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Abstract: Rapid and reliable tools for the diagnosis and monitoring of obstructive sleep apnea (OSA)
are currently lacking. Prior studies using a chemical analysis of exhaled breath have suggested the
existence of an OSA-specific metabolic signature. Here, we validated this diagnostic approach and
the proposed marker compounds, as well as their potential to reliably diagnose OSA. In this cross-
sectional observational study, exhaled breath was analyzed using secondary electrospray ionization
high-resolution mass spectrometry. The study cohort included untreated OSA patients, OSA patients
treated with continuous positive airway pressure and healthy subjects. The robustness of previously
reported OSA markers was validated based on detectability, significant differences between groups
(Mann–Whitney U test) and classification performance. The breath analysis of 118 participants
resulted in 42 previously reported markers that could be confirmed in this independent validation
cohort. Nine markers were significantly increased in untreated OSA compared to treated OSA, with
a subset of them being consistent with a previous validation study. An OSA prediction based on
the confirmed OSA signature performed with an AUC of 0.80 (accuracy 77%, sensitivity 73% and
specificity 80%). As several breath markers were clearly found to be repeatable and robust in this
independent validation study, these results underscore the clinical potential of breath analysis for
OSA diagnostics and monitoring.

Keywords: breath analysis; biomarkers; mass spectrometry; obstructive sleep apnea; SESI-
HRMS; validation

1. Introduction

Obstructive sleep apnea (OSA) is a sleep-related breathing disorder with high preva-
lence at an advanced age [1]. During sleep, repetitive complete or partial collapses of the
pharynx result in short events of apneas or hypopneas, respectively. These apnea/hypopnea
events are associated with oxygen desaturations and arousals from sleep that impair the
quality of sleep and, thus, may cause daytime sleepiness. Symptomatic OSA has been
shown to be associated with the development of depression and an increased risk for car
accidents [2,3]. Moreover, patients with OSA are at higher risk for developing diabetes, arte-
rial hypertension and cardiovascular diseases [4–6]. One of the most efficient treatments of
OSA is the nocturnal use of a mask with continuous positive airway pressure to overcome
pharyngeal airway obstruction (CPAP) [7], although it is not equally well-tolerated by
every patient [8,9].

The gold standard of OSA diagnosis is in-laboratory polysomnography (PSG). Among
other variables, the apnea/hypopnea index (AHI) and oxygen desaturation index (ODI) are
derived from PSG and form the basis for the clinical diagnosis and, furthermore provide
information about the severity of the disease [10]. However, in-laboratory sleep studies
are time consuming, costly and bothersome for the patient, which may affect the patient’s
sleep and, thus, the sleep study results. Questionnaires such as the Berlin questionnaire,
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STOP-Bang or the NoSAS score have been used for the screening of OSA [11–13]. However,
most questionnaires are subjective and allow for screening only, as final diagnosis still
relies on sleep studies. Furthermore, they are not intended to be used for monitoring the
treatment success. For this purpose, the Epworth Sleepiness Scale (ESS) questionnaire is
routinely applied [14]. However, this questionnaire is entirely subjective and has been
shown to inherit day-to-day as well as within-day variations [15].

For OSA, current research on clinical tools focuses on simplifying objective screening
in primary care and improving the diagnosis of OSA without the need for time-consuming
in-laboratory sleep studies. In this regard, the NoSAS score was introduced as a simpler
screening tool using easily accessible clinical variables and, in different studies, showed sim-
ilar or superior performances compared with previous OSA screening methods [13,16,17].
This five-item questionnaire includes snoring, which requires the statement of a bed part-
ner. The same trend was followed by the four-item tool GOAL and the two-item tool
No-Apnea, but their performance lacks validation in multi-ethnic populations [18,19]. The
home sleep apnea test (HSAT) represents an alternative to PSG for OSA diagnosis but was
recommended only for a subset of patients [20]. Various candidate biomarkers for OSA
have been reported and linked to metabolic symptoms of OSA such as diabetes mellitus,
oxidative stress or inflammation, but reliable biomarkers are not available at this stage [21].

Exhaled breath is known to contain hundreds of volatile organic compounds (VOCs)
that can be detected with modern analytical methods [22]. Some of these VOCs are metabo-
lites of endogenous origin and can give metabolic insights into the human physiological
state. Together with the non-invasiveness of breath sampling, breath analysis has therefore
gained increasing interest for clinical applications. One of the few examples where breath
analysis is used in the clinical environment is the quantification of fractional exhaled nitric
oxide (FeNO) as a biomarker for airway inflammation [23]. However, disease-specific
biomarkers in breath are not yet routinely being used in the clinics.

Two prior studies that employed online breath analysis showed promising results
for OSA diagnostics. In a randomized controlled trial, secondary electrospray ionization
high-resolution mass spectrometry (SESI-HRMS) revealed a metabolic pattern in exhaled
breath that was characteristic for OSA recurrence upon CPAP withdrawal [24]. Moreover,
some of these molecules correlated well with the AHI or ODI values. Parts of this breath
pattern were successfully validated in a more recent observational study including a larger
and more heterogenous study cohort of subjects with and without OSA [25].

For the successful introduction of SESI-HRMS as a clinical screening and diagnostic
tool as well as for monitoring of metabolic treatment effects, further validation of the
previously identified breath markers is needed. Therefore, the present cross-sectional
observational study aims at validating the previously reported OSA breath biomarkers in
another independent cohort consisting of treated and untreated OSA patients as well as
control subjects without OSA.

2. Materials and Methods
2.1. Study Participants and Clinical Data

Patients from the University Hospital Zurich and the Verein Lunge Zürich database
were screened for eligibility in this cross-sectional study. All patients with respiratory polyg-
raphy or polysomnography reports from the sleep laboratory were considered for one of
the three study groups: (i) patients diagnosed with OSA but without treatment, (ii) patients
diagnosed with OSA and have been receiving CPAP treatment for at least three months, and
(iii) patients with no OSA as defined by polysomnography or respiratory polygraphy. Cen-
tral and mixed sleep apnea, as well as further comorbidities and conditions were excluded,
as listed in Table S1. Measurements of all three study groups were performed within the
same period. At the day of breath analysis, demographic data and information on lifestyle,
medications and comorbidities were collected. In addition, the ESS questionnaire (German
version) [26] was completed by the participants. Clinical data at diagnosis were retrieved
from the sleep laboratory report of each participant, which included reports for the treated
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OSA group before onset of the CPAP treatment. Subjects of the untreated OSA group were
supplied with an apnea link to retrieve recent AHI values. For subjects of the treated OSA
group, their CPAP usage was obtained by the CPAP-machine chip readout and averaged
over the past three months. The study was performed in accordance with the Declaration
of Helsinki, and all subjects gave written informed consent before participation in their
first visit. The study was registered at ClinicalTrials.gov (NCT05456009) and approved by
the local ethics committee (KEK-ZH 2019-00030).

2.2. Direct Breath Analysis

Exhaled breath was analyzed using a SuperSESI ion source (FossilionTech, Madrid,
Spain) coupled to a high-resolution mass spectrometer (TripleTOF 5600+, AB Sciex, Con-
cord, ON, Canada). All subjects were requested to refrain from eating, drinking (except
water) and brushing their teeth for at least 1 h prior to the measurements. For breath
measurements, the subjects exhaled directly into the instrument at a constant pressure
drop of 10–14 mbar and using a single-use mouthpiece. Each participant’s measurement
consisted of six consecutive exhalations. The ion source was heated (sampling line 100 ◦C,
ion core 130 ◦C), and the net flow through the ion source was set to 0.3 L/min. Mass spectra
were recorded in positive ionization mode (4.5 kV) in the mass range of 50–500 Da and with
an accumulation time of 0.5 s. Instrument operators adhered to internal standard operating
procedures to ensure data comparability throughout the study visit.

2.3. Data Preprocessing

Mass spectral data from breath measurements were converted into mzXML files
using MSConvert (ProteoWizard v3.0.2) [27]. Preprocessing was then performed in Matlab
(version R2022a, MathWorks, Natick, MA, USA) and adapted to a previously described
procedure [24]. In brief, spectra of all subjects were re-calibrated on one breath spectrum,
and signal intensities were interpolated and aligned. Scans during exhalation were selected
based on the presence of the water cluster ion at m/z = 55.04 ([(H2O)3+H]+), and peak
picking was performed on these breath scans with a height filter of 5 counts per seconds.
Breath scan intensities of each subject were averaged, normalized to the total ion current
(TIC), scaled to the median TIC of all included subjects and auto-scaled, resulting in the
final intensity matrix.

2.4. Satistical Analysis and Classification

Marker detection analysis was performed on the averaged intensity matrix of all
participants with a mass tolerance of 0.005 Da. Only m/z features reported by Schwarz
et al. [24] and validated by Nowak et al. [25], in total 78 features, were considered. Markers
with significant differences between subjects of the untreated OSA and treated OSA group
were assessed (stratification 1: minimal 5 h/night CPAP usage). Significance testing was
performed with the Mann-Whitney U test because the marker intensities were not normally
distributed (Shapiro-Wilk test, Figure S1) in the tested study groups. The predictive
power of breath features was assessed in a 10-fold cross validation using the Matlab
classification learner app and based on all detected m/z features. The best performing
classification algorithm was evaluated pairwise for the untreated OSA and treated OSA
group (stratification 2: AHI > 30, or AHI > 10 and ESS > 10, and additionally for treated
OSA a minimum of 5 h/night CPAP usage) and for the untreated OSA and control group.

3. Results
3.1. Study Participants

In this study, 118 participants were enrolled, including 43 patients with untreated
OSA, 43 patients with treated OSA and 32 control subjects (Figure 1). The demographic
data of both the untreated and treated OSA groups were comparable, while the control
group without OSA differed in size, age and sex (Table 1). Nevertheless, the body mass
indices (BMI) were comparable throughout all groups. The most prevalent comorbidities
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Cells 2022, 11, 2982 4 of 10

and concomitant medications are listed in Table S2. The AHI values at the time of study
inclusion were significantly higher in the untreated OSA group (28.0 [18.8, 40.0]) compared
to both the treated OSA (1.3 [0.8, 3.6]) and control group (3.0 [2.0, 4.0]). Furthermore,
the AHI values from the original diagnostic reports (before initiation of CPAP treatment)
showed higher AHI and ESS values in the treated compared to the untreated OSA group
(Table 1, at diagnosis).
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Figure 1. Study profile. In-laboratory sleep reports: polysomnography or respiratory polygraphy.
USZ: University Hospital Zurich, OSA: obstructive sleep apnea, OSA treated: patients with OSA and
continuous positive airway pressure (CPAP) therapy.

Table 1. Baseline characteristics.

OSA Untreated OSA Treated Control
Subjects p Value 1

N 43 43 32 -
Age (y) 61 (55, 69) 61 (53, 69) 50 (39, 56) 0.0002

Sex, male, N (%) 36 (84%) 36 (84%) 19 (59%) 0.020
BMI (kg/m2) 29.5 (27.0, 34.0) 30.1 (26.9, 32.3) 29.7 [27.4, 32.4) 0.86

Smoker, N (%) 28 (65%) 29 (67%) 18 (56%) 0.59
Smoking, py 0.0 (0.0, 25.0) 1.0 (0.0, 18.0) 0.0 (0.0, 9.3) 0.85

AHI at diagnosis
(events/h) 30.2 (24.0, 45.0) 35.5 (24.0, 44.5) 3.0 (2.0, 4.0) 0.0001

ODI at diagnosis
(events/h) 32.0 (23.0, 48.2) 29.0 (16.0, 46.0) 4.5 (2.5, 8.5) 0.0001

AHI at visit
(events/h) 28.0 (18.8, 40.0) 1.3 (0.8, 3.6) n.a. 0.0001

ODI at visit
(events/h) 29.9 (13.9, 41.4) n.a. n.a. -

ESS at visit,
points 5.0 (3.0, 9.0) 6.0 (3.0, 9.0) 7.5 (6.0, 11.0) 0.055

1 p values were determined for categorical variables using the Chi-square test, for continuous variables using the
Kruskal-Wallis test. BMI: body mass index, py: packages per year, AHI: apnea/hypopnea index, ODI: oxygen
desaturation index, ESS: Epworth Sleepiness Scale. Values are presented as median ± interquartile range (IQR),
unless otherwise stated.

3.2. Validation of Breath Signatures

Breath analysis by SESI-HRMS of all participants revealed a set of 42 out of 78 previ-
ously validated OSA features, which could be confirmed in the current validation cohort
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(Table S3). Here, m/z features that had been reported as OSA-associated markers in two
independent study cohorts were targeted [24,25]. A difference analysis between the groups
was performed on the normalized signal intensities of these 42 metabolites. To ensure that
possible metabolic effects attributed to CPAP treatment could be detected, a stratification
criterion of a minimum averaged CPAP usage of 5 h/night during the last three months was
applied to the treated OSA group. In total, 43 patients with untreated OSA and 29 patients
with treated OSA were included, and the characteristics of the groups are summarized in
Table S4. The Mann–Whitney U test was applied on the 42 detected features because the
data were not normally distributed (Shapiro–Wilk test Figure S1). This resulted in a set
of nine markers with significant differences (p < 0.05) in their intensities between the two
groups (Figure 2 and Figure S2). The present study did not focus on chemical identification
of the markers, such that only a couple of them have a chemical name associated with them;
most are reported as accurate m/z values (Table 2). All these markers were increased in
the untreated OSA group with four of them confirming the previously reported increase in
OSA patients (Table 2).
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Figure 2. Significantly different markers between the untreated and treated OSA group. Stratification
for the treated OSA group (OSAtreat.): averaged CPAP usage ≥ 5 h/night, statistical significance level:
p < 0.05. Boxplots include the median: red line, 25th and 75th percentiles: bottom and top box edges,
1.5-fold IQR: whiskers, and outliers: +.
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Table 2. Significant OSA-associated markers and their detection reported in the previous validation
study [25].

Significant Markers
Marker Detection in Previous Study [25]

Stratification 1 a Stratification 2 b

m/z
Elemental

Composition
c

Metabolite Behavior Sign. Behavior Sign. Behavior

81.0328 C5H5O n.a. increased no n.a. no n.a.
95.0494 C6H7O n.a. increased no n.a. no n.a.

101.0598 C5H9O2 n.a. increased no n.a. no n.a.
125.0958 C8H13O 2-butylfuran increased yes increased yes increased
128.0701 C6H10NO2 n.a. increased yes increased no n.a.
152.0699 C8H10NO2 n.a. increased no n.a. no n.a.
169.0867 C9H13O3 n.a. increased no n.a. no n.a.
175.1117 C12H15O n.a. increased yes increased yes increased
195.1379 C12H19O2 4-(hexyloxy)phenol increased no n.a. yes increased

a stratification 1: ODI > 30, or ODI > 10 and ESS >10, b stratification 2: ODI > 30 and ESS > 10, sign.: statistically sig-
nificant (p < 0.05), c composition suggested based on exact mass except for 2-butylfuran and 4-(hexyloxy)phenol.

3.3. Classification Based on Breath Signatures

The set of markers we confirmed in this study was further evaluated based on their
classification performance to predict OSA within the study cohort. The intensities of all
42 markers were included as predictors, and similar stratification criteria as in the previous
validation study were applied (AHI > 30, or AHI > 10 and ESS > 10, and additionally
for treated OSA: ≥5 h/night CPAP usage). In a 10-fold cross-validation, the receiver
operating curve for OSA prediction yielded an area under the curve (AUC) of 0.65, with a
prediction accuracy of 64%, sensitivity of 75% and specificity of 53% (Figure S3). Reducing
the untreated OSA group randomly for a balanced group size to build the prediction model
resulted in an AUC of 0.80 and strongly improved accuracy (77%) and specificity (80%),
but at the slight expense of sensitivity (73%) (Figure 3).
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Figure 3. Classification performance of the 42 detected features for untreated OSA (OSAuntreat.) and
treated OSA (OSAtreat.) with balanced group size (each n = 15). Stratification criteria: AHI > 30, or
AHI > 10 and ESS > 10, additionally for the treated OSA group: averaged CPAP usage ≥ 5 h/night.
(a) Receiver operating characteristic curve for OSA prediction from a 10-fold cross-validation applying
the support vector machine algorithm resulted in an averaged area under the curve (AUC) of 0.80;
(b) confusion matrix for the prediction of untreated and treated OSA.
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Furthermore, we assessed the predictive power of the marker set for screening pur-
poses to discriminate between patients with untreated OSA and control subjects. The model
was trained on the marker intensities of patients with untreated OSA (n = 24) and healthy
controls (n = 32) and resulted in an AUC of 0.60, with 60% accuracy, 58% sensitivity and
63% specificity (Figure S4). In this case, a balanced group size did not show an improved
classification performance (Table S5).

4. Discussion

Real-time breath analysis has been studied increasingly in recent years in view of
its potential for clinical application. For instance, the SESI-HRMS technology has been
successfully applied in a number of explorative studies on various health conditions [22].
However, validation studies to assess repeatability and robustness of reported outcomes,
which are pivotal for the translation into clinical applications, are scarce to date [28]. To the
best of our knowledge, this is the first time a second independent study has been conducted
to validate results from clinical trials using a SESI-HRMS-based breath analysis.

To this end, we evaluated a set of breath-borne markers associated with OSA, which
were discovered while investigating metabolic changes in breath upon OSA recurrence
induced by CPAP withdrawal [24] and subsequently validated in a second, observational
study (followingly referred to as first validation study) [25]. Initially, more than two hun-
dred m/z features potentially associated with OSA were reported, out of which 78 molecules
were detected in the first validation study. Forty-two of these were detected in this second
validation study cohort, with nine of them significantly increased in patients with untreated
OSA. This is nevertheless remarkable considering that the instrumentation has not yet
been standardized. Several instrument updates were made, including the installation of
different and improved SESI sources as well as acquisition settings in each of the three
studies on OSA, as previously discussed by Nowak et al. [25]. Specifically, prior to this
study, the SESI-HRMS setup was relocated from a research environment at ETH Zurich
to the clinical environment of the University Hospital Zurich. As a result, we expected
different sensitivities in marker detection and changes in the chemical backgrounds, in
addition to the different and independent study cohorts. Thus, the fact that numerous
identical m/z markers characteristic for OSA were found indicates that these markers are
robust and relevant. Moreover, four validated markers that were elevated in patients with
untreated OSA matched those from the first validation study (Table 2).

Among the nine markers found to be significantly increased in untreated OSA, 2-
butylfuran and 4-(hexyloxy) phenol had been identified. Interestingly, two additional
furans, 2-ethylfuran and 2-propylfuran, as well as 4-hydroxy-2-octenal were close to the
significance level (Table S3). Both derivatives of furans and aldehydes had been unam-
biguously identified in exhaled breath [29,30]. Here, they showed an increase in patients
with untreated OSA, which was, specific to both furans, comparable to that of 2-butylfuran
(1.44 FC). Furthermore, 2-butylfuran was consistently elevated in both stratification anal-
yses in the first validation study (Table 2), and in the randomized clinical trial upon
CPAP withdrawal and consequent OSA recurrence. This suggests an association of furans
observed in the metabolic signature of OSA. Furans in humans have been discussed to
originate from gut microbiota, while the constellation of gut microbiota was altered in OSA
mice models [31,32]. This would be consistent with increasing evidence for the presence
of microbial metabolites in exhaled breath [33]. Furan derivatives in exhaled breath have
also been linked to smoking [34,35], which could not be confirmed as the sole origin in the
current study cohort because both groups included an equal number of active smokers.

With 4-hydroxy-2-octenal, a representative of aldehydes was detected and showed
close to moderate evidence (p 0.054) for a significant difference between the treated and
untreated OSA groups. Interestingly, aldehydes have been linked to lipid peroxidation
induced by oxidative stress [36] and were consistently found to be associated with symp-
tomatic OSA in all three breath analysis studies. Furthermore, they have been identified in
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several studies in exhaled breath of patients with chronic obstructive pulmonary disease
and asthma, reportedly showing discriminative potential for both airway diseases [37].

The exhaled markers for OSA classification exhibited a more specific than sensitive
test performance in both cases: predicting untreated OSA against CPAP-treated OSA (80%
specificity) as well as predicting untreated OSA against control subjects (63% specificity).
Despite similar group sizes, these results are distinct from the first validation study in
a higher sensitivity. Therefore, a positive test result is more likely to rule in the disease.
However, the fact that we obtained a fairly high false negative rate (FNR) of 42% when
comparing untreated OSA to healthy controls suggests that the test is less suitable for initial
screening of OSA. Nonetheless, comparing untreated OSA with treated OSA resulted in a
lower FNR of 27%, indicating that the test is less likely to miss untreated OSA. Together
with the higher specificity, a breath analysis of these OSA-associated markers could be
useful as a fast tool to monitor the disease.

There are some considerations to take into account when interpreting the study results.
Compared to both previous studies, the classification performance in the current study
might have been affected by the reduced number of applicable predictors and a more
diverse collection of clinical data: while the ESS questionnaires had been filled in on the
same day as the breath measurements, the AHI values were collected at different timepoints
and by different tools, i.e., for the control group, from the last sleep study reports, and
for the treated OSA group (CPAP-machine readout) and the untreated OSA group (apnea
link readout), on the day of the visit. This impaired correlation analysis between detected
metabolites and OSA severity and, thus, could not be validated in this study.

While the controlled addition of internal standards has yet to be implemented in
SESI-HRMS workflows, technical fluctuations resulting from time drifts were minimized in
this study by relocating the instrumental setup to the hospital. This allowed us to reduce
the study period for breath analysis of 118 participants to only six weeks.

The OSA-associated markers had been identified in a well-controlled but small study
cohort, as common for pilot studies, using prediction modeling among other methods.
Machine learning tools for prediction models may allow us to build robust training models
despite small sample sizes, but they bear the risk of overfitting [38]. Thus, increased study
cohorts would strengthen the selection of predictors and might reveal even more reliable
predictors. It follows that compound identification of these predictors will allow for a
better understanding of metabolic changes that result in the diverse symptoms of OSA and
adds relevance to these OSA-associated molecules from a pathophysiological point of view.
Quantifying validated metabolites will be needed to define threshold levels of breath-borne
biomarkers for symptomatic OSA. As a result, this would allow us to use breath analysis as
a fast tool for primary screening of possible OSA patients and for monitoring of the disease
in clinical routines.

5. Conclusions

In this second validation study, we were able to confirm a set of OSA-associated
features using SESI-HRMS in exhaled breath. The ability to confirm several previously
reported markers despite a diversified study cohort and changes on the instrumental setup
and environment strongly advocates the robustness and relevance of these markers in
symptomatic OSA.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cells11192982/s1, Figure S1: Shapiro–Wilk test for nor-
mality on the detected marker intensities in untreated and treated OSA; Figure S2: Mann–Whitney U
test to determine significantly different OSA-associated metabolites between untreated and treated
OSA patients; Figure S3: Classification performance of the 42 detected features for untreated OSA
and treated OSA; Figure S4: Classification performance of the 42 detected features for untreated OSA
and control subjects; Table S1: Inclusion and exclusion criteria for study participants; Table S2: Most
prominent comorbidities and concomitant medications. Table S3: Confirmed m/z features in the
validation study; Table S4: Cohort characteristics with stratification criterion applied for the treated
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OSA group; Table S5: Classification performance of 42 confirmed markers applied on the different
study groups.

Author Contributions: Conceptualisation, B.S., M.O., M.K. and R.Z.; data curation, B.S., S.M. and
M.O.; formal analysis, B.S., S.M. and M.O.; software, B.S.; visualisation, B.S.; writing—original draft
preparation, B.S. and M.K.; writing—review and editing, all authors; funding acquisition, M.K. and
R.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Heidi Ras Foundation, Lotte und Adolf Hotz-Sprenger
Stiftung, Uniscientia Foundation and the Evi Diethelm-Winteler Foundation.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Ethics Committee of the Canton Zurich (KEK-ZH 2019-00030,
26.02.2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data are available upon request to the corresponding author.

Acknowledgments: This work is part of Zurich Exhalomics, a flagship project of “Hochschulmedizin
Zürich”. We thank Nora Nowak for the valuable scientific discussions and inputs and Noriane Sievi
for all her support, and we are highly grateful to all the study participants.

Conflicts of Interest: M.K. is a founder and board member of Deep Breath Intelligence AG (www.dbi.ch),
a company that provides services in the field of breath analysis. R.Z. is advisor to Deep Breath Intelli-
gence AG. M.K. is advisor to Bayer AG in the context of sleep apnea research.

References
1. Senaratna, C.V.; Perret, J.L.; Lodge, C.J.; Lowe, A.J.; Campbell, B.E.; Matheson, M.C.; Hamilton, G.S.; Dharmage, S.C. Prevalence

of Obstructive Sleep Apnea in the General Population: A Systematic Review. Sleep Med. Rev. 2017, 34, 70–81. [CrossRef] [PubMed]
2. Lévy, P.; Kohler, M.; McNicholas, W.T.; Barbé, F.; McEvoy, R.D.; Somers, V.K.; Lavie, L.; Pépin, J.-L. Obstructive Sleep Apnoea

Syndrome. Nat. Rev. Dis. Prim. 2015, 1, 15015. [CrossRef] [PubMed]
3. George, C.F.P. Sleep Apnea, Alertness, and Motor Vehicle Crashes. Am. J. Respir. Crit. Care Med. 2007, 176, 954–956. [CrossRef]

[PubMed]
4. Reichmuth, K.J.; Austin, D.; Skatrud, J.B.; Young, T. Association of Sleep Apnea and Type II Diabetes: A population-based study.

Am. J. Respir. Crit. Care Med. 2005, 172, 1590–1595. [CrossRef] [PubMed]
5. Peppard, P.E.; Young, T.; Palta, M.; Skatrud, J. Prospective Study of the Association between Sleep-Disordered Breathing and

Hypertension. N. Engl. J. Med. 2000, 342, 1378–1384. [CrossRef] [PubMed]
6. Gonzaga, C.; Bertolami, A.; Bertolami, M.; Amodeo, C.; Calhoun, D. Obstructive Sleep Apnea, Hypertension and Cardiovascular

Diseases. J. Hum. Hypertens. 2015, 29, 705–712. [CrossRef]
7. Gay, P.; Weaver, T.; Loube, D.; Iber, C. Evaluation of Positive Airway Pressure Treatment for Sleep Related Breathing Disorders in

Adults. Sleep 2006, 29, 381–401. [CrossRef]
8. Rolfe, I.; Olson, L.G.; Saunders, N.A. Long-Term Acceptance of Continuous Positive Airway Pressure in Obstructive Sleep Apnea.

Am. Rev. Respir. Dis. 1991, 144, 1130–1133. [CrossRef]
9. Kohler, M.; Smith, D.; Tippett, V.; Stradling, J.R. Predictors of Long-Term Compliance with Continuous Positive Airway Pressure.

Thorax 2010, 65, 829–832. [CrossRef]
10. Park, J.G.; Ramar, K.; Olson, E.J. Updates on Definition, Consequences, and Management of Obstructive Sleep Apnea. Mayo Clin.

Proc. 2011, 86, 549–555. [CrossRef]
11. Netzer, N.C.; Stoohs, R.A.; Netzer, C.M.; Clark, K.; Strohl, K.P. Using the Berlin Questionnaire to Identify Patients at Risk for the

Sleep Apnea Syndrome. Ann. Intern. Med. 1999, 131, 485–491. [CrossRef] [PubMed]
12. Nagappa, M.; Liao, P.; Wong, J.; Auckley, D.; Ramachandran, S.K.; Memtsoudis, S.; Mokhlesi, B.; Chung, F. Validation of the

Stop-Bang Questionnaire as a Screening Tool for Obstructive Sleep Apnea among Different Populations: A Systematic Review
and Meta-Analysis. PLoS ONE 2015, 10, e0143697. [CrossRef] [PubMed]

13. Marti-Soler, H.; Hirotsu, C.; Marques-Vidal, P.; Vollenweider, P.; Waeber, G.; Preisig, M.; Tafti, M.; Tufik, S.B.; Bittencourt, L.; Tufik,
S.; et al. The NoSAS Score for Screening of Sleep-Disordered Breathing: A Derivation and Validation Study. Lancet Respir. Med.
2016, 4, 742–748. [CrossRef]

14. Johns, M.W. A New Method for Measuring Daytime Sleepiness: The Epworth Sleepiness Scale. Sleep 1991, 14, 540–545. [CrossRef]
[PubMed]

15. Grewe, F.A.; Roeder, M.; Bradicich, M.; Schwarz, E.I.; Held, U.; Thiel, S.; Gaisl, T.; Sievi, N.A.; Kohler, M. Low Repeatability
of Epworth Sleepiness Scale after Short Intervals in a Sleep Clinic Population. J. Clin. Sleep Med. 2020, 16, 757–764. [CrossRef]
[PubMed]

www.dbi.ch
http://doi.org/10.1016/j.smrv.2016.07.002
http://www.ncbi.nlm.nih.gov/pubmed/27568340
http://doi.org/10.1038/nrdp.2015.15
http://www.ncbi.nlm.nih.gov/pubmed/27188535
http://doi.org/10.1164/rccm.200605-629PP
http://www.ncbi.nlm.nih.gov/pubmed/17823357
http://doi.org/10.1164/rccm.200504-637OC
http://www.ncbi.nlm.nih.gov/pubmed/16192452
http://doi.org/10.1056/NEJM200005113421901
http://www.ncbi.nlm.nih.gov/pubmed/10805822
http://doi.org/10.1038/jhh.2015.15
http://doi.org/10.1093/sleep/29.3.381
http://doi.org/10.1164/ajrccm/144.5.1130
http://doi.org/10.1136/thx.2010.135848
http://doi.org/10.4065/mcp.2010.0810
http://doi.org/10.7326/0003-4819-131-7-199910050-00002
http://www.ncbi.nlm.nih.gov/pubmed/10507956
http://doi.org/10.1371/journal.pone.0143697
http://www.ncbi.nlm.nih.gov/pubmed/26658438
http://doi.org/10.1016/S2213-2600(16)30075-3
http://doi.org/10.1093/sleep/14.6.540
http://www.ncbi.nlm.nih.gov/pubmed/1798888
http://doi.org/10.5664/jcsm.8350
http://www.ncbi.nlm.nih.gov/pubmed/32039756


Cells 2022, 11, 2982 10 of 10

16. Tan, A.; Hong, Y.; Tan, L.W.L.; van Dam, R.M.; Cheung, Y.Y.; Lee, C.-H. Validation of NoSAS Score for Screening of Sleep-
Disordered Breathing in a Multiethnic Asian Population. Sleep Breath. 2017, 21, 1033–1038. [CrossRef] [PubMed]

17. Coutinho Costa, J.; Rebelo-Marques, A.; Machado, J.N.; Gama, J.M.R.; Santos, C.; Teixeira, F.; Moita, J. Validation of NoSAS (Neck,
Obesity, Snoring, Age, Sex) Score as a Screening Tool for Obstructive Sleep Apnea: Analysis in a Sleep Clinic. Pulmonology 2019,
25, 263–270. [CrossRef]

18. Duarte, R.L.M.; Magalhães-Da-silveira, F.J.; Oliveira-E-sá, T.S.; Silva, J.A.; Mello, F.C.Q.; Gozal, D. Obstructive Sleep Apnea
Screening with a 4-Item Instrument, Named GOAL Questionnaire: Development, Validation and Comparative Study with
No-Apnea, STOP-Bang, and NoSAS. Nat. Sci. Sleep 2020, 12, 57–67. [CrossRef]

19. Duarte, R.L.M.; Rabahi, M.F.; Magalhães-da-Silveira, F.J.; de Oliveira-e-Sá, T.S.; Mello, F.C.Q.; Gozal, D. Simplifying the Screening
of Obstructive Sleep Apnea With a 2-Item Model, No-Apnea: A Cross-Sectional Study. J. Clin. Sleep Med. 2018, 14, 1097–1107.
[CrossRef] [PubMed]

20. Rosen, I.M.; Kirsch, D.B.; Chervin, R.D.; Carden, K.A.; Ramar, K.; Aurora, R.N.; Kristo, D.A.; Malhotra, R.K.; Martin, J.L.; Olson,
E.J.; et al. Clinical Use of a Home Sleep Apnea Test: An American Academy of Sleep Medicine Position Statement. J. Clin. Sleep
Med. 2017, 13, 1205–1207. [CrossRef]

21. Martinez-Garcia, M.A.; Campos-Rodriguez, F.; Barbé, F.; Gozal, D.; Agustí, A. Precision Medicine in Obstructive Sleep Apnoea.
Lancet Respir. Med. 2019, 7, 456–464. [CrossRef]

22. Bruderer, T.; Gaisl, T.; Gaugg, M.T.; Nowak, N.; Streckenbach, B.; Müller, S.; Moeller, A.; Kohler, M.; Zenobi, R. On-Line Analysis
of Exhaled Breath. Chem. Rev. 2019, 119, 10803–10828. [CrossRef] [PubMed]

23. Dweik, R.A.; Boggs, P.B.; Erzurum, S.C.; Irvin, C.G.; Leigh, M.W.; Lundberg, J.O.; Olin, A.-C.; Plummer, A.L.; Taylor, D.R. An
Official ATS Clinical Practice Guideline: Interpretation of Exhaled Nitric Oxide Levels (FeNO) for Clinical Applications. Am. J.
Respir. Crit. Care Med. 2011, 184, 602–615. [CrossRef] [PubMed]

24. Schwarz, E.I.; Martinez-Lozano Sinues, P.; Bregy, L.; Gaisl, T.; Garcia Gomez, D.; Gaugg, M.T.; Suter, Y.; Stebler, N.; Nussbaumer-
Ochsner, Y.; Bloch, K.E.; et al. Effects of CPAP Therapy Withdrawal on Exhaled Breath Pattern in Obstructive Sleep Apnoea.
Thorax 2016, 71, 110–117. [CrossRef]

25. Nowak, N.; Engler, A.; Thiel, S.; Stöberl, A.S.; Sinues, P.; Zenobi, R.; Kohler, M. Validation of Breath Biomarkers for Obstructive
Sleep Apnea. Sleep Med. 2021, 85, 75–86. [CrossRef]

26. Bloch, K.E.; Schoch, O.D.; Zhang, J.N.; Russi, E.W. German Version of the Epworth Sleepiness Scale. Respiration 1999, 66, 440–447.
[CrossRef]

27. Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P. ProteoWizard: Open Source Software for Rapid Proteomics Tools
Development. Bioinformatics 2008, 24, 2534–2536. [CrossRef]

28. Singh, K.D.; del Miguel, G.V.; Gaugg, M.T.; Ibañez, A.J.; Zenobi, R.; Kohler, M.; Frey, U.; Sinues, P.M.-L. Translating Secondary
Electrospray Ionization–High-Resolution Mass Spectrometry to the Clinical Environment. J. Breath Res. 2018, 12, 027113.
[CrossRef]

29. García-Gómez, D.; Bregy, L.; Barrios-Collado, C.; Vidal-de-Miguel, G.; Zenobi, R. Real-Time High-Resolution Tandem Mass
Spectrometry Identifies Furan Derivatives in Exhaled Breath. Anal. Chem. 2015, 87, 6919–6924. [CrossRef]

30. García-Gómez, D.; Martínez-Lozano Sinues, P.; Barrios-Collado, C.; Vidal-de-Miguel, G.; Gaugg, M.; Zenobi, R. Identification of
2-Alkenals, 4-Hydroxy-2-Alkenals, and 4-Hydroxy-2,6-Alkadienals in Exhaled Breath Condensate by UHPLC-HRMS and in
Breath by Real-Time HRMS. Anal. Chem. 2015, 87, 3087–3093. [CrossRef]

31. Garner, C.E.; Smith, S.; de Lacy Costello, B.; White, P.; Spencer, R.; Probert, C.S.J.; Ratcliffe, N.M. Volatile Organic Compounds
from Feces and Their Potential for Diagnosis of Gastrointestinal Disease. FASEB J. 2007, 21, 1675–1688. [CrossRef] [PubMed]

32. Moreno-Indias, I.; Torres, M.; Montserrat, J.M.; Sanchez-Alcoholado, L.; Cardona, F.; Tinahones, F.J.; Gozal, D.; Poroyko, V.A.;
Navajas, D.; Queipo-Ortuño, M.I.; et al. Intermittent Hypoxia Alters Gut Microbiota Diversity in a Mouse Model of Sleep Apnoea.
Eur. Respir. J. 2015, 45, 1055–1065. [CrossRef] [PubMed]

33. Belizário, J.E.; Faintuch, J.; Malpartida, M.G. Breath Biopsy and Discovery of Exclusive Volatile Organic Compounds for Diagnosis
of Infectious Diseases. Front. Cell. Infect. Microbiol. 2021, 10, 564194. [CrossRef] [PubMed]

34. Castellanos, M.; Suñer, R.; Fernández-Real, J.M.; Sanchez, J.M. 2,5-Dimethylfuran as a Validated Biomarker of Smoking Status.
Nicotine Tob. Res. 2019, 21, 828–834. [CrossRef] [PubMed]

35. Papaefstathiou, E.; Stylianou, M.; Andreou, C.; Agapiou, A. Breath Analysis of Smokers, Non-Smokers, and e-Cigarette Users.
J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1160, 122349. [CrossRef]

36. Demirci-Çekiç, S.; Özkan, G.; Avan, A.N.; Uzunboy, S.; Çapanoğlu, E.; Apak, R. Biomarkers of Oxidative Stress and Antioxidant
Defense. J. Pharm. Biomed. Anal. 2022, 209, 114477. [CrossRef]

37. Ibrahim, W.; Natarajan, S.; Wilde, M.; Cordell, R.; Monks, P.S.; Greening, N.; Brightling, C.E.; Evans, R.; Siddiqui, S. A Systematic
Review of the Diagnostic Accuracy of Volatile Organic Compounds in Airway Diseases and Their Relation to Markers of Type-2
Inflammation. ERJ Open Res. 2021, 7. [CrossRef]

38. Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.J. Machine Learning Algorithm Validation with a Limited Sample Size. PLoS ONE
2019, 14, e0224365. [CrossRef]

http://doi.org/10.1007/s11325-016-1455-4
http://www.ncbi.nlm.nih.gov/pubmed/28064432
http://doi.org/10.1016/j.pulmoe.2019.04.004
http://doi.org/10.2147/NSS.S238255
http://doi.org/10.5664/jcsm.7202
http://www.ncbi.nlm.nih.gov/pubmed/29991419
http://doi.org/10.5664/jcsm.6774
http://doi.org/10.1016/S2213-2600(19)30044-X
http://doi.org/10.1021/acs.chemrev.9b00005
http://www.ncbi.nlm.nih.gov/pubmed/31594311
http://doi.org/10.1164/rccm.9120-11ST
http://www.ncbi.nlm.nih.gov/pubmed/21885636
http://doi.org/10.1136/thoraxjnl-2015-207597
http://doi.org/10.1016/j.sleep.2021.06.040
http://doi.org/10.1159/000029408
http://doi.org/10.1093/bioinformatics/btn323
http://doi.org/10.1088/1752-7163/aa9ee3
http://doi.org/10.1021/acs.analchem.5b01509
http://doi.org/10.1021/ac504796p
http://doi.org/10.1096/fj.06-6927com
http://www.ncbi.nlm.nih.gov/pubmed/17314143
http://doi.org/10.1183/09031936.00184314
http://www.ncbi.nlm.nih.gov/pubmed/25537565
http://doi.org/10.3389/fcimb.2020.564194
http://www.ncbi.nlm.nih.gov/pubmed/33520731
http://doi.org/10.1093/ntr/nty078
http://www.ncbi.nlm.nih.gov/pubmed/29697832
http://doi.org/10.1016/j.jchromb.2020.122349
http://doi.org/10.1016/j.jpba.2021.114477
http://doi.org/10.1183/23120541.00030-2021
http://doi.org/10.1371/journal.pone.0224365

	Introduction 
	Materials and Methods 
	Study Participants and Clinical Data 
	Direct Breath Analysis 
	Data Preprocessing 
	Satistical Analysis and Classification 

	Results 
	Study Participants 
	Validation of Breath Signatures 
	Classification Based on Breath Signatures 

	Discussion 
	Conclusions 
	References

