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Pattern recognition analyses of brain
activation elicited by happy and neutral faces
in unipolar and bipolar depression

The absence of biologically relevant diagnostic
markers of bipolar disorder results in frequent
misdiagnosis of the illness as recurrent unipolar

depression in 60% of depressed bipolar individuals
seeking treatment (1). This misdiagnosis leads to
inadequate treatment that can promote switching
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Objectives: Recently, pattern recognition approaches have been used to
classify patterns of brain activity elicited by sensory or cognitive
processes. In the clinical context, these approaches have been mainly
applied to classify groups of individuals based on structural magnetic
resonance imaging (MRI) data. Only a few studies have applied similar
methods to functional MRI (fMRI) data.

Methods: We used a novel analytic framework to examine the extent to
which unipolar and bipolar depressed individuals differed on
discrimination between patterns of neural activity for happy and neutral
faces. We used data from 18 currently depressed individuals with bipolar
I disorder (BD) and 18 currently depressed individuals with recurrent
unipolar depression (UD), matched on depression severity, age, and
illness duration, and 18 age- and gender ratio-matched healthy
comparison subjects (HC). fMRI data were analyzed using a general
linear model and Gaussian process classifiers.

Results: The accuracy for discriminating between patterns of neural
activity for happy versus neutral faces overall was lower in both patient
groups relative to HC. The predictive probabilities for intense and mild
happy faces were higher in HC than in BD, and for mild happy faces
were higher in HC than UD (all p < 0.001). Interestingly, the predictive
probability for intense happy faces was significantly higher in UD than
BD (p = 0.03).

Conclusions: These results indicate that patterns of whole-brain neural
activity to intense happy faces were significantly less distinct from those
for neutral faces in BD than in either HC or UD. These findings indicate
that pattern recognition approaches can be used to identify abnormal
brain activity patterns in patient populations and have promising clinical
utility as techniques that can help to discriminate between patients with
different psychiatric illnesses.
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to mania and worsen illness outcome (1) in an
illness that has a 15% suicide rate and direct
annual costs in the USA of $7.6 billion (2).
Objective markers of bipolar disorder are therefore
needed to aid its accurate diagnosis and distinguish
it from unipolar depression as early as possible in
affected individuals. Previous studies reported
abnormal patterns of subcortical and cortical
activity to emotional faces (especially happy faces)
in bipolar depressed and unipolar depressed indi-
viduals (3–5). A more recent neuroimaging study
also indicated that patterns of brain activity and
connectivity to emotional stimuli – happy facial
expressions – may help to distinguish bipolar and
unipolar depressed adults (6). Further studies using
different analytic techniques are therefore required
to examine the extent to which neuroimaging can
accurately help to distinguish between these two
diagnoses.
Pattern recognition approaches have been used

to classify patterns of neural activity elicited by
sensory or cognitive processes (7–10); that is, as
mind-reading devices that can predict an individ-
ual�s brain state. In the clinical context, these
approaches have been mainly applied to classify
groups of individuals based on brain structural
magnetic resonance imaging (MRI) data (11–14).
Only a few studies have applied similar methods to
functional MRI (fMRI) data (15, 16). For exam-
ple, these studies reported that healthy subjects and
unipolar depressed patients could be discriminated
by whole-brain patterns of activity to a specific
stimulus (sad faces) (15) or task (verbal working
memory) (16). One additional study showed that
integrating predictions based on brain activation
associated with emotional and affective processing
substantially increased the accuracy to discriminate
between a heterogeneous group of depressed
patients (i.e., patients who were on a variety of
medications and with varying degrees of depressive
symptoms) and healthy subjects (17).
Direct discrimination between two groups with

different psychiatric illnesses using whole-brain
activity patterns is much more challenging, how-
ever, especially when the symptomatology and
underlying neuropathology can be expected to
overlap. An additional complication is that it can
be difficult to find one task or stimulus that evokes
sufficient differential activity between different
patient groups. In many situations, group differ-
ences are too subtle in relation to the typical noise
in fMRI, and they are not easily identified by
conventional approaches or even by more sensitive
approaches such as pattern recognition. Another
interesting question is how different psychiatric
illnesses affect discrimination between patterns of

neural activity for different stimuli. The discrimi-
native accuracy between patterns of neural activity
indicates how stable and different the patterns are.
If the patterns are stable but different, then the
accuracy for discriminating between them will be
above chance level. If the patterns are hetero-
geneous or overlapping, however, then it is likely
that the classification accuracy will be close to
chance level. Understanding how psychiatric ill-
nesses with overlapping symptoms affect the within-
grouppattern discriminability between twodifferent
stimuli is the first step to building more complex
neural models to ultimately discriminate between
patients with different psychiatric illnesses.
In the present study, we aimed to examine the

differential effect of unipolar and bipolar depres-
sion on the discriminability of patterns of neural
activity elicited by happy and neutral facial stimuli.
We focused examination on happy and neutral
facial stimuli, given previous findings that indivi-
duals with bipolar disorder show abnormal neural
activity to happy facial expressions in particular.
The analysis framework involved a two-level,

novel analytic strategy. In the first level, we applied
a Gaussian process classifier (GPC) within each
group to discriminate between the brain activity
patterns elicited by happy versus neutral stimuli;
that is, we computed the within-group classifica-
tion accuracy for different stimulus contrasts and
the predictive probabilities for each stimulus. The
predictive probability measures the classifier con-
fidence about the class membership of the test
example. In the second level, we used analysis of
variance (ANOVA) and post-hoc tests to examine
whether the predictive probabilities were signifi-
cantly different between groups [healthy compari-
son subjects (HC), currently depressed individuals
with recurrent unipolar depression (UD), and
currently depressed individuals with bipolar I
disorder (BD)]. We also adopted the more conven-
tional approach of examining the ability of the
GPC to discriminate between the groups (UD, BD,
and HC) using whole-brain activity patterns to
each of the three different intensity facial expres-
sions (intense happy, mild happy, and neutral
faces).

Materials and methods

Participants

We recruited 18 BD and 18 UD based on DSM-IV
diagnostic criteria using the Structured Clinical
Interview for DSM-IV-TR–Patient edition (SCID-P)
(18) for these illnesses (19) {mean age [standard
deviation (SD)]: BD = 36 [11] and UD = 32 [9]
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years; age range: 18–54 years}. The severity of
depression was evaluated using the 25-item Ham-
ilton Rating Scale for Depression (25-HDRS) (20)
(score > 13). Depressed groups were matched for
depression severity (t = 1.34, p = 0.18), illness
duration (t = 0.53, p = 0.59), age at illness onset
(t = 0.81, p = 0.41), and age (U = 122,
p = 0.20). Eighteen HC [mean age (SD) = 30 (9)]
with no previous psychiatric history (based on
SCID-P criteria) or first- or second-degree relatives
with a psychiatric history also participated in the
study. HC were age- [v2(2) = 3.8, p = 0.15] and
gender ratio- [v2(2) = 2.3, p = 0.32] matched with
BD and UD (Table 1). All participants were right-
handed and had a premorbid IQ higher than 85
(inclusion criterion). Lifetime history and ⁄or cur-
rent alcohol and illicit substance abuse (determined
by saliva and urine screen, respectively) were addi-
tional exclusion criteria forHC.While someBDand
UD did have a history of comorbid alcohol or
substance abuse, as is typical for these populations,
BD and UD subjects had been free from alcohol
and ⁄or illicit substance abuse or dependence for at
least twomonths before scanning, and had to be free
from current alcohol or illicit substances on the day
of scanning (determined by saliva and urine screen,
respectively). All participants gave informed con-
sent after explanation of the nature and possible
consequences of the study. We developed a strategy
for measuring total medication load for the patient
groups (see Supplementary material for a detailed
description).

Paradigm

All individuals participated in a 6-min event-
related experiment. The experiment involved view-
ing 60 facial expressions from a standardized series
of neutral, prototypical, and milder intensity emo-
tion facial expressions, the latter created by mor-

phing neutral and prototypical expressions (21).
Individuals viewed 20 intense happy expressions
(intense happy emotion), 20 mild happy expres-
sions (50% happy emotion), and 20 neutral
expressions. Each facial expression was presented
for 2 sec, with an inter-stimulus interval (ISI) of
variable duration, varied according to a Poisson
distribution (mean ISI = 4.9 sec). Participants
labeled the emotion of each face by moving either
the index (emotional faces) or middle finger (neu-
tral faces) of the right hand to ensure that attention
was directed to the emotional content of the face
(Fig. 1).

Data acquisition

Neuroimaging data were collected using a 3.0 Tesla
Siemens Allegra MRI scanner at the University of
Pittsburgh ⁄Carnegie Mellon University (CMU)
Brain Imaging Research Center (Pittsburgh, PA,
USA). Structural three-dimensional sagittal magne-
tization prepared rapid gradient echo images were

Table 1. Demographic and clinical variables

HC
(n = 18)

UD
(n = 18)

BD
(n = 18) Statistics

p-value
(two-tailed)

Age at scan, years 30 (9) 32 (9) 36 (11) v2 (2) = 3.8 0.15
Gender (M ⁄ F) 2 ⁄ 16 1 ⁄ 17 4 ⁄ 14 v2 (2) = 2.3 0.32
Age of illness onset, years 19 (10) 22 (7) t = 0.81 0.41
Illness duration, years 13 (9) 14 (9) t = 0.53 0.59
Medication load 1.4 (1.1) 2.5 (1.5) t = 2.32 0.02
Lifetime history of alcohol ⁄ substance
abuse or dependence (Yes ⁄ No)

4 ⁄ 14 5 ⁄ 11 v2 (2) = 1.44 0.49

HDRS-25 score 23 (8) 20 (8) t = -1.34 0.18

Values are reported as mean and standard deviation (SD) unless indicated otherwise. BD = currently depressed individuals with bipolar
I disorder; HC = healthy comparison subjects; HDRS-25 = 25-item Hamilton Rating Scale for Depression; UD = currently depressed
individuals with recurrent unipolar depression.

Fig. 1. Experimental design. Individuals viewed 20 intense
happy expressions (100% happy emotion), 20 mild happy
expressions (50% happy emotion), and 20 neutral expressions.
Each facial expression was presented for 2 sec, with an inter-
stimulus interval (ISI) of variable duration, varied according to
a Poisson distribution (mean ISI = 4.9 sec).
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acquired in the same session [echo time (TE) =
2.48 msec, repetition time (TR) = 1630 msec, flip
angle = 8�, field of view (FOV) = 200 mm, slice
thickness = 1 mm, matrix = 256 · 256, 192 con-
tinuous slices]. Blood oxygen level-dependent
(BOLD) functional images were then acquired with
a gradient echo planar imaging (EPI) sequence
covering 33 axial slices (3 mm thick, 0 mm gap,
TR ⁄TE = 2000 ⁄25 msec, FOV = 24 cm, ma-
trix = 64 · 64). All scanning parameters were
selected to optimize the BOLD signal quality while
maintaining a sufficient number of slices to acquire
whole-brain data.

Data pre-processing

Data were pre-processed using statistical paramet-
ric mapping software (SPM5) (http: ⁄ ⁄www.fil.ion.
ucl.ac.uk ⁄ spm). Data for each participant were
first corrected for differences in acquisition time
between slices, realigned using the first volume as a
reference, and unwarped to correct for static
inhomogeneity of the magnetic field and movement
by inhomogeneity interactions. Realigned func-
tional images were then co-registered with each
participant�s anatomical image and normalized
with the anatomical gray matter parameters to
the standard Montreal Neurological Institute
template, resampled to 3 · 3 · 3 mm3 voxels,
and spatially smoothed with a Gaussian kernel of
6 mm full-width at half-maximum (FWHM).

Feature extraction

For each subject, a general linear model (GLM)
was constructed in SPM5 with three emotion
intensities (neutral, mild happy, intense happy)
entered in the design matrix as separate regressors
in an event-related design with fixation cross as the
baseline. Movement parameters from the realign-
ment stage were entered as covariates of no interest
to control for subject movement. Trials were
modeled using the canonical hemodynamic
response function of SPM5. The images corre-
sponding to the GLM coefficients for each exper-
imental condition (intense happy, mild happy, and
neutral) defined the spatial patterns (i.e., vector of
features) used as input to the pattern recognition
approach.
We used a whole-brain classification approach;

that is, there was no feature selection step, which
simplifies the analysis pipeline. Feature selection
requires a three-way cross-validation procedure
(splitting the data into train, test, and validation
sets for parameter optimization) to avoid overfit-
ting, which would have been a suboptimal proce-

dure, considering the relatively small sample size in
the present study. Maintaining a simple pipeline
also improved the translational potential of the
method, as a simple technique would be more
likely to be incorporated among routine clinical
investigations. Whole-brain fMRI-based diagnosis
using GLM coefficients has been previously shown
to be able to reach around 86% accuracy (15).
Furthermore, a recent paper comparing the classi-
fication performance of ten different approaches
using structural MRI showed that the use of
feature selection did not improve the classification
performance but substantially increased the com-
putation time (22).

Pattern classification analysis

We used a GPC, as it provides for each test sample
the predictive probability of belonging to each class
instead of categorical values (e.g., +1 for Class 1
and –1 for Class 2). The predictive probability
measures the classifier confidence about the class
membership of the test example, and can therefore
be used as a proxy for ambiguity or consistency of
differential patterns of neural activity (see Supple-
mentary material for a detailed description of
GPC).

Within-group stimulus classification

Within each group (HC, BD, and UD) we exam-
ined the ability of the GPC to accurately discrim-
inate between the pattern of whole-brain activity
for different intensity facial expressions for the
following stimulus contrasts: intense happy versus
neutral, and mild happy versus neutral. The GPC
gave predictive probabilities for stimuli of class 1
and class 2. The predictive probability thereby gave
a measure of the confidence of the classifier (i.e.,
GPC) about the class membership of the test
pattern (i.e., the pattern of whole-brain activation
for the test subject). For example, if the predictive
probability were close to 0.5, the classifier would
not be very confident about the class membership
of the test pattern of whole-brain activity, thereby
indicating that there was not enough information
on the pattern of whole-brain activity to discrim-
inate between class 1 and class 2. On the other
hand, if the predictive probability were close to one
(or zero), the classifier would be very confident
about class membership; that is, the whole-brain
pattern of neural activity would be consistent with
the pattern of neural activity established from the
training data and there would be enough informa-
tion on the pattern to discriminate between class 1
and class 2.
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In the within-group analysis, medication load
and previous history of substance abuse were
included as covariates in the pattern classification
analysis using the residual forming matrix frame-
work (see Supplementary material for details).
Therefore, the between-group comparison,
described next, used as variables predictive
probabilities that had already controlled for the
potential confounding effects of medication load
and previous substance abuse.

Between-group comparison of accuracies and predictive
probabilities

We used a one-way ANOVA and post-hoc tests
(Newman–Keuls) to examine the effect of group
upon the predictive probabilities for each of the
two stimulus contrasts (intense happy versus neu-
tral and mild happy versus neutral).

Cross-validation procedure

In each group, we evaluated the performance of
GPC to discriminate between neural activity pat-
terns for each of the twodifferent emotion intensities
in each of the two stimulus contrasts using a leave-
one-subject-out cross-validation test. Here, for each
trial, we first used data from all but one individual to
train the classifier. Then, we predicted the intensity
of facial expressions using the brain scans of the
remaining individual (one of each class). We used a
threshold of 0.5 to decide its class membership; that
is, if the predictive probability were above 0.5 it
corresponded to class 1, otherwise (0.5 or less), it
corresponded to class 2. The mean classification
accuracy was the mean of the true positive (i.e.,
percentage of examples of class 1 correctly classified)
and true negative rates (i.e., percentage of examples
of class 2 correctly classified).
The statistical significance of the classifier was

determined by permutation testing, as described in
the Supplementary material.

Direct group discrimination

We also examined the ability of the GPC to
discriminate between the groups (UD, BD, and
HC) using whole-brain activity patterns to each of
the three different intensity facial expressions
(intense happy, mild happy, and neutral faces).
For each of the three facial expression intensities,
we trained a GPC aiming to directly discriminate
between groups for each possible group pair: UD
versus HC, BD versus HC, and UD versus BD. We
evaluated the performance of the classifiers using
a leave-one-pair-out cross-validation test, as

employed previously (15). Here, in each trial we
first used data from all but one pair of subjects to
train the classifier (i.e., we left a matched pair out
in each trial). The predictive probability of the
remaining two individuals (one in each group) was
then computed during the test phase. As previously
described, we used a threshold of 0.5 to decide the
class membership and computed sensitivity and
specificity for each classifier. The statistical signif-
icance of the classifier was determined by permu-
tation testing.

Results

Within-group stimuli classification

The results for the three within-group binary
contrasts are presented in Table 2 (accounting for
medication load and previous substance abuse as
covariates in BD and UD). The predictive proba-
bilities (i.e., the output of the classifier before
applying the threshold of 0.5 to decide the pattern�s
class membership) for each classifier and each
group are also presented in Figures 2 and 3. The
GPC accuracies for discriminating between intense
happy and neutral faces were significantly above
chance level for all groups (BD = 61%;
UD = 70%; HC = 81%), but for discriminating
between mild happy and neutral faces were signif-
icantly above chance only for HC (BD = 47%;
UD = 50%; HC = 75%). However, the predic-
tive probabilities for specific stimuli varied across
classifier contrasts and across groups.

Between-group differences in predictive probabilities

GPC for intense happy versus neutral faces. A one-
way ANOVA revealed a significant main effect of
group on the predictive probability for intense

Table 2. Within-group decoding accuracya

Contrast Accuracy TP TN p-value

100% happy · neutral

HC 0.81 0.94 0.72 0.001
UD 0.70 0.89 0.50 0.002
BD 0.61 0.72 0.50 0.029

50% happy · neutral

HC 0.75 0.83 0.67 0.001
UD 0.50 0.39 0.61 0.589
BD 0.47 0.44 0.50 0.816

BD = currently depressed individuals with bipolar I disorder;
HC = healthy comparison subjects; TN = true negative;
TP = true positive; UD = currently depressed individuals with
recurrent unipolar depression.
an = 18 for each group.
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happy faces (p = 0.01). Post-hoc tests showed that
the mean predictive probability for intense happy
faces was significantly higher in HC than BD

(p = 0.001), but not HC versus UD. Interestingly,
the predictive probability for intense happy faces
was significantly higher in UD than BD
(p = 0.03). There was no effect of group on the
predictive probability for neutral stimuli.

GPC for mild happy versus neutral faces. A one-
way ANOVA revealed a significant main effect of
group on the predictive probability for mild happy
faces (p = 0.005). Post-hoc tests showed that the
mean predictive probability for mild happy was
significantly higher in HC than in BD (p = 0.001)
and UD (p = 0.001). There was no significant
difference between BD and UD (p > 0.7). There
was no effect of group on the predictive probability
for neutral stimuli.

Direct group discrimination

We examined the ability of the GPC to discrimi-
nate directly between groups using neural activity
patterns elicited for each of the facial expression
intensities. The best classification accuracy was
obtained when discriminating between BD and UD
using patterns of neural activity for mild happy
(specificity = 72%, sensitivity = 61%, uncor-
rected p-value = 0.02), although within-group
analyses (above) revealed that both depressed
groups had only chance-level accuracies for dis-
criminating between mild happy and neutral faces.
However, none of the accuracies was significant
after correction for multiple comparisons (see
Supplementary Table 1).

Within-group discriminating maps

Figure 4 reveals that the discriminating pattern
between intense happy versus neutral faces was
different for the three groups. HC showed a well-
defined pattern of lateral prefrontal, visual, and
parietal cortical regions discriminating neutral
from intense happy faces. This pattern was less
defined in UD, and even less in BD. These
regions are important for visual attention and
suggest that BD in particular did not use these
regions to discriminate between neutral and
intense happy stimuli. It should be emphasized,
however, that pattern recognition approaches are
multivariate techniques and that discrimination is
based on the whole pattern rather than on
individual ⁄ regional activities. It is therefore not
possible to make local inferences about discrim-
inating regions, as these can be interpreted only
as a distributed discriminating pattern (see Sup-
plementary material for discriminating regions for
each classifier).

Fig. 3. Gaussian process classifier results for the contrast mild
happy (i.e., 50% happy) versus neutral. The probability for
mild happy was significantly higher in healthy comparison
subjects (HC) than in currently depressed individuals with
bipolar I disorder (BD) (*p = 0.001) and in currently
depressed individuals with recurrent unipolar depression (UD)
(*p = 0.001).

Fig. 2. Gaussian process classifier results for the contrast in-
tense happy (i.e., 100% happy) versus neutral expressions. The
predictive probability for intense happy faces was significantly
lower in currently depressed individuals with bipolar I disorder
(BD) than in healthy comparison subjects (HC) (*p = 0.001)
and in currently depressed individuals with recurrent unipolar
depression (UD) (p = 0.03).
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Discussion

A critical challenge for psychiatry is to identify
biological measures that may help to discriminate
between bipolar and unipolar depression, given the
frequent misdiagnosis of the former as the latter
(1). Previous studies reported differential patterns
of activity and effective connectivity to emotional
faces, particularly happy faces, in UD and BD
(3–6). The aim of the present study was to employ
GPCs to examine the extent to which UD and BD
differed in discrimination between patterns of
neural activity to happy and to neutral face stimuli.
Here, we used a two-level novel analytic strategy.
In the first level, we used GPCs to discriminate
patterns of neural activity elicited by different

facial expressions within each group (HC, UD, and
BD); that is, we computed the within-group
classification accuracy for different stimulus con-
trasts and the predictive probabilities for each
stimulus. In the second level, we used ANOVA and
post-hoc tests to examine whether the predictive
probabilities were significantly different between
groups. We also performed the more conventional
strategy of determining whether GPCs computed
using the patterns of neural activity for each of
three emotional faces (intense happy, mild happy,
and neutral faces) could accurately discriminate
between groups.
Our novel analytic strategy revealed the most

interesting findings. Here, we showed that the
predictive probability for intense happy faces was

Fig. 4. Gaussian process classifier discriminating maps for each group for the contrast of intense happy versus neutral overlaid on an
anatomic template. The maps were displayed using AFNI (http: ⁄ ⁄ afni.nimh.nih.gov ⁄ ). We thresholded the maps to present only
voxels with weight value above 30% of the maximum weight value. The red areas indicate higher weights for the positive class (i.e.,
100% happy) and the blue areas higher weights for the negative class (i.e., neutral). HC = healthy comparison subjects;
UD = currently depressed individuals with recurrent unipolar depression; BD = currently depressed individuals with bipolar I
disorder.
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significantly higher in HC than BD, but not in HC
versusUD. Importantly, the predictive probabilities
were also higher inUD than in BD.As the predictive
probability represents a measure of the classifier
confidence about the class membership of the
pattern being classified, these results indicate that
the pattern of neural activity for intense happy faces
was significantly less distinct from that for neutral
faces in BD than in either HC or UD. One possible
explanation for the lower level of discrimination of
the pattern of neural activity to intense happy faces
in BD was that there may have been greater
variation in neural activity patterns to these stimuli
in BD than in the other two groups. Another
possibility is that there may have been greater
overlap between the pattern of neural activity for
intense happy faces and for neutral faces in BD than
in the other two groups. We also showed that the
predictive probabilities of whole-brain neural
activity patterns to mild happy faces were
significantly higher in HC versus BD and in HC
versus UD. Our more conventional approach of
examining the ability of the GPC to discriminate
directly between groups also indicated that the
best classification accuracy was obtained when
directly discriminating between BD and UD using
patterns of neural activity for mild happy faces,
although this discriminationwas at an accuracy level
of 67%.
Our findings parallel other neuroimaging reports

that indicated that BD andUD are distinguished by
different patterns of neural activity to those for
happy faces. For example, we previously reported
abnormally elevated subcortical limbic activity to
happy faces in bipolar disorder patients with sub-
threshold depression, but not in UD (4, 5), and
differential patterns of orbitomedial prefrontal cor-
tical–amygdala functional (effective) connectivity to
happy faces in BD and UD (6). These findings
suggest functional abnormalities in neural circuitry
supporting positive emotional stimuli (happy faces)
in BD that, in turn, may represent vulnerability to
manic states and reflect biological processes that can
distinguish BD fromUD. Thus, BD andUDmay be
distinguishable from each other, as well as fromHC,
by fMRI activation, effective connectivity, and
predictive probabilities of whole-brain patterns of
neural responses to happy faces.
GPC can also provide a spatial map showing the

most discriminating regions (i.e., the relative
importance of each brain voxel for the discrimina-
tion boundary). The discrimination map should
not, however, be interpreted as a representation of
the statistical differences between classes but as a
representation of the boundary between classes.
Specifically, a high value in a particular voxel

indicates a strong contribution to the discrimina-
tion boundary but does not necessarily imply
greater activation in either condition. The most
discriminating regions for discriminating between
happy and neutral stimuli in HC included a pattern
of lateral prefrontal, visual, and parietal cortical
regions. These regions had the least weight for BD.
In addition, the discriminating pattern for BD
contained the most noise, suggesting that the
spatial patterns were less consistent in BD.
A limitation of our study was that both

depressed groups were taking medication, as would
be expected, given the severity of depression in the
patients recruited, and some BD and UD had a
previous history of substance abuse. BD were
taking more medication (indicated by greater
medication load) than UD because of treatment
of BD, but not UD, with mood stabilizers and
antipsychotic medications. In within-group classi-
fication analyses, we therefore used a residual
forming matrix (23) to extract the variance in the
data explained by medication load and substance
abuse before training the classifiers. This procedure
is equivalent to dummy variable regression or
analysis of covariance. In this way, we aimed to
account for the potential confounding effects of
medication and history of substance abuse in our
within-group classification analyses. It is clearly
difficult to completely control for potentially con-
founding effects of medication. One possibility
would have been to include only unmedicated
patients in the study. We would, however, suggest
that this may have biased the study to examining
individuals who are not representative of depressed
populations, given that many depressed individuals
require medication. As reviewed elsewhere in this
issue (24), in fMRI studies, medication effects
appear to minimally impact group differences,
although they may be normalizing, thereby poten-
tially minimizing rather than exaggerating differ-
ences among the groups. Another potential
limitation was that, while there was no significant
between-group difference in depression severity,
with both groups having mean depression scores in
the severe range of the 25-HDRS (19–22), UD had
higher mean depression severity than BD. Addi-
tionally, some UD and BD had depression scores
in the mild ⁄moderate range on the day of scanning
(i.e., scoring between 13 and 18 on the 25-HDRS).
From the methodological point of view, the main
limitation is the sample size. While the leave-one-
out cross-validation framework is the recom-
mended technique for evaluating classifier
performance with small samples, due to its almost
unbiased estimation of the true error rate, it has
high variance for small sample sizes. Therefore, our
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results should be validated using independent and
bigger samples. Future directions will be to repli-
cate our results with larger sample sizes, ideally
from different centers, in even more severely
depressed individuals. Additionally, future studies
employing GPC to help to classify individuals with
either bipolar or unipolar depression could aim to
include other types of neuroimaging data (e.g.,
resting state data) and potentially adding addi-
tional clinical information into the model.
To our knowledge, this study is the first to

investigate the discriminability in whole-brain
activity patterns elicited by positive emotional
and neutral stimuli between unipolar and bipolar
depression. Pattern recognition approaches have
been used previously to discriminate between
different brain states in healthy individuals (7–9)
and also to discriminate between healthy and UD
subjects (15, 16), based upon whole-brain patterns
of activity in response to a specific stimulus (e.g.,
sad faces), task (e.g., verbal working memory), or a
combination of emotional and affective processes
(17). While our findings did not reveal robust
findings regarding the ability of GPC to directly
discriminate among groups, the key innovation of
the present study was the use of a GPC to perform
within-group brain classification analysis, and then
to use the predictive probabilities of whole-brain
patterns of neural activity to happy faces to
discriminate between two groups of patients with
highly overlapping symptoms. In clinical practice,
it is critically important to have a test to identify,
on the basis of an individual person�s task perfor-
mance, the likely diagnosis. Our findings showed
that GPCs predicted whole-brain activity in
response to intense happy faces (presented along-
side neutral faces) less confidently (i.e., with lower
predictive probabilities) in BD than in HC and
UD. A future application of this technique would
therefore aim to discriminate between BD and UD
on the basis of their individual whole-brain activity
patterns elicited by positive emotional and neutral
stimuli (e.g., using individual-level whole-brain
predictive probability for intense happy faces).
Pattern recognition approaches have promising

clinical utility as a potential methodology to
discriminate not only between healthy and psychi-
atrically unwell individuals, but also among
patients with different psychiatric illnesses. This
approach can ultimately help to improve the
diagnoses of those psychiatric illnesses that are
often extremely difficult to accurately diagnose
using current clinical criteria. These approaches
may have wider future use in identifying abnormal
patterns of neural activity in patient populations
that predict subsequent response to different treat-

ments, and inter-individual differences in specific
information-processing domains that denote risk
for future psychiatric illnesses.
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