute differences allows for some degree
of freedom other than the L∗ units and because other areas of
color space and other areas of sensation might behave significantly
differently. Until more research is conducted, we will need to
mathematically describe perceptual color space as the general
concept of a path-connected metric space.

Color metrics and measures in computer graphics, visualiza-
tion, image and video processing, color mapping, and quality
control in the paint and textile industries are based on and meant
for small color differences. Diminishing returns provide an expla-
nation of why they cannot be concatenated to faithfully represent
large differences (67). If a mathematical relation between small
and large color differences can be found to hold not just along
the neutral axis but across the whole color space, an extension of

||The existence of a second-order Weber law has previously been suggested in a slightly
different context by Whittle (62, 66).

the current metrics from small to large differences would become
possible. More experiments should be performed to cover the
whole color space to achieve this overarching goal in the future.

Materials and Methods

In this section, we describe our experimental design in full detail. Participants
were asked to judge two differences using a triad arrangement of stimuli, as
shown in Fig. 4. Differences in the triad ranged from small, barely perceptible
differences to large, obvious differences. The triads were constructed from stimuli
described by CIE LAB coordinates, where a∗, b∗ = 0 and L∗ is variable. These
triads are determined by the differences between the reference and the two tests,

d1 := |L∗ref − L∗t1
|, d2 := |L∗ref − L∗t2

|, [20]

and the difference of differences,

Δd := d1 − d2. [21]

The differences take on values between 0 and 30 in increments of 2.5, and Δd
takes on values of ±2.5, ±5, ±10. This gives a total of 64 triads. A summary of
the experimental design is shown in Fig. 11, where each of the 64 points repre-
sents a combination of differences d1 and d2. For each pair of differences, five tri-
ads are constructed using five values for the reference L∗ref = 30, 40, 50, 60, 70.

A sample size of 250 evaluations for each triad was found to produce high
agreement between the MLE and a true underlying relationship based on Monte
Carlo simulations. The large number of stimuli and responses needed, cou-
pled with the COVID-19 pandemic restrictions, made in-person studies infeasi-
ble during the course of this research. Instead, the experiment employed the
crowdsource platform MTurk (52) and used the survey software Qualtrics (68)
to implement and present the studies. Crowdsourced studies have been shown
to be a reliable method for conducting perception studies; known results in
visualization have been replicated using this approach (69–71), and over the last
two decades, the crowdsourced approach has become increasingly popular (72–
75).** In particular, Turton et al. (71) probed the specific concern about using
MTurk for perceptual studies in color. A review of the use of crowdsourcing for
visualization is in Borgo et al. (76).

Fig. 11. Representation of the triads used for simulations and experimental
study. Each point represents five distinct experimental triads, each with a
different L∗ value for the standard. The values for the tests are calculated
using the x and y values.

**J. C. Roberts, J. Jackson, IEEE Conference on Visualization, October 1–6, 2017, Phoenix,
AZ.
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Participants. Only MTurk users located in the United States were recruited.
Participants were instructed that they could not participate in the study if they
had a color vision deficiency (CVD). An initial screening question rejected any
participants who stated that they had CVD. Additionally, a Ishihara color plate
CVD test preceded the study, and those with two or more incorrect answers were
removed before analysis (77).

A total of 1,498 participants completed the study, of which 62 (4%) were
excluded on the basis of a failed CVD test. Each participant responded to between
42 and 75 triads, where no participant responded to the same triad more than
once. Participants’ ages ranged from 18 to 80 (mean = 39.5, SD = 12.3). Partic-
ipants identified as 53.3% male, 45.4% female, and under 1% nonbinary/other
or declining to answer. Of the participants, 48.1% had at least an undergraduate
degree (BS, BA, etc.), with another 20.5% having some college experience or an
associate degree and 22.1% having educational levels beyond an undergraduate
degree. Less than 10% had only a high school diploma (or equivalent) or declined
to answer. Participants were compensated at the rate of at least the federal
hourly minimum wage for the median participant time. Los Alamos National
Laboratory’s Human Subjects Research Review Board (comparable with an aca-
demic institutional review board) approved this study. All participants provided
informed consent.

Stimuli. Participants were shown triads with the reference in the middle and
one test each to the left and the right. All stimuli in the triad were gray patches
with a∗, b∗ = 0 and variable L∗ values as defined in CIE LAB. The L∗ value of the
standard was constrained to fall between the values of the two tests to ensure
that participants compared each test with the standard rather than the two tests
with each other. The three stimuli in the triad were presented as an in-line row, as

shown in Fig. 4. The left/right position of the lighter test was randomized, as was
the order in which the triads were presented. The background was a dark blue
approximately equivalent to that used by Krantz (54).

Task. Participants were required to complete this study using a computer. A
Qualtrics-based check was used to reject participants using a tablet or mobile
device to avoid skew induced by insufficient screen space. Participants were asked
which of the right and left tests was more different from the middle gray and to
respond using the “q” (for left) or “p” (for right) key. Participants had an average
of three training rounds to get acclimated to the task. To increase participant
engagement during the experimental trials, participants were informed whether
they made the correct choice based on the differences on the L∗ axis. The effect
of training (i.e., practice and feedback) over time was not statistically significant.
Even if there was increased accuracy due to learning the task, the randomization
of the order of triads would control for that.

Data Availability. Observer responses and source code of analysis framework
are publicly available in the GitHub repository (https://github.com/lanl/color).
The data are described in the Abstract found in the Gray Experiment, Data folder
and are contained in the comma separated values file (78).
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