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Almost all therapeutic proteins are glycosylated, with the carbohydrate component playing
a long-established, substantial role in the safety and pharmacokinetic properties of this
dominant category of drugs. In the past few years and moving forward, glycosylation is
increasingly being implicated in the pharmacodynamics and therapeutic efficacy of
therapeutic proteins. This article provides illustrative examples of drugs that have
already been improved through glycoengineering including cytokines exemplified by
erythropoietin (EPO), enzymes (ectonucleotide pyrophosphatase 1, ENPP1), and IgG
antibodies (e.g., afucosylated Gazyva

®
, Poteligeo

®
, Fasenra™, and Uplizna

®
). In the

future, the deliberate modification of therapeutic protein glycosylation will become
more prevalent as glycoengineering strategies, including sophisticated computer-aided
tools for “building in” glycans sites, acceptance of a broad range of production systems
with various glycosylation capabilities, and supplementation methods for introducing non-
natural metabolites into glycosylation pathways further develop and become more
accessible.

Keywords: glycoengineering, pharmacodynamics, pharmacokinetics, therapeutic, glycosylation, N-glycans,
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1 INTRODUCTION

This report describes the impact of glycosylation on the pharmacokinetics, pharmacodynamics,
therapeutic activity, and production (biomanufacturing) of therapeutic proteins using several
examples that illustrate strategies and methods to glycoengineer this important class of drugs for
increased effectiveness. In Section 2, we describe how glycosylation affects the pharmacokinetics
(PK) of protein-based drugs; defined simply, PK is the study of the effects of the body on a drug
including absorption, distribution, metabolism, and excretion. Next, in Section 3 and Section 4, we
describe how glycosylationmodulates a drug’s pharmacodynamic (PD) properties, which are defined
as the effects of the drug on the body and the body’s biochemical and physiological responses to a
drug. More specifically, Section 3 covers several classes of therapeutic proteins whose PD activities
depend on glycosylation, including enzymes, hormones, and blood-acting factors. Section 4 covers
therapeutic antibodies, which constitute the largest class of protein-based drugs and have unique
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glycosylation features compared to most proteins. Finally, in
Section 5 we provide an overview of methods for controlling
and modulating this glycosylation during the design and
biomanufacturing of therapeutic proteins. Throughout each
section we provide illustrative examples of therapeutic proteins
but emphasize that our examples are not complete or exhaustive.

Before covering these topics in detail, here in the Introduction
(Section 1), we briefly describe key concepts related to the
glycosylation of therapeutic proteins (Figure 1). With few
exceptions (e.g., regulatory peptides and small hormones such
as insulin), all therapeutic proteins have at least one, and often
several, N-glycans. Overall, approximately 50% of human
proteins are glycosylated, which governs their folding,
intracellular and extracellular trafficking, stability, circulatory
half-life, and immunogenicity (Olden et al., 1982; Breitfeld
et al., 1984; Dwek 1996; Willey 1999; Dwek & Butters 2002).

Mammalian glycosylation is remarkably complex, consisting of
N-linked glycans, O-linked glycans, C-linked glycans,
phosphoglycosylation, and glypiation. In this article, we will
almost exclusively discuss N-linked glycosylation, because
clinical translational glycoengineering efforts have
overwhelmingly focused on this type of glycosylation to date.

From a biochemical perspective, virtually all cell surface or
secreted proteins (i.e., candidates for drug development) are
N-glycosylated, which occurs co-translationally when the lipid-
linked oligosaccharide (LLO) GlcNAc2Man9Glc3 14-mer
structure is added to a consensus sequon (Figure 1A, Step 1).
This structure is critical for chaperone-mediated protein folding
in the endoplasmic reticulum (ER) (Helenius & Aebi 2001),
where the three glucose residues are sequentially trimmed
during the folding process (Figure 1A, Step 2). Successfully
folded proteins with a GlcNAc2Man9, or a slightly trimmed

FIGURE 1 | Overview of mammalian N-glycosylation. (A) Step 1. The LLO 14-mer structure shown (GlcNAc2Man9Glc3) is co-translationally transferred from
dolichol phosphate to an asparagine residue of a nascent unfolded protein by oligosaccharyltransferase (OST) in the ER (Breitling & Aebi 2013). Step 2. Chaperone-
mediated protein folding occurs concomitant with glucose trimming, generating a (in Step 3) a GlcNAc2Man9 or GlcNAc2Man8 structure that functions as an export signal
for the transfer of successfully folded proteins to the Golgi (Helenius & Aebi 2001). (B) In the Golgi, further trimming of mannose residues occurs to produce a series
of GlcNAc2Mann structures referred to as “high mannose”-type N-glycans, where n is typically between 3 and 6. (C) Also in the Golgi, one, two, or three GlcNAc residues
are added to a GlcNAc2Mann structures, which can be further elaborated (e.g., with galactose and sialic acid, as shown) producing “hybrid” type N-glycans when a single
GlcNAc is added to a GlcNAc2Mann structure. Hybrid N-glycans typically are low in abundance and have few known roles in therapeutic proteins. A larger proportion of
N-glycans have GlcNAc residues added to both terminal mannose residues of the GlcNAc2Man3 structure, most frequently resulting in small biantennary structures
(Werz et al., 2007) such as those shown in Panel (D), where the glycoprofile of IgG Fc domain N-glycans from one study (del Val et al., 2016) are shown rank ordered by
their relative abundance. (E)A relatively small proportion (generally 5% or less) of N-glycans are further elaborated, resulting in epitopes such as (i) sialyl Lewis x (sLex), the
H, A, and B blood type antigens [(ii), (iii), and (iv), respectively]; (v) tri- and (vi) tetra-antennary structures that can be unsialylated to fully sialylated (vii); and finally certain
N-glycans have extended “LacNAc” repeats (four are shown) that can serve as preferred ligands for certain receptors, such as the hemagglutinin protein of the influenza
virus (Ji et al., 2017), whereas glycans from EPO can have single LacNAc repeats (Cowper et al., 2018).

Frontiers in Chemistry | www.frontiersin.org April 2022 | Volume 10 | Article 8631182

Dammen-Brower et al. Strategies for Glycoengineering Therapeutic Proteins

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


GlcNAc2Man8 structure (Figure 1A, Step 3), are exported to the
Golgi where mannosidases trim additional mannose residues,
ultimately resulting in GlcNAc2Man5 to GlcNAcMan3 structures
(Figure 1B). In some cases, these “high mannose” glycans appear
on mature proteins without further processing and affect the
proteins’ distribution and by extension, their bioactivities. In
other cases, the resulting GlcNAc2Mann glycans are precursor
structures for further elaboration in the Golgi, forming hybrid
(Figure 1C) and complex type N-glycans. In most cases, the
ultimate complex type N-glycans are relatively small in size; for
perspective, ~90% of mammalian glycans are comprised of 12 or
fewer monosaccharides (Werz et al., 2007), which covers the size
range for Fc-domain glycans of IgG antibodies (Figure 1D). Less
frequently, complex type N-glycans can be considerably larger
(Figure 1E), as found on therapeutic proteins such as
erythropoietin (EPO).

2 PHARMACOKINETICS

Historically, the effects of glycosylation on therapeutic proteins
were first evident through changes to their pharmacokinetic (PK)
properties (Liu 2015; Liu 2018; Boune et al., 2020). Accordingly,
we begin by describing the impact of glycosylation on the PK of
protein drugs. Definitions of PK include “the movement of drugs
through the body” or “the study of what the body does to a drug,”
and includes a drug’s absorption, distribution, metabolism, and
excretion; this set of metrics is typically abbreviated “ADME”
(Tibbitts et al., 2016).

2.1 Serum Clearance
One of the earliest contexts where glycosylation was recognized to
be important for therapeutic proteins was through serum
clearance. This endpoint was evident from studies with
erythropoietin (EPO), a drug that pioneered the importance of
glycoengineering for improving biologics. Specifically,
glycoengineering improved the PK properties of EPO by
modulating two ways that glycans contribute to serum
clearance, and ultimately, drug elimination. These mechanisms
are kidney filtration, which can be slowed by increasing the size of
a protein by adding N-glycan sites (Section 2.1.1) and avoiding
receptor-mediated clearance by the asialoglycoprotein receptor
[(ASPGR) Section 2.1.2] or the mannose receptor [(MR)
Section 2.1.3].

2.1.1 N-Glycans Add Steric Bulk and Increase
Hydrodynamic Radius to Avoid Kidney Filtration
The efficiency of kidney filtration rapidly increases as protein’s
size falls below ~40 kDa; for example, the glomerular sieving
coefficient of the anionic form of horseradish peroxidase (40 kDa)
is 0.007, compared to 0.33 for superoxide dismutase (~32 kDa)
and 0.75 for myoglobin (16.9 kDa) (Maack et al., 1979; Tsao et al.,
1991). Erythropoietin has a molecular weight of ~18.4 kDa based
on its amino acid sequence, suggesting that it should experience
kidney filtration similar to myoglobin. Although wild-type EPO is
cleared from the serum relatively rapidly [its half-life ranges
between 5 and 11 h (Elliott et al., 2008)], EPO produced with

truncated N-glycans had substantially (~7-fold) faster clearance
(Wasley et al., 1991). The glycosylation of EPO has now been
thoroughly characterized, with the protein’s three N-glycans
contributing ~12 kDa of the glycoprotein’s total mass of
~30.4 kDa; each N-glycan is typically a tri- or tetra-antennary
structure that is highly sialylated and often has LacNAc repeats
(Figure 1E). These large glycans are particularly effective at
avoiding glomerular filtration, because unlike amino acid
chains that fold into compact proteins, they are fully extended
in the aqueous physiological milieu; furthermore, they are motile,
allowing them to “sweep out” space.

These two factors enable glycans to increase the
hydrodynamic radius of a protein more effectively than a
commensurate increase in peptide mass; for example,
RNAse is a ~15 kDa protein whose hydrodynamic radius is
doubled through attachment of a small, biantennary N-glycan
of ~2 kDa (Dwek 1996). Similarly, the size of glycosylated EPO
is dramatically larger than non-glycosylated EPO (Figure 2A).
Although the larger size of naturally-glycosylated EPO
improves its serum longevity by ~7-fold compared to
aglycosylated protein (Wasley et al., 1991), its molecular
weight of ~30.4 kDa suggested that further improvements
were possible because proteins greater than ~40 kDa have
even lower glomerular sieving coefficients; for example, the
coefficient for superoxide dismutase [32 kDa] of 0.33 is
reduced to 0.007 for horseradish peroxidase [40 kDa].
Accordingly, the addition of two N-glycans to EPO to form
hyper-glycoengineered darbepoetin alfa (Aranesp®)
(Figure 2A) increased the drug’s molecular weight to
~37–38 kDa, slowing serum clearance from ~8 to ~25 h
(Macdougal 2002; Egrie et al., 2003; Elliott et al., 2008).

A limitation to glycoengineering strategies designed to
avoid glomerular sieving and concomitant kidney filtration
is that they depend on the target protein being appropriately
sized. On one hand, if a protein or peptide is too small (e.g.,
insulin and/or interleukins), it may not be possible to add a
sufficient number of N-glycans to enlarge the protein above the
~40 kD size threshold without loss of biological activity. In
particular, EPO illustrates how both the natural and
glycoengineered glycans are oriented towards one side of
the protein (Figure 2A). In retrospect, this orientation was
critical to avoid steric interference with its binding to its
partner proteins; similarly fortuitous submolecular siting of
built-in glycans may not be possible for all therapeutic
proteins. In other cases, [e.g., ENPP-1 (Section 2.2.1) and
therapeutic antibodies (Section 4)], the proteins are already
above the threshold for kidney filtration, and any further
increase in steric bulk is unlikely to provide additional
improvement in serum longevity. In other words, EPO was
ideally situated for glycoengineering due to its size, which was
marginally below the threshold where glomerular sieving
becomes ineffective. Nevertheless, the “size matters”
principle is likely to benefit at least some additional
therapeutic proteins. For example, efforts are underway to
produce glycoengineered insulin (Guan et al., 2018) and
glucagon (Higashiyama et al., 2018; Ichikawa et al., 2018);
addition of glycans will substantially increase the
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hydrodynamic radius of these small proteins, potentially
slowing kidney filtration.

2.1.2 Sialylation Masks Asialoglycoprotein
Receptor-Mediated Clearance
As just discussed, adding steric bulk to a therapeutic protein via
glycosylation can be an effective albeit limited strategy to improve
PK properties. A more general glycan-related clearance
mechanism involves receptor-mediated cellular uptake by
lectin receptors. The dominant example of this mechanism
involves hepatic clearance of serum proteins via the
asialoglycoprotein receptor [ASGPR (Ashwell & Harford
1982)]. The ASPGR functions by multivalent recognition of
the terminal galactose residues of non-sialylated N-glycans,
rapidly depleting the host proteins from circulation (Schwartz
1984; Weigel 1994) (Figure 2B). The effectiveness of this
mechanism for removing “aged” proteins from the serum as
they lose their terminal sialic acids over time, thereby exposing
their otherwise penultimate galactose moieties, is illustrated by
deliberately desialylated EPO, which has a serum half-life of
~10 min. By contrast, normally sialylated EPO has a serum

half-life ranging from 5 to 11 h (Elliott et al., 2008). The
increased serum longevity of darbepoetin alfa is not only
attributed to increased size (Figure 2A) but also to
hypersialylation, having as many as 22 copies of sialic acid
(Elliot et al., 2000), which helps it avoid ASGPR clearance
(Figure 2B). This pioneering example illustrates the general
importance of high sialic site acid occupancy for prolonged in
vivo circulation of therapeutic proteins. As an aside, sialic acid can
improve the safety of therapeutic proteins by a similar masking
mechanism where this sugar obscures underlying antigenic
epitopes, reducing the generation of neutralizing antibodies
(Bork et al., 2009; Li & d’Aniou 2009).

2.1.3 Mannose Receptor-Mediated Glycoprotein
Clearance
Glycoproteins also can be recognized by mannose-binding
receptors (MRs) on various cell types, including hepatocytes,
fibroblasts, and endothelial cells, as well as by immune cells such
as macrophages and dendritic cells (Schlesinger et al., 1978;
Sheikh et al., 2000). These receptors have multiple functions.
One function is to rapidly clear proteins with high mannose-type

FIGURE 2 | N-glycans influence the clearance of therapeutic proteins based (A) on size and (B) receptor-mediated clearance. (A) Unglycosylated EPO (top) is
compared with naturally glycosylated EPO, which has three N-glycans at Asn24, N38, and N83 (middle) and with darbepoetin alfa, which has five glycans including those
newly-added at Asn30 and N88 (bottom). The glycan structures depicted are representative of the experimentally-determined N-glycan profile of EPO (Cowper et al.,
2018), in particular the structure shown in Figure 1E(vii). Protein models were generated using SWSS-MODEL software (Waterhouse et al., 2018) and modified to
present N-glycan structures via CHARMM (Jo et al., 2008) and PyMOL (PyMOL Molecular Graphics System, Version 2.0, Schrödinger, LLC). The darbepoetin alfa
sequencewas obtained from the KEGGDrug database. (B) Lectin receptor-mediated clearance removes proteins from circulation through ASPGR binding of galactose-
terminated glycans (top left); addition of sialic acid masks the galactose blocking binding and clearance (top right). Mannose-terminated glycans bind to mannose
receptors on macrophages, dendritic cells, dermal fibroblasts, and keratinocytes, resulting in clearance or, in some cases, therapeutic activity [for example to treat
Gaucher disease (Section 2.3.3)].
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glycans (Figure 1B), as well as GlcNAc and fucose-containing
glycans (Feinberg et al., 2021), such as the glycoprotein hormone
lutropin. In general, these receptors help maintain serum
glycoprotein homeostasis (Roseman & Baenziger 2000; Lee
et al., 2002). A second function of MRs is to facilitate the
phagocytosis of pathogens such as Candida albicans,
Pneumocystis carnini, and Leishmania donovan whose surfaces
are covered with mannose-terminated glycans. These glycans
allow the removal of these pathogens from the host by
macrophages as well as by non-immune cells that also express
mannose receptors such as keratinocytes (Szolnoky et al., 2001;
Gazi & Martinez-Pomares 2009). A third and also
immunomodulatory function of MRs is to enhance soluble,
but not cell-associated antigens, for cross-presentation
(Burgdorf et al., 2006).

Another aspect of human immune response to pathogens is
the generation of inflammatory glycoproteins such as hydrolases,
tissue plasminogen activator, and myeloperoxidase, which can be
damaging to host tissues if retained after the infection has been
resolved; high-mannose glycans on these glycoproteins provide
these conditionally protective factors with quick clearance via
cells withMRs, helping to avoid post-infection damage to the host
(Lee et al., 2002; Gazi & Martinez-Pomares 2009). From a drug
development standpoint, the ability of certain cells to internalize
mannose-terminated glycans has been exploited to direct
therapeutic proteins to cell types such as macrophages, as
described for Gaucher’s disease in Section 2.3.3.

2.1.4 IgG Antibodies: An Exception to Rapid Clearance
Therapeutic antibodies, which to date are almost all IgGs, are
outliers compared to other therapeutic proteins because they are
not subject to the two “universal” clearance mechanisms just
discussed (size-based kidney filtration and glycan-based receptor
clearance). First, IgG antibodies are large (~150 kD), well above
the size range susceptible for kidney filtration. Second, the
N-glycans of commercial IgG antibodies are uniquely oriented
inwards, being “buried” between the two Fc region protein
domains, making them largely inaccessible to ASGPR
clearance despite their low sialylation status (Figure 1D). In
addition to glycan-based clearance mechanisms, the Fc domain of
IgG antibodies binds to the neonatal Fc receptor, which directs
intracellular trafficking to avoid proteosomal degradation upon
uptake into the cell by re-releasing the antibody into circulation.
These factors provide therapeutic antibodies with in vivo half-
lives ranging from several days to many weeks (Ryman &
Meibohm 2017; Liu 2018; Ovacik & LIn 2018) instead of the
several hours typical of most other protein-based drugs. For
example, the half-life of the commercial anti-HER2 antibody
drug trastuzumab is 28 days (Boekhout et al., 2011), even though
only ~1.1% of its Fc N-glycans are sialylated (Nakano et al., 2009).

2.2 Absorption and Distribution
Unlike the well-known role for glycosylation in the elimination of
therapeutic proteins and in already-approved glycoengineered
drugs such as darbepoetin alfa that exploit glycans for improved
circulatory half-life, the role of glycoengineering in modulating
the absorption and distribution of these drugs throughout the

body is in relative infancy. Nevertheless, two case studies
(ENPP1-Fc, Section 2.2.1 and hyaluronidase, Section 2.2.2)
demonstrate the intriguing potential for exploiting
glycoengineering to improve the absorption and
biodistribution of therapeutic proteins. In this discussion, we
focus on subcutaneous delivery. Subcutaneously injected
therapeutics have been popular for their potential convenience
for physicians, patients at greater risk for systemic reactions, and
those in which constant venous access is difficult to maintain
(particularly infants) (Turner & Balu-Iyer 2018). Furthermore,
subcutaneous delivery often allows patient self-administration,
reducing the cost, stress, and inconvenience of repeated
administration at a healthcare center. These benefits have
made subcutaneous administration appealing to a growing
number of therapeutic proteins, including cytokines, human
insulin, and immunoglobulins (Turner & Balu-Iyer 2018).

2.2.1 Absorption of Glycoengineered ENPP-1
Despite the many benefits of subcutaneous administration, this
method is limited in the volume that can be infused, and perhaps
more importantly, the bioavailability of the therapeutic following
injection. In one study, a glycoengineering strategy dramatically
improved the bioavailability of subcutaneously delivered ENPP1-
Fc. As a brief introduction, ENPP1 is ectonucleotide
pyrophosphatase/phosphodiesterase 1, a blood enzyme whose
deficiency results in generalized arterial calcification of infancy
(GACI), a potentially lethal disease (Ferreira et al., 2021). Wild-
type ENPP1 has a short serum half-life of ~5 h when used for
enzyme replacement therapy (ERT), necessitating thrice a day
dosing in a mouse model of GACI for therapeutic effectiveness.
Braddock’s research team first took a protein engineering
approach by fusing an IgG Fc domain to ENPP1 (Martins
et al., 2016). The resulting ENPP1-Fc construct had a
substantially improved serum half-life of ~37 h (Figure 3A)
but nonetheless relatively modest bioavailability when
delivered subcutaneously (Albright et al., 2016). By taking a
glycoengineering approach and adding a fifth N-glycan site to
ENPP1-Fc through an I256T mutation (Figure 3B; the
methodology for adding N-glycans to therapeutic proteins is
outlined in Section 5.1.3), the serum half-life almost doubled
(from 37 to 67 h; Figure 3F), while a surrogate measure of
bioavailability, the cumulative “area under curve” (AUC) value
for enzyme activity in the serum, increased dramatically by 794%
from 3,400 to 27,000 units (Stabach et al., 2021).

As a caveat, the biochemical mechanism for the PK
improvements for ENPP1-Fc remain incompletely defined; for
example, unlike the “size matters” improvement when N-glycans
were added to EPO (Figure 2), ENPP1-Fc is already a large-sized
protein, making it unlikely that avoidance of kidney filtration was
involved in its improved serum longevity. A straightforward
explanation, such as increased enzyme activity for the I256T
glycoform, was ruled out by measurements that show that the
enzyme’s catalytic activity was affected negligibly (Stabach et al.,
2021). Instead, it is plausible (but not experimentally verified)
that reduced access of serum proteases to exposed protein
surfaces protected by the newly-added glycan reduced
degradation (Section 2.3.2), concomitantly increasing serum
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longevity. The increase in apparent bioavailability evidenced by
the I256T glycoform’s dramatic AUC increase is also
unexplained; a specific structure-activity response appears to
be involved insofar as only one of over 50 glycovariants of
ENPP1-Fc created in the study gained such a dramatically
improved ability to effectively extravasate from the
subcutaneous compartment into circulation (Stabach et al.,
2021). At present, it is unknown if the mechanisms involved
will apply to therapeutic proteins in general or whether they are
unique to ENPP1-Fc.

2.2.2 Hyaluronidase-Assisted Subcutaneous Delivery
of Therapeutic Proteins
Unlike the addition of an N-glycan to ENPP1-Fc that
serendipitously improved its PK properties, hyaluronidase
provides a broader approach to facilitate the absorption and

bioavailability of subcutaneously-delivered therapeutics.
Hyaluronan contributes to inefficient bioavailability of
subcutaneously-injected drugs by endowing the hypodermis
with viscoelastic properties that prevent bulk fluid flow of
liquids or the diffusion of drug molecules, in particular high
molecular weight therapeutic proteins (Frost 2007).
Recombinant human hyaluronidase (rHuPH20)
enzymatically degrades hypodermal hyaluronan, helping to
overcome this impediment for subcutaneous drug delivery
(Frost 2007; Wasserman 2017; Liu et al., 2021). One
example of hyaluronidase’s efficacy is for subcutaneous
delivery of IgG to treat primary immunodeficiency diseases
(PIDDs) where regular and prolonged bioavailability of
antibodies is essential (Wasserman 2017). In a second
example, hyaluronidase can degrade hyaluronan capsules
associated with tumors, increasing the accessibility and

FIGURE 3 | ENPP1 protein and glycoengineering. Improvements made to the pharmacokinetics of ENPP1 as reported by Stabach and coauthors (Stabach et al.,
2021) are summarized in this figure. (A) First, in previous work (Albright et al., 2016), the enzyme was fused to the immunoglobulin Fc domain to increase protein recycling
and serum recirculation through interactions with the neonatal Fc receptor (Albright et al., 2016); this “parent” construct had a serum half-life of 37 h and an AUC of 3,400
as depicted graphically in Panel (F). (B) Addition of an N-glycan site was achieved through the I256T mutation to ENPP1 resulting in addition of the glycan to
Asn254; this newly added N-glycan approximately doubled serum half-life and octupled the AUC value. (C)Mutation of Met, Ser, and Thr (MST) that increase affinity for
the neonatal Fc receptor (Vaccaro et al., 2005) were introduced into ENPP1-Fc Fc’s domain, further improving both serum half-life and AUC. Finally, two approaches to
increase sialylation including (D) production of ENPP1-Fc in α2,6-sialyltransferase overexpressing CHO cells and (E) supplementation of the culture medium with the
sialic acid metabolic precursor 1,3,4-O-Bu3ManNAc sequentially further increased serum half-life (to a final value of 204 h) and the AUC value (to 45,000).
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effectiveness of anti-cancer drugs (Shuster et al., 2002;
Whatcott et al., 2011; McAtee et al., 2014; Kohi et al., 2016;
Maneval et al., 2020).

2.3 Metabolism: Enzymatic Modification
and Intracellular Trafficking
The term “metabolism” (i.e., the “M” in ADME) is broadly
defined in this article to include any host-mediated enzymatic
modification of a therapeutic protein, including catabolic
(Section 2.3.1) and biosynthetic (Section 2.3.2) activities,
as well as aspects of intracellular trafficking (Section 2.3.3).

2.3.1 Serum Sialylation and Desialylation
As mentioned above, a major determinant of serum longevity
is the sialylation status of many types of therapeutic proteins
through shielding from ASGP receptor-mediated clearance.
Accordingly, efforts are made to fully sialylate therapeutic
proteins as practical; for example, EPO produced in CHO
cells has sialic acid occupancy of 70–85% up to as high as 99%
[i.e., ~22 sialic acids per molecule of darbepoetin alfa (Elliot
et al., 2000; Egrie & Browne 2002)]. Once in circulation,
sialidase present in the serum stochastically remove sialic
acids over time. As proteins become less and less sialylated,
the loss of this terminal sugar functions as a molecular clock
leading to the clearance of older and damaged proteins by the
ASGPR. More recently, the idea has emerged that biosynthetic
sialylation can also occur in the serum; in particular, sialic acid
is added to the Fc glycans of circulating IgG antibodies. In
rodents, the sialylation of IgG N-glycans is linked to secreted
ST6Gal1 produced by liver epithelial cells and CMP-sialic acid
leached into the serum by degranulating platelets (Jones et al.,
2016). This naturally-occurring precedent for post-production
modification of immunomodulatory proteins (Johnson et al.,
2013), along with the commercial availability of reasonably-
priced sialyltransferases, has opened the door for cell-free
glycoengineering of protein therapeutics (Section 5.1.2).

2.3.2 Glycan Shielding of Protease Activity
Recently, the SARS-CoV-2 virus has provided a dramatic
example of how glycans can shield a protease cleavage site.
For this virus (Casalino et al., 2020; Gong et al., 2021), and
others such as influenza (Tong et al., 2003), heavy
glycosylation is advantageous for evading host immunity
by shielding underlying immunogenic foreign epitopes of
the viruses. Conversely, the furin protease cleavage site
that mediates cell infectivity of SARS-CoV-2 is sterically
shielded by nearby glycans, providing evolutionary
pressure for reduced glycosylation (Zhang et al., 2021).
Based on this precedent, the addition of glycans to
therapeutic proteins has been considered for protection
from proteases that cleave proteins during degradation,
although a potential downside is loss of the protein’s
biological function. Indeed, an original impetus for adding
N-glycans to ENPP1-Fc (Figure 3) was to protect the enzyme
from proteases (Stabach et al., 2021). Guan and others added
an O-linked tri-mannose structure to insulin, enhancing its

proteolytic stability and decreasing unwanted aggregation
while maintaining biological activity (Guan et al., 2018). In
addition to protection from protease degradation, N-glycans
play multiple auxiliary roles in protein stability by protecting
proteins from oxidation, aggregation, pH-induced damage,
and thermal degradation (Qun & Qiu 2019).

2.3.3 Intracellular Trafficking
Another way that glycosylation can affect protein
degradation, although indirectly, is through intracellular
trafficking. A naturally-occurring example is the impact of
hybrid and complex N-glycans on the cell surface vs.
lysosomal/endosomal targeting of endogenously-produced
sodium potassium chloride cotransporter NKCC1 encoded
by SLC12A2 (Singh et al., 2015). A second example is that
increased sialylation weakens the galectin lattice and directs
the epidermal growth factor receptor (EGFR) for degradation
instead of surface recycling (Lajoie et al., 2007; Mathew et al.,
2016). The ability to modulate subcellular trafficking through
N-glycan composition led to the use of glycoengineering to
create successful enzyme replacement therapy for Gaucher
disease (GD). For context, initial efforts in the 1970s to use
unmodified human β-glucocerebrosidase to treat GD were
unsuccessful because macrophages (the target cells in this
disease) did not bind and internalize this enzyme when it was
isolated from natural sources (Tekoah et al., 2013); it was
later discovered that the enzyme’s inefficient uptake could be
ameliorated through a glycoengineering approach.

Specifically, upon discovery that glycans with exposed
terminal mannose residues facilitated macrophage uptake
of β-glucocerebrosidase (Friedman et al., 1999; Sato &
Beutler 1993), glycoengineered versions of this enzyme
were created to treat GD. The first version made was
imiglucerase (Cerezyme®) produced in CHO cells and
modified enzymatically after production to expose
mannose, resulting in ~40–60% of exposed Man3
structures (Figure 1B). A second version, velaglucerase
alfa (Vpriv®) is produced in human fibroblast carcinoma
cells and achieves ~100% exposed Man5-Man9 residues
through treatment of the production cells with
kifunensine, a mannosidase I inhibitor; this drug has ~2-
fold greater internalization into macrophages compared to
imiglucerase, showing the importance of glycosylation in
therapeutic efficacy (Brumshtein et al., 2010). Taliglucerase
alfa (Elelyso®) is a third version of therapeutic β-
glucocerebrosidase; it is produced in a carrot cell-based
production system and achieves ~100% exposed Man3
residues without in vitro processing or mannosidase
inhibitors. Taliglucerase alfa has increased uptake into
macrophages compared to imiglucerase (Shaaltiel et al.,
2007), presumably because of its completely unshielded
terminal Man3 groups. This example of multiple
competing products to treat GD, using alternative methods
to control glycosylation towards the common goal of exposed
terminal mannose residues, illustrates the benefits of flexible
biomanufacturing platforms that tailor glycosylation for
individual diseases, as outlined in Section 5, below.
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3 IMPACT OF GLYCOSYLATION ON
PHARMACODYNAMICS AND BIOLOGICAL
ACTIVITY
Here, in Section 3, we describe how biochemical interactions
mediated through glycosylation affects a drug’s
pharmacodynamic (PD) properties, which are defined as the
body’s biological response to a drug [i.e., what the drug does
to the body; the word comes from the Greek “pharmakon”
meaning drug and “dynamikos” meaning power (Marino
et al., 2021)]. Pharmacodynamic properties are broad,
including receptor, cofactor, and ligand interactions as well as
virtually all other biological activities of a protein (Marino et al.,
2021). Therapeutic proteins fall into several categories; in this
report, we cover therapeutic enzymes in Section 3.1, hormones in
Section 3.2, and blood proteins in Section 3.3 (therapeutic
antibodies are covered in Section 4), providing examples
illustrating how glycans impact the PD properties of these
drugs and how glycoengineering can improve therapeutic
efficacy.

3.1 Enzymes
3.1.1 Hyaluronidase
The biological activity of hyaluronidase, the enzyme that
facilitates subcutaneous drug delivery through transient
solubilization of hyaluronan in the hypodermis (Section
2.2.2), depends on glycosylation. Recombinant human
hyaluronidase (rHuPH20) is heavily glycosylated with size
N-glycan sites (Asn47, Asn131, Asn200, Asn219, Asn333, and
Asn358) that are all modified with high mannose type N-glycans
(Frost 2007; Liu et al., 2021) (Figure 1B). As discussed above
(Section 2.3.3), high mannose structures target proteins for
clearance via MRs; hyaluronidase’s glycosylation status also
affects its biological activity, and by extension its PD
properties (Liu et al., 2021). Specifically, PNGase removal of
its N-glycans decreased enzymatic activity of rHuPH20 by ~80%
in an in vitro assay; in a corresponding in vivo test, aglycosylated
rHuPH20 dramatically reduced trypan blue dispersion (a
surrogate measure of drug diffusion) in a mouse model when
compared with naturally-glycosylated enzyme (Liu et al., 2021).
This study illustrated how N-glycosylation was necessary for
rHuPH20 to solubilize host hyaluronan (i.e., a PD effect) for
facilitating subcutaneous delivery of a second drug (i.e., a PK
effect). As the complex interplay between such PK properties and
PD endpoints becomes more widely appreciated, the growing
toolkit to glycoengineer therapeutic proteins (Section 5) to
optimize both endpoints is becoming increasingly important.

3.1.2 Esterases
Esterases are a diverse family of enzymes that have several
pharmaceutical roles. In some cases, reminiscent of the role of
hyaluronidase in improving subcutaneous drug delivery, esterases
augment the effectiveness of a second drug. For example,
esterases activate pro-drugs such as the Alzheimer’s drug
tacrine (Bencharit et al., 2003), doxazolidine carbamates
(Burkhart et al., 2006), the breast cancer drug tamoxifen
(Fleming et al., 2005), the influenza drug oseltamivir (Shi

et al., 2006), and hexosamine analogs used in metabolic
glycoengineering (Mathew et al., 2017; Sarkar et al., 1995;
Wang et al., 2009) (Section 5.1.5). Esterases also detoxify
narcotics such as cocaine and heroin (Pindel et al., 1997) as
well as chemical warfare agents such as soman and tabun
(Fleming et al., 2003). Finally, these enzymes are being
investigated for the direct treatment of diseases such as
Alzheimer’s (Greig et al., 2002; Nordberg et al., 2013; Saez-
Valero et al., 2000), Similar to hyaluronidases, glycosylation
modulates both the enzymes’ PK and PD properties (Kolarich
et al., 2008; Schneider et al., 2013; Weikert et al., 1994; Xu et al.,
2015). In particular, sialylation is important for prolonging serum
circulation (Chitlaru et al., 1998; Fukami & Yokoi 2012) and
glycosylation affects the catalytic activity of several esterases
including human acetylcholinesterase (Velan et al., 1993),
human carboxylesterase 1 (Arena de Souza et al., 2015; Kroetz
et al., 1993), and human carboxylesterase 2 (Alves et al., 2016). In
one example of how glycoengineering can improve esterases, a
metabolic glycoengineering approach (Section 5.1.5) using 1,3,4-
O-Bu3ManNAc to sialylation (Section 5.1.5) increased
sialylation of glycans situated at the interface of trimeric units
of carbosylesterase one; in silico modeling indicated that these
glycans increased the stability of the multimeric, active form of
this enzyme (Mathew et al., 2017).

3.2 Hormones: Hypoglycosylated
Follitropins
In many cases, gain-of-glycosylation (e.g., increased sialylation or
newly-added N-glycans) improve PK or PD properties of
therapeutic proteins. In some cases, however, reduced
glycosylation can be beneficial, as is illustrated by the follicle
stimulating hormone (FSH). This hormone is produced in the
anterior pituitary and travels through the circulation to gonodal
cells where it interacts with FSH receptors (FSHRs) to promote
follicle development in women and spermatogenesis in men
(Daya 2004; Davis et al., 2014; Ulloa-Aguirre et al., 2018).
Therapeutically, recombinant FSH or follitropins can
substitute for naturally-occurring FSH deficiencies to treat
infertility (Dias & Ulloa-Aguirre 2021).

Endogenous FSH consists of an alpha and beta subunit; both
have two putative sites of N-glycosylation. The alpha subunit is
consistently fully glycosylated with the beta subunit occupied
with zero, one, or twoN-glycans (Davis et al., 2014; Ulloa-Aguirre
et al., 2018; Dias & Ulloa-Aguirre 2021). The alpha subunit of
FSH plays a pivotal role in receptor interactions by engaging the
receptor-ligand interface (Ulloa-Aguirre et al., 2018; Dias &
Ulloa-Aguirre 2021). The importance of the glycosylation of
the alpha subunit is illustrated by the deletion of one glycosite
(at Asn78), which increases FSHR binding, while the removal of
its other N-glycan (Asn52) decreases efficacy (Ulloa-Aguirre
et al., 2018; Dias & Ulloa-Aguirre 2021). Similarly, removal of
the glycosylation sites on the beta subunit of FSH yielded
significantly greater bioactivity (Dias & Ulloa-Aguirre 2021).
Overall, hypoglycosylated FSH 9- to 26- fold more active than
its fully glycosylated variant but also experienced reduced in vivo
half-life, presumably due to loss of α2,3-siaylation (Ulloa-Aguirre
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et al., 2018). These experiments completely removed N-glycans at
each site and did not explore microheterogeneity leaving open the
intriguing possibility that fucosylation, sialylation, increased
glycan branching, or another property could be tuned to
optimize the glycosylation profile for FSH to meet the dual
but competing PK and PD requirements. Overall, FSH
demonstrates how glycosylation can have complex effects on a
therapeutic protein by augmenting one endpoint while
undermining the other, reinforcing the need for versatile
glycoengineering strategies to meet such competing demands.

3.3 Blood-Modulatory Proteins
Overall, therapeutic proteins are dominated by blood-acting or
blood-modulatory proteins (e.g., EPO and ENPP1-Fc, discussed
above and antibodies that largely function in the blood are the
largest class of therapeutic proteins; Section 4). Another category
of blood-regulatory proteins whose activity critically depends on
glycosylation are clotting factors that need to be administered
therapeutically for people with deficiencies in these proteins, such
as hemophilia patients. Deglycosylation diminishes the
conformational stability, activity, and macromolecular
interactions of coagulation factor VIII [FVIII (Kosloski et al.,
2009)] and decreases the effectiveness of factor XIII-B [FXIII-B
(Hurjak et al., 2020)]. Based on the importance of glycosylation in
blood clotting, efforts to produce coagulation factors in low-cost
hosts (e.g., in plant cells, Section 5.3.4) to increase availability for
patients are cognizant of the importance of maintaining
appropriate glycosylation; this topic is discussed extensively in
a review article by Top and coauthors (Top et al., 2019).

4 THERAPEUTIC ANTIBODIES

Monoclonal antibodies are the largest class of biotherapeutics on
the clinical market; in April 2021 the FDA approved its 100th
monoclonal antibody product, GlaxoSmithKline’s PD1 blocker
dostarlimab (Mullard 2021). The specificity, signaling versatility,
and half-life of antibodies, all of which are modulated by
glycosylation (Alter et al., 2018; Buettner et al., 2018; Irvine &
Alter 2020), make them potent and highly sought therapeutics
against a variety of diseases. Brian Cobb’s review article on
antibody glycosylation (Cobb 2020) partitions the history of
IgG glycosylation into two overlapping eras. The first era
began in the 1970s when research uncovered how
glycosylation contributed to the pro-inflammatory activities of
IgG antibodies. Based on almost half a century of foundational
knowledge, pro-inflammatory mAbs are now in clinical practice,
mainly designed to destroy cancer cells; these efforts are described
in more detail in Section 4.1. The second era of IgG glycosylation
can be traced roughly to Jeffrey Ravetch’s group’s discovery that
terminal α2,6-sialylation (Figure 4A) of IgG’s Fc glycans
endowed these antibodies with anti-inflammatory properties
(Kaneko et al., 2006). Efforts are underway to exploit these
antibodies for intravenous immunoglobin (IVIg) and other
therapies, as covered in Section 4.2. In the body, antibodies
typically have either pro- or anti-inflammatory activities but their
exquisite ability to bind to select targets—and by doing so

inactivate the activity of the marker—has led to the creation of
numerous blocking and neutralizing antibodies; as described in
Section 4.3; to date this class of therapeutics has found great
utility in cancer treatment by ablating the activity of oncoproteins
and intense efforts are devoted developing broadly neutralizing
antibodies for HIV-1. Finally, in Section 4.4 we outline
glycoengineering approaches to increase the potency of
antibody-drug conjugates.

4.1 Pro-Inflammatory Antibodies
As depicted in Figures 1D, 4A and described in detail elsewhere
(Pereira et al., 2018; Wang et al., 2018; Zafir et al., 2013), glycan
patterns on the conserved fragment crystallizable (Fc) region of
IgG antibodies have significant effects on an antibody’s pro-
inflammatory activities [e.g., antibody-dependent cellular
cytotoxicity (ADCC), antibody-dependent cellular phagocytosis
(ADCP), and complement-dependent cytotoxicity (CDC),
discussed here in Section 4.1] as well as their anti-
inflammatory activity (Section 4.2). Briefly stated, increasing
elaboration of an Fc N-glycan with galactose, core fucose, and
sialic acid increases anti-inflammatory activity, and antibodies
designed to induce ADCC, CDC, and ADCP benefit from the
absence of these monosaccharides (Buettner et al., 2018).

4.1.1 Mechanism(s)
The majority of pro-inflammatory antibodies now in clinical use
are designed to bind to tumor selective antigens and elicit
downstream effector responses (Ząbczyńska et al., 2020) that
kill the target cancer cells. Specific mechanisms of action include
ADCC, ADCP, and CDC where ADCC is a type of immune
reaction where the target cell becomes coated with the therapeutic
antibodies and then is lysed by immune effector cells that include
natural killer (NK) cells, macrophages, neutrophils, and
eosinophils. ADCP utilizes a similar process but the effector
cells, typically macrophages, phagocytose antibody-opsonized
target cells instead of lysing them. CDC is mediated by IgG
and IgM antibodies, which trigger the classical complement
pathway to lyse the target cells upon binding of the C1q
protein to the Fc region of Fcγ receptors. Naturally-occurring
unbalanced glycosylation profiles can lead to and/or exacerbate
pro-inflammatory ADCC and CDC in disorders, such as the
destruction of thyroid tissue in Hashimoto’s thyroiditis
(Ząbczyńska et al., 2020).

In general, with the effects of ADCC being the most
thoroughly studied, sialic acid and core fucose inhibit these
pro-inflammatory responses that often are desired in anti-
cancer antibodies. Mechanistically, the glycan composition
allosterically alters Fcγ receptor interactions, as reviewed in
detail elsewhere (Zafir et al., 2013; Pereira et al., 2018; Wang
et al., 2018). The IgG glycomes of human-derived antibodies are
highly fucosylated, with afucosylated IgG ranging from only
~1.3–19.3% in one study (Pucić et al., 2011); CHO cell-
produced IgG has a similarly high fucose occupancy of 90% or
more (Figure 1D). As discussed below (Section 4.1.2), the highly
fucosylated glycoprofile of CHO cell produced antibodies has led
to glycoengineering efforts to produce afucosylated mAbs to treat
cancer via ADCC. By contrast, anti-cancer IgG antibodies
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produced in industry-standard CHO cells have an attractive pro-
inflammatory profile insofar as 98% or more of the Fc domain
N-glycans are asialylated; nevertheless, emerging evidence
suggests that even residual levels of 2% or less sialic acid can
have a profound anti-inflammatory effects (Section 4.1.3).

4.1.2 Afucosylated Clinical Antibodies
Evidence that natural variations in Fc glycosylation impact IgG
antibody activity spurred efforts to produce afucosylated
therapeutic antibodies; for example, these antibodies have
superior anti-HIV-1 activity (Ackerman et al., 2013). As of
2018, there were three FDA-approved afucosylated antibodies:
Obinutuzumab (Gazyva®; targets CD20), Mogamulizumab
(Poteligeo®; targets CC chemokine receptor 4, and
benralizumab (Fasenra™; targets IL-5Rα), with more than 20
in clinical trials (Pereira et al., 2018). Since then, inebilizumab
[Uplizna®; targets CD19 to treat neuromyelitis optica spectrum
disorder (NMOSD) (Cree et al., 2019)] has been approved and
ublituximab, which targets CD20 to treat multiple sclerosis and
chronic lymphocytic leukemia is in the final stages of approval
(Fox et al., 2021).

Of these afucosylated antibodies, obinutuzumab and
mogamulizumab are both anti-cancer drugs where lack of
fucosylation increases ADCC, ADCP, or CDC potency against
tumor cells. For example, the afucosylated CD20-targeting drug
obinutuzmab activates neutrophils and mediates phagocytosis
more efficiently than rituximab, which is a normally fucosylated

CD20-targeting mAb (Golay et al., 2013). By contrast,
benralizumab blocks IL-5R signaling leading to ADCC-
mediated depletion of IL-5Rα-expressing eosinophils (Kolbeck
et al., 2010); in essence it is an anti-inflammatory mAb by leading
to the death of excess immune cells to treat severe eosinophil
asthma.

4.1.3 Asialylated Clinical Antibodies
From a practical perspective, the glycan profile of IgG therapeutic
antibodies produced in industry-standard CHO cells,
superficially at least, has an attractive pro-inflammatory profile
insofar as 98% or more of the drug copies are asialylated
(Figure 1D). As a result, unlike multiple efforts to reduce
fucosylation that already have been adopted for commercial
biomanufacturing and received regulatory approval, efforts to
reduce sialylation have lagged. Nevertheless, the importance of
reducing even the residual levels of sialic acid in therapeutic
antibodies was illustrated by a study of pertuzumab (Perjeta®,
Genentech), a mAb that binds to HER2, blocking its dimerization
and subsequent oncogenic signaling.

Although the mechanism of action of pertuzumab was
originally described as a conventional blocking/neutralizing
antibody (i.e., by blocking HER2 signaling in breast cancer), it
also has pro-inflammatory activity via ADCC and CDC. To
explore whether these activities could be augmented by
desialylation, Luo and coworker enzymatically removed sialic
acid from pertuzumab using neuraminidase, and observed an

FIGURE 4 | Carbohydrate epitopes relevant to therapeutic antibodies. (A) Sialic acid is found in human proteins in both α2,3-linkages (left) and α2,6-linkages
(center); α2.6-linked sialic acid is critical for providing IgG antibodies with anti-inflammatory characteristics (Kaneko et al., 2006) whereas α2,3-linked sialic acid are
effective at preventing ASPGR clearance (Ellies et al., 2002). The presence of the N-glycolylneuraminic acid (Neu5Gc, right) form of sialic acid on proteins produced in
non-human mammalian cells can be pro-inflammatory (Tangvoranuntakul et al., 2003; Samraj et al., 2015), which may or may not be desired in a therapeutic
protein. (B) The structure of the “α-Gal” trisaccharide epitope (left) is a major safety concern (Section 5.2.1); in human cells, the terminal alpha-linked galactose is not
added to a glycan until the penultimate masking α1,2-linked fucose (right) is installed, preventing the synthesis of the “naked” immunogenic α-Gal epitope. Incidentally,
the tetrasaccharide shown comprises the B-type blood antigen, whose present is a quality control parameter in IVIg therapy (Section 5.1.2).
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approximately five-fold increase in CDC and almost two-fold
increase in ADCC (Luo et al., 2017). These increases were
unexpectedly large, considering that the parent material was
only ~2.5% sialylated; the most plausible explanation for this
result was that these residual levels of sialylation potently inhibit
CDC and ADCC and neuraminidase treatment relieves this
inhibition.

In theory, as pertuzumab illustrates, the complete removal of
sialic acid (and fucose (Luo et al., 2017)) offers a way to improve
the efficacy of anti-cancer mAbs by facilitating CDC and ADCC.
However, as a counterargument to this strategy, pertuzumab has
a substantial number of deleterious side effects, including
diarrhea or constipation, hair loss, loss of neutrophils and red
blood cells, hypersensitive allergic reactions, decreased appetite,
insomnia, distorted taste perception, inflammation of the mouth
and lips, rashes, and muscle pain. Therefore, in practice,
increasing the pro-inflammatory potency of this drug could
exacerbate these side effects, reducing patient tolerance and
overall clinical efficacy. The “take-home” lesson is that in
principle it could be beneficial to glycoengineer anti-cancer
antibodies to increase their pro-inflammatory activities; in
practice, however, these efforts must be balanced by the
danger of exacerbating off-target side effects. The ability to
precisely tune the pro-vs. anti-inflammatory properties of IgG
antibodies has been demonstrated using chemoezymatic
synthesis; for example, homogeneous glycoforms of cetuximab
with Fab N-glycans with two, sialylated antennae and Fc
N-glycans with no fucosylation or sialyation have been
created. The end result was an antibody with equal binding
affinity to EGFR and increased affinity to FcγRIIIa, generating
stronger ADCC (Giddens et al., 2018).

4.2 Anti-Inflammatory Antibodies
4.2.1 Mechanisms
As outlined above (Section 4.1), the role of fucose and sialic acid
in the pro-inflammatory properties of therapeutic antibodies
(Pereira et al., 2018)) are now well established. The flip-side to
the necessary absence of both fucose and sialic acid for ADCC,
ACDP, and CDC is that the presence of these sugars is
beneficial–indeed, often required—for anti-inflammatory
antibodies. For example, even residual levels of sialylation
endow pertuzumab with potent anti-ADCC and anti-CDC
properties (Section 4.1.3 above). To quickly summarize the
role of these two sugars [along with galactose, which has a
more modest effect (Buettner et al., 2018)], they function as a
tunable on/off switch where their presence turns on the anti-
inflammatory properties of antibodies.

4.2.2 Immunoglobin G Therapy
Immunoglobulins from human donors are highly sialylated
(from 20 to 60% site occupancy) compared to IgG antibodies
produced in CHO cells (generally <2% and often <1%);
accordingly, they have potent anti-inflammatory properties
that can be attributed to their sialylation status (Li D. et al.,
2021). As a result, polyclonal immunoglobulin provides a non-
steroidal anti-inflammatory treatment safe for vulnerable
patients, including children and pregnant women. More

generally individuals with a broad range of autoimmune
diseases including secondary hypogammaglobulinemia,
recurrent infections, idiopathic thrombocytopenia purpura,
Kawasaki disease, polyneuropathies, and graft versus host
disease following organ transplantation (Barahona Alfonso &
João 2016). Therapeutic immunoglobulin is typically
administered intravenously as intravenous IgG (i.e., IVIg)
therapy at up to 2 g/kg every few weeks to months (or, in
rarer cases, subcutanoeus administration anti-inflammatory
antibodies is achieved through co-delivery with hyaluronidase
(Wasserman 2017)). With the continued growth of IgG therapy
(Li D. et al., 2021), donor supply is projected to be insufficient,
posing the quandary that CHO cell-produced recombinant IgG is
poorly-sialylated (<2% overall and completely lacking in FcyR-
modulating α2,6-sialic acids) and therefore lacking anti-
inflammatory properties.

4.2.3 Anti-Inflammatory Monoclonal Antibodies
Intravenous immunoglobulin (IVIg) therapy, by using pooled
samples from multiple donors contains immunosuppressive
antibodies against numerous epitopes and is broadly anti-
inflammatory. An alternative approach is the development of
anti-inflammatory monoclonal antibodies against single epitopes
for the treatment of non-cancerous indications. These efforts
began over 30 years ago with the development of the anti-TNFα
infliximab to treat rheumatoid arthritis (Semerano & Boissier
2009). Within the next two decades, several anti-inflammatory
monoclonal antibodies have been approved to treat not only
rheumatoid arthritis but also Crohn’s disease, ulcerative colitis,
spondyloarthropathies, juvenile arthritis, psoriasis, and psoriatic
arthritis (Kotsovilis & Andreakos 2014). Indeed, four of the first
five and the first seven of the first 10 FDA-approved mAbs were
for anti-inflammatory indications (Lu et al., 2020). Although no
longer as prolific as pro-inflammatory anti-cancer antibody
drugs, anti-inflammatory monoclonal antibodies still comprise
a substantial market share [e.g., including Orencia®, Humira®,
Kineret®, Cimzia®, Enbrel®, Simponi®, and Remicade® (Kotsovilis
& Andreakos 2014)]. The success of these drugs is exemplified by
Humira®, which, in 2018, had a market value of US$ 19.9 billion
(Lu et al., 2020). Up to now, the lucky happenstance that
industry-standard CHO cell production systems provide
monoclonal antibodies with anti-inflammatory properties due
to high fucosylation and residual 1–2% sialylation levels has
allowed clinical anti-inflammatory antibodies to be successful.
In the future, we predict that deliberate efforts to increase the
anti-inflammatory nature of these drugs, e.g., through increased
sialylation (Section 5.1), will make these drugs even more
effective.

4.3 Blocking/Neutralizing Antibodies
4.3.1 Mechanism(s)
In the body, the natural function of many antibodies is to have
either pro- or anti-inflammatory activity (e.g., as discussed above
in Section 4.1 and Section 4.2, respectively); many other
antibodies, however, have blocking and neutralizing action
(e.g., HIV-neutralizing antibodies). Naturally-occurring
neutralizing antibodies typically function by binding to a virus
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or microbe, which can, at a minimum, negate the pathogen’s
infectivity, and ideally target it for immune destruction. These
antibodies provide precedent to exploit this class of molecules to,
in theory, bind to any receptor and block its activity. These
neutralizing antibodies, also commonly referred to as blocking
antibodies, are currently the largest class of clinical FDA-
approved protein therapeutics; indeed, multiple blocking
antibodies exist for PD1/PDL1 (7 FDA approved drugs),
CD20 (6), TNF (4), HER2 (4), CGRP/CGRPR (4), IL-7/IL-6R
(4), IL23 p19 (3), EGFR (3) and CD19 (3) (Mullard 2021).

4.3.2 Early Cancer Treatment Monoclonal Antibodies
Were Blocking Antibodies
Immune checkpoint inhibitors are one of today’s most exciting
cancer immunotherapies, evidenced by the largest category (7 of
100) FDA-approvedmonoclonal antibodies being in this category
(Mullard 2021). Several of the first immunotherapies, particularly
for anticancer mAbs, also were blocking antibodies, including
rituximab (1997, CD20); trastuzumab (1998, HER2);
alemtuzumab (2001, CD52); and cetuximab (2004, EGFR) (Lu
et al., 2020). Of these, cetuximab is a notable example from almost
20 years ago that alerted the pharmaceutical industry and
regulatory agencies to the importance of glycosylation when
the α-Gal epitope posed a major safety concern, as discussed
below (Section 5.2.1). Interestingly, despite its early
development, cetuximab remains one of the few commercial
IgG mAbs that have a non-canonical Fab region N-glycan
(Ayoub et al., 2013; Janin-Bussat et al., 2013). In the future as
the role of Fab glycans in auto-antibody responses and auto-
immune diseases become better defined (van de Bovenkamp
et al., 2016; Van de Bovenkamp et al., 2018), we predict that
commercial mAb development will revisit this category of mAbs.

4.3.3 HIV Neutralizing Antibodies
Human immunodeficiency virus 1 (HIV-1) remains an elusive
and difficult-to-treat pathogen that causes acquired
immunodeficiency syndrome (AIDS). The viral envelope’s
negligible immunogenicity is attributed to its host-derived
glycan shield similar to SARS-CoV-2 and influenza (Section
2.3.2). Antibodies against the virus primarily target the
envelope spike glycoprotein (Env), the only viral protein on
the virus’ surface, which is expressed in three form: gp120,
gp140, and gp160 (Go et al., 2017; Heß et al., 2019; Seabright
et al., 2019; Offersen et al., 2020; Wang et al., 2020). The Env
protein is displayed sparsely on HIV-1, limiting the ability of
antibodies to crosslink and elicit an immunogenic response to
this virus. Nevertheless, certain individuals develop broadly
neutralizing antibodies (bNAbs) against Env (Go et al., 2017;
Seabright et al., 2019; Wang et al., 2020) that, although not
providing a complete cure, do suppress most deleterious
effects of HIV infection.

The capability of certain AIDS patients to produce bnAbs
against HIV-1 spurred interest in mimicking these antibodies to
produce effective vaccines. Engaging, or perhaps more precisely
thwarting, glycosylation is critical for enhancing the
immunogenicity of emerging HIV-1 vaccines. A longstanding
difficulty in developing an effective bNAb vaccine is the notorious

ability of HIV-1 to shift its glycosylation patterns (Wei et al.,
2003), generating entirely new profiles in response to the adaptive
immune response (Go et al., 2017; Offersen et al., 2020; Wang
et al., 2020); a well-known example involves the N334 position on
the Env protein (Seabright et al., 2019). As a counterpoint, bNAbs
to Env function by recognizing glycosylation patterns that are
conserved across clades of viral proteins, including atypical
oligomannose structures (Seabright et al., 2019; Wang et al.,
2020). Recent studies have focused on determining highly
conserved glycoprofiles across viral strains, metabolic activities,
and cell types (Wang et al., 2020) to facilitate bNAb-inducing
HIV-1 vaccine development.

The previous two paragraphs laid out challenges facing natural
immunity to HIV-1 infection, many of which result from viral
glycosylation. To turn the tables on the virus, intriguing
glycoengineering strategies have been directed towards treating
AIDS. In one pioneering effort, Song and coworkers describe how
the addition of an N-glycan to the HIV neutralizing antibody
ibalizumab (Trogarzo®) improves its efficacy (Song et al., 2013).
The added N-glycan helps fill “empty space” between the
antibody and viral epitope, thereby increasing the binding
interface and affinity. In this groundbreaking study, the glycan
was limited a the Glc2Man5 structure (Figure 1B); in the future,
follow-on glycoengineering efforts can further facilitate
ibalizumab-Env binding interactions, resulting in even more
potent neutralizing antibodies. (Strategies for attaining
improved glycoforms towards these objectives are provided in
Section 5 of this report.)

4.4 Antibody-Drug Conjugates
Antibodies are attractive drug delivery vehicles because their
binding specificity allows them to deliver payloads with
minimal off-target toxicity. As such, a variety of methods have
evolved to directly link a drug of interest to an antibody, thus
forming antibody-drug conjugates (ADCs). Conventional
chemical conjugation of drug payloads typically utilize the
amines of lysine or thiols of cysteine residues present in the
amino acid sequence of the antibody (Qasba 2015; Tang et al.,
2019). This approach results in heterogeneous ADCs with greater
susceptibility to aggregation, decreased antibody stability, or
cytotoxicity that together pose barriers to effective clinical use
and increase regulatory scrutiny.

These pitfalls have spurred researchers to create active,
homogenous ADC populations with one such class of these
drugs known as glycosite-specific ADCs (gsADCs) (Tang
et al., 2019). These glycoengineering strategies take advantage
of the conserved, biantennary N-glycosylation site present at the
asparagine 297 residue of the CH2 regions of the Fc domain. One
strategy uses metabolic glycoengineering to install thiol-modified
fucose in Fc domain glycans (Figure 6A), which can be used as a
chemical handle for drug conjugation (Figure 5A, (Okeley et al.,
2013)). Another chemical method for site-specific chemical
conjugation to Fc glycans involves mild periodate oxidation
(Jourdian et al., 1971; Peters & Aronson Jr 1976), which
selectively introduces aldehyde groups into sialic acids
(Figure 5B); a downside of this approach is the low sialylation
of Fc glycans, often 2% or lower. A strategy using non-natural
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FIGURE 5 | Glycosylation-based antibody-drug conjugate (ADC) ligation strategies based on chemically-modified fucose (A) or sialic acid (B, C, and D). (A) Thiols
can be installed into non-natural fucose using metabolic glycoengineering and used as “chemical handles” to ligate drug molecules to the Fc domain glycans of
antibodies using thiol-reactive maleimides (Okeley et al., 2013). (B) Aldehydes can be selectively introduced into sialic acids by oxidizing the C8-OH groups; the aldehyde
then can be conjugated to drugs using the hydrazino-iso-Pictet-Spengler (HIPS) reaction (Drake et al., 2014). (C)Metabolic glycoengineering can be used to install
azido-sialic acids into glycans (Saxon & Bertozzi 2000), which can then be used to conjugate drugs to the antibody using dibenzocyclooctyne (DIBO) conjugation
reactions (Li et al., 2014). (D) Alkyne groups can also be introduced into sialic acids through metabolic glycoengineering, which can then be conjugated using
conventional copper catalyzed click chemistry (Du et al., 2009; Hong et al., 2010).

FIGURE 6 | Overview of metabolic glycoengineering (MGE). Non-natural monosaccharide analogs capable of installing “chemical handles” into the N-glycans of
therapeutic proteins include: (A) C6-modified fucose (B) C9-modified sialic acids, and (C) C2-modified ManNAc analogs, which are converted to N-acyl (C5) modified
sialic acids before installation into N-glycans. (D) “High-flux” esterase-protected ManNAc analogs are now widely employed in MGE experiments to increase cell uptake
and reduce the concentrations required for media supplementation from 30 to 75 mM (Yarema et al., 1998) to 100 μM or less (Jones et al., 2004; Kim et al., 2004;
Almaraz et al., 2012).
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ManNAc analogs to increase flux through the sialic acid pathway
(Figure 6) and simultaneously install bioorthogonal chemical
functional groups such as azides (Figure 5C) and alkynes
(Figure 5D) provides additional options to create gdADCs.

5 CONSIDERATIONS FOR THE DESIGN
AND PRODUCTION OF
GLYCOENGINEERED THERAPEUTIC
PROTEINS

So far, this report outlined various ways that glycosylation
controls the pharmacokinetics, pharmacodynamics, and overall
clinical efficacy of therapeutic proteins. Knowing this, biomedical
researchers and the pharmaceutical industry are increasingly
aware of the importance of controlling the glycosylation of
therapeutic proteins using glycoengineering strategies
summarized in Section 5.1. Ultimately, the production of
glycoengineered proteins depends on glycocompatible
production systems, which today are focused on CHO cell
biomanufacturing (Section 5.2. Finally, arguments that the
current industry-standard CHO cell platform is stifling
innovation, especially with respect to glycosylation, are leading
to the development of alternative cell-based production platforms
(Section 5.3)

5.1 Glycoengineering–Methods and
Approaches
5.1.1 Glycoengineering of Proteins Isolated From
Natural Sources to Increase Their Effectiveness
The clinical use of therapeutic proteins pre-dated today’s
recombinant protein production technologies with early
generations of these drugs obtained from natural sources;
insulin is a well-known example initially derived from bovine
and porcine pancreases. Additional examples from the current
report include hyaluronidase obtained from mammalian sperm,
β-glucocerebrosidase isolated from human placenta (Deegan &
Cox 2012), blood coagulation and clotting factors obtained from
human plasma, and FSH prepared from human urine from
postmenopausal women. In some cases, exemplified by β-
glucocerebrosidase, glycoengineering was a critical enabling
technology to turn this enzyme into a useful drug by installing
high mannose N-glycans (Figure 1B) that enabled macrophage
uptake to treat GD. In other cases, illustrated by FSH, the complex
role of glycosylation is still being unraveled. For example, certain
glycoforms can be beneficial for PD properties while detrimental
for PK properties and vice versa; once a fuller understanding is in
hand, glycoengineering strategies can be applied to improve this
type of therapeutic protein. There is even evidence that the few
non-glycosylated therapeutic proteins can benefit from
glycoengineering, for example, insulin with three newly-added
N-glycans has improved resistance to proteases, potentially
opening the door to oral dosing (Guan et al., 2018).

Chemoenzymatic synthesis, which combines chemical
synthesis with the use of enzymes such as glycosyltransferases,

glycosidases, lipases, and glycosynthases, is a powerful method for
the synthesis of complex glycans and glycoproteins (Muthana
et al., 2009; Wang et al., 2019; Ma et al., 2020b; Zeng et al., 2022).
In addition to building new glycans, chemoenzymatic methods
can be used to remodel glycans on antibodies and other
glycoproteins, thus improving glycoform homogeneity (Wang
et al., 2019). Additionally, this method removes the need for
protection and deprotection of peptides that occurs in purely
chemical synthesis (Zeng et al., 2022). Because this approach
combines both the selectivity of enzymatic reactions and the
flexibility of chemical glycan synthesis, it provides a facile method
for the synthesis of complex polysaccharides, heparin sulfates,
glycoproteins and glycolipids that are difficult to synthesize
homogeneously via other methods (Muthana et al., 2009). For
example, chemoenzymatic glycan remodeling of IgG antibodies
can be employed to produce glycosite-specific antibody-drug
conjugates (Zeng et al., 2022).

5.1.2 Cell-Free Methods to Modulate Glycosylation:
IVIg Therapy as a “Case Study”
Immunoglobulin used in IVIg therapy illustrates how isolation of
therapeutic proteins from natural sources (e.g., human blood
donors) is a cumbersome and inefficient process. Depending on
the manufacturer, 1,000 to 100,000 donor samples are pooled to
purify and concentrate IgG to 50–100 mg/ml with preparations
typically still containing residual levels of IgE, IgM, and IgA
antibodies at ≤ 700 μg/ml. The pooled samples are screened for
viral contamination (Hep B, Hep C, and HIV) and monitored for
conformance to an acceptable titer of ABO blood type-
recognizing antibodies to reduce risk of hemolytic reactions in
the recipients (Barahona Alfonso & João 2016). At the end of this
cumbersome process, sialylated IgG antibodies can be as low as
15% of the total, resulting in less-than-optimal anti-inflammatory
potential.

The enticing prospect of increasing the potency of
immunoglobulin therapy by enhancing the α2,6-sialylation
(Figure 4A) of donor IgG has been apparent for ~15 years
(Kaneko et al., 2006). Li and coauthors summarize several
attempts to increase sialylation (Li D. et al., 2021), one of the
first efforts involved the use of Sambucus nigra agglutinin (SNA)
affinity chromatography to prepare IVIg to treat rheumatoid
arthritis (Sudo et al., 2014). Taking a different approach,
chemoenzymatic strategies to improve IgG sialylation incubate
pooled IgG samples with α2,6-sialyltransferase in the presence of
CMP-sialic acid (the enzyme’s co-substrate). In some cases, the IgG
is pretreated with neuraminidase to remove non-inflammatory α2,3-
sialic acids and, in other cases, the sialylation reaction is done in the
presence of β1,4-galactosyltransferase and UDP-galactose to install
the penultimate galactose required for terminal sialylation (Anthony
et al., 2008; Washburn et al., 2015; Bartsch et al., 2018). Another
enticing approach, pioneered by Lai-Xi Wang’s group, is to use
transglycosidases to remove existing Fc domain N-glycans and
enzymatically replace them with homogenously sialylated glycans
(Li et al., 2017; Giddens et al., 2018; Wang et al., 2019).

These post-production glycoengineering strategies have
successfully improved the efficacy and potency of
immunoglobulin therapy; for example, a 0.1 g/kg dose of SNA-
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enriched IVIg is as effective as 1.0 g/kg of unfractionated drug
(Kaneko et al., 2006). A major pitfall, however, is that these
methods can only be performed on the milligram to Gram scales
(or optimistically, on a kilogram scale) based on the expense of
the lectins, glycosyltransferases, and nucleotide sugar donors
involved (Li D. et al., 2021). Considering that worldwide
consumption of IVIg is over 100 tons per year, post-
production chemoenzymatic glycoengineering strategies
remain niche technologies not yet applicable to large scale
preparation of this drug. This case study illustrates the need
for versatile cell-based production systems for manufacturing of
glycoengineered protein therapeutics where cells produce
expensive reagents such as glycosyltransferases and nucleotide
sugar donors essentially “for free” (i.e., they are produced by
cellular metabolism).

5.1.3 Cell-Based Production of Recombinant
Glycoproteins
With a few notable exceptions (e.g., IgG antibodies for IVIg
therapy that are isolated and purified from natural sources),
today’s therapeutic proteins are produced in cell-based
systems. Production in living cells became an option with the
maturation of DNA cloning technologies in the late 1970s and
early 1980s that enabled recombinant techniques for protein
expression. Benefits for cell-based production of recombinant
proteins are numerous including theoretically limitless supplies
of the therapeutic, the ability to humanize products by altering
the amino acid sequence to avoid immunogenicity and increase
productivity, easier purification, and the avoidance of potential
pathogens and immunogens from non-human sources. Equally
important andmost germane to this article, cell-based production
systems can be customized to provide beneficial glycosylation
patterns as discussed in detail in Section 5.2 for CHO cells and in
Section 5.3 for emerging alternative production systems.

5.1.4 “Building in” N-Glycan Sites
Natural N-glycosylation machinery recognizes a consensus
sequon (Asn–X–Ser/Thr, where X is any amino acid except
proline), and initiates glycosylation with the addition of the
LLO 14-mer (Figure 1A, Step 1) to the nitrogen atom of the
asparagine side chain. In theory, the installation of new N-linked
glycans into a protein of interest can be achieved by introducing
amino acid substitutions that yield this sequon. In practice, this
sequon is a necessary, but not sufficient, condition for successful
N-glycosylation because, for example, the built-in glycan must
not interfere with protein folding. Even if a target protein is
successfully glycosylated, the required amino acid substitution(s)
or neoglycan may lead to structural alterations that deleteriously
affect PK, PD, or therapeutic efficacy. In the past, efforts to add
N-glycan sites to therapeutic proteins used a trial-and-error
process. For example, two decades ago when darbepoetin alfa
was designed, several dozen variants of recombinant human EPO
containing one or more new sites for N-glycan attachment were
evaluated (Elliot et al., 2000; Egrie & Browne 2002). More recent
approaches for glycosylation site installation combine structural
information with rational and computational design approaches
to more efficiently design functional and efficacious constructs.

To design new glycosylation sites, a script with a sliding
window evaluation of every amino acid triplet can be
employed to identify all possible sites for insertion of an
N-glycan by modifying existing amino acid sequences to the
Asn–X–Ser/Thr consensus sequence. This method quickly
identifies single and double amino acid substitutions that yield
potential sites for N-linked glycosylation. Ideally, the sequence
change should be minimal (i.e., a single amino acid mutation is
ideal), to offer the highest probability that the protein remains
functional. Once potential sites for N-glycans have been
identified, further in silico evaluation can help guide specific
glycovariants to be made experimentally. Online tools such as
the NetNGlyc Server, an N-linked glycosylation prediction site
(Gupta & Brunak 2002), can be used to estimate the likelihood
that each of the possible engineered glycosylation sites will be
successfully glycosylated. Sites with low likelihood of
glycosylation (<0.55) can be disregarded before proceeding; in
our experience, most sites with prediction frequencies of >0.70 or
more are successfully glycosylated (Saeui et al., 2020).

Using structure design tools, such as the PyMOL mutagenesis
wizard or the Rosetta software package, each neoglycosylation site
within a glycoengineered protein can be modeled to ensure that
desired features of the protein structure are maintained. First, the
glycosylation site should be solvent-exposed and not be buried
within the interior of the protein. Second, the glycosylation site
should be positioned to avoid steric interference of attached
glycans with important domains of the protein. For example,
if the therapeutic protein is an enzyme, the glycan should not
interfere with substrate access to its active site; this was a design
feature for ENPP1-Fc (Figure 3), where built-in glycans did not
comprise substrate binding or catalysis (Stabach et al., 2021). If
the protein is a cytokine, hormone, growth factor, or antibody, the
glycan should not interfere with the therapeutic protein’s binding
to partner proteins. In certain cases, glycan-based steric factors
can be advantageous to the protein’s function. For example, the
increased size resulting from installed glycans in darbepoetin alfa
leads to decreased kidney filtration and extended
pharmacokinetic half-life (Section 2.1.1). As another design
feature, also considered for glycoengineered ENPP1-Fc, novel
N-glycans can be situated to block protease access to vulnerable
surfaces of the enzyme (Stabach et al., 2021). Finally, the addition
of new glycans can improve binding affinity through their
introduced ionic, van der Waals, or entropic forces as
exemplified by improved affinity of an HIV-neutralizing IgG
antibody to gp120 upon addition of a non-canonical glycan (Song
et al., 2013). Regardless of the glycoengineering objective,
candidate proteins must be individually evaluated to ensure
that their functional activity is as desired.

The use of in silico tools in combination with structural
information can be used to rationally design N-linked
glycosylation cites with the goal of maintaining, or even
enhancing, the activity of the target protein. In cases where a
solved structure is unavailable, in silico structure prediction tools
can be leveraged to generate theoretical protein structures and
guide design of theoretical N-linked glycosylation sites. Various
computational tools have emerged to generate protein structures
using homology-based and/or de novo modeling in place of
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directly resolving the protein structure (Kuhlman & Bradley
2019; Jumper et al., 2021; Kryshtafovych et al., 2021).
Furthermore, recent advances in modeling glycans themselves
can be incorporated into the design process, to provide additional
information about how the structure and activity of a protein may
be impacted by the glycans themselves (Labonte et al., 2016; Li M.
et al., 2021). In summary, the ability to predict both protein and
glycan structure using computational tools empowers many
glycoengineering approaches where structural information is
lacking.

5.1.5 Metabolic Glycoengineering: Further Control of
Glycan Chemistry
Metabolic glycoengineering (MGE, Figure 6) is a method
pioneered approximately 40 years ago when Brossmer and
others developed chemically-modified sialic acid analogs,
including bulky moieties such as fluorophores, that could be
enzymatically installed into glycans (Gross & Brossmer 1988;
Gross et al., 1989; Gross & Brossmer 1995). Subsequent advances
in the 1990s and 2000s include the Reutter group’s demonstration
of MGE in living cells and animals (Kayser et al., 1992b; Keppler
et al., 2001; Wratil et al., 2016); the Bertozzi group’s development
of analogs with chemical functionalities not normally found on
cells, thereby allowing bioorthogonal chemoselective ligation
reactions (Mahal et al., 1997; Saxon & Bertozzi 2000; Prescher
et al., 2003); the extension of MGE to biosynthetic pathways
beyond sialic acid including fucose (Sawa et al., 2006; Okeley
et al., 2013), GlcNAc (Vocadlo et al., 2003; Du et al., 2009), and
GalNAc (Kayser et al., 1992a; Boyce et al., 2011); as well as efforts
to incorporate high-reactivity chemoselective reaction partners
including ring-strained cyclooctynes (Baskin et al., 2007; Ning
et al., 2010) and tri- or tetrazines (Kamber et al., 2019; Agatemor
et al., 2020).

Today, MGE technologies have matured to the point where
they comprise an attractive toolkit for cancer treatment
(Agatemor et al., 2019; Wang & Mooney 2020), and
increasingly, for other conditions such as enhancement of
neuronal differentiation for spinal cord and brain regeneration
(Sampathkumar et al., 2006; Du et al., 2021; Du et al., 2022)
Specific to therapeutic proteins, MGE can be used in various
ways. For example, MGE can be used to endow antibodies with
“chemical handles” into antibodies by replacing core fucose with
thiol-modified residues and terminal sialic acids with their azido-
modified counterparts (Section 4.4; Figure 5). In theory,
introduction of non-natural sialic acids into IgG Fc domain
glycans can achieve an antibody-to-drug ratio of four if both
glycans are fully sialylated, biantennary structures; in practice,
however, the low site occupancy of sialic acid on Fc domain
glycans hinders the use production of high valency ADCs.

A variation of MGE can help overcome suboptimal levels of
sialic acid by improving the sialylation of IgG Fc domain glycans
and therapeutic proteins in general. Briefly, “high-flux” MGE
analogs began with peracetylation where the ester-linked acetyl
groups rendered the sugars more lipophilic, facilitating diffusion
into cells (Lemieux et al., 1999; Sarkar et al., 1995; Yarema et al.,
2001). Upon entry into a cell, non-specific esterases remove the
acetate groups, allowing the “core” monosaccharide to enter its

targeted biosynthetic pathway (Mathew et al., 2012; Wang et al.,
2009). Our team discovered that tri-butanoylated hexosamines,
exemplified by 1,3,4-O-Bu3ManNAc (Figure 6D), provide even
higher flux into biosynthetic pathways, increasing sialylation with
high efficiency (Aich et al., 2008; Almaraz et al., 2012). This
analog increases the sialylation of therapeutic proteins including
IgG antibodies (Yin et al., 2017), EPO (Mertz et al., 2020) and
ENPP-1 (Stabach et al., 2021). In the case of ENPP1-Fc,
production with 1,3,4-O-Bu3ManNAc increased serum half-life
from 170 to 204 h and the AUC from 37,000 to 45,000
(Figures 3E,F).

5.2 Current Therapeutic Protein
Biomanufacturing Overwhelmingly Uses
CHO Cells
Chinese hamster ovary (CHO) cells have become the workhorse
biomanufacturing platform for therapeutic proteins over the past
2 decades. Because of the importance of these cells, we describe
their safety qualifications (Section 5.2.1), limitations (Section
5.2.2), and efforts towards overcoming these pitfalls by using
genetically modified CHO cell variants with altered glycosylation
capacities (Section 5.2.3).

5.2.1 Safety Issues–Exemplified by the α-Gal
Trisaccharide Immunogenic Epitope
Chinese hamster ovary cells have become the “go-to” cell line for
biomanufacturing therapeutic proteins for several reasons,
including efficiency, cost-effectiveness, and—historically—for
safety reasons. Historically, CHO cells have been used for
recombinant protein production since the 1980s based on
several advantages, including their ability to produce relatively
large amounts of glycoproteins, their lack of human pathogens,
and their ability to approximately replicate human glycosylation
patterns (Ma et al., 2020a). Over the past decade or so, production
has coalesced around CHO cells for safety/regulatory reasons
after pioneering anticancer antibodies severely harmed patients
in early clinical testing. In particular, in 2004 cetuximab
(Erbitux®)—a blocking antibody that inhibits the epidermal
growth factor receptor (EGFR) and is used to treat metastatic
colorectal cancer and head and neck cancer -- triggered
anaphylaxis in cancer patients, resulting in several deaths
(Friedman 2008). The affected patients had pre-existing IgE
antibodies against galactose-α-1,3-galactose (i.e., “α-Gal”
Figure 4B) generated by lone star tick bites; subsequent
anaphylaxis was elicited by the presence of α-Gal on Erbitux®
produced in murine SP2/0 cells (Steinke et al., 2015). This
incident raised awareness that CHO cells, which do not make
α-Gal are safe host cells for biomanufacturing of therapeutic
proteins helping these cells gain widespread regulatory
acceptance.

5.2.2 Limitations/Drawbacks of CHO Cells
Chinese hamster ovary cells have glycosylation patterns that are
generally regarded as safe (i.e., they lack the hyper-immunogenic
α-Gal epitope) but they do have drawbacks. For example, they
lack α2,6-sialyltransferase activity, making them inappropriate
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production hosts for potently anti-inflammatory antibodies.
Another pitfall is that CHO cells produce the Neu5Gc form of
sialic acid (Figure 4B) (Hokke et al., 1990); although only weakly
immunogenic, its presence in therapeutic proteins has raised
caution (Ghaderi et al., 2010; Ghaderi et al., 2012). Despite these
shortcomings, CHO cells currently produce ~90% of therapeutic
antibodies including virtually all newly-approved drugs. One
reason why CHO cells are dominant is because of their
acceptance by regulatory agencies, which can be regarded as a
positive feature but also has its drawbacks. For example, quoting
from Burnett and Burnett (Burnett & Burnett 2020):

“As promising as technology may be, drug companies are
unwilling to risk the huge sums of money required to get a new
product approved by the large drug approval administrations
(e.g., the FDA or EMA) if there is already a proven alternative
expression system with regulatory approval. This economic
constraint has a stagnating effect on the pharmaceutical
industry, limiting the scale of progress and development of
new drug production technologies.”

Despite the stifling influence of regulatory agencies that have
helped embed CHO cells as the go-to cell line for
biomanufacturing, efforts continue to develop alternative
production platforms. These efforts are not primarily driven
by glycoengineering concerns but they often represent
substantial departures from standard glycosylation patterns
inherently produced by CHO cells. As such they face
regulatory hurdles but also provide opportunities to tune
glycosylation to improve the efficacy of therapeutic proteins.

5.2.3 Genetically Modified CHO Cells
Before describing major departures from CHO cells (e.g., the use
of bacteria, plant cells, yeast, and insect cells for
biomanufacturing, Section 5.3), we cover “baby steps” being
taken to rectify glycosylation deficits in CHO cells, or more
positively, to endow them with enhanced glycosylation
capabilities. Mammalian cells have 250 or more glycogenes,
the majority are glycosyltransferases present in the Golgi, the
last stage of glycan production (Tariq et al., 2018). The potential
for genetic control of glycosylation in CHO cells was
demonstrated almost 30 years ago by a library of lectin-
selected, mutant sublines developed by Pamela Stanley’s
research group (Stanley et al., 1996; Stanley & Patnaik 2005).

Today, advances in nucleic acid gene-editing techniques
including zinc finger nucleases (ZFNs), transcription activator-
like effector nucleases (TALENs), and clustered regularly
interspaced short palindromic repeats with Cas9 protein
(CRISPR/Cas9) facilitate precise, stable, and systematic
engineering of the glycosylation capabilities of mammalian
cells (Narimatsu et al., 2021; Wang et al., 2019). One example
is the over-expression of α2,6-sialyltransferase (ST6) in non-
human cell lines such as CHO cells (Yin et al., 2015), which
have been used to produce EPO and IgG antibodies (Mertz et al.,
2020; Yin et al., 2015) as well as ENPP1-Fc with improved
sialylation and PK properties [Figure 3D, (Stabach et al.,
2021)]. ST6 over-expression increases overall sialylation and
results in a humanized α2,6-sialylation profile in CHO cells. In
addition to over-expression of glycogenes to improve CHO cells

as production hosts for therapeutic proteins, it can be
advantageous to knock out other glycogenes. Indeed, the first
glycogene KO’d for biomanufacturing involved a tour-de-force
effort in CHO cells where two rounds of targeted homologous
recombination ablated the two allelic copies of the α6-
fucosyltransferase (Fut8) gene (Narimatsu et al., 2021). These
efforts have reached fruition with several afucosylated therapeutic
antibodies now in clinical use (Section 4.1.2).

5.3 Additional Cell-Based Options for
Biomanufacturing Therapeutic Proteins
The limitations of CHO cells for biomanufacturing (Section
5.2.1) have kept alive efforts to develop additional cell lines as
production platforms. Here in Section 5.3 we describe cell
systems used to produce at least one, and often several, FDA-
approved therapeutic proteins; each is discussed briefly providing
a perspective on the system’s current use and future prospects
with an emphasis each system’s glycoengineering capabilities.

5.3.1 Human Cells
By definition, production of therapeutic proteins in human cells
provides the drugs with humanized glycosylation, including
features such as α2,6-sialylation lacking in CHO cells and,
unlike mouse cells, a lack of α-Gal that enhances safety.
Downsides of production include the high cost and potential
safety concerns of animal products used in production (e.g., fetal
bovine serum is generally required for the culture of human cells,
opening the door to xenopathogen contamination) to low
productivity (typically one to ~100 s mg/L) (Dumont et al.,
2016). Nonetheless there are five FDA approved therapeutic
proteins produced in human cells: Idursulfase (Hunter
syndrome, approved 2006), Velaglucerase alfa (Type 1
Gaucher disease, approved 2010), rFVIIFc (Hemophilia A,
approved in 2014), rFIXFc (Hemophilia B, approved 2014),
and Dulaglutide (Type 2 diabetes, approved 2014). The lag in
the approval of new products over the past several years, however,
suggests that production of therapeutic proteins in human cells
remains an infrequently used, niche strategy.

5.3.2 Murine Cells
Expression of FDA-approved therapeutic proteins in murine
cells began in the 1990s (Lifely et al., 1995) and continues
today despite safety issues including the anaphylaxis-inducing
α-Gal epitope (Figure 4B) and high levels of the mildly
immunogenic Neu5Gc form of sialic acid (Figure 4A)
(Lalonde & Durocher 2017). Although immunogenicity
concerns remain for these drugs, safety risks are minimized
by pre-screening patients for IgE anti-α-Gal antibodies linked
to anaphylaxis, allowing murine-produced mAbs to remain on
the market. Mouse myeloma NS0 and Sp2/0 lines are used in
biomanufacturing, produceing cetuximab (Erbitux®
mentioned earlier) and several mAbs approved up to ~2015,
including palivizumab (Synagis®), dinutuximab (Unituxin®),
necitumumab (Portrazza®), and elotuzumab (Empliciti®).
Similar to human cells, the negligible approval of new
products in the past few years suggests that murine cells are
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unlikely to figure prominently in future biomanufacturing
efforts.

5.3.3 Bacteria
During the early development of recombinant DNA technologies
in the 1970s, efforts were focused on producing products in
bacteria; for example, Escherichia coli, was an attractive low-cost,
high-yield (e.g., ~8 g per liter (Menacho-Melgar et al., 2020))
production host. Despite some issues, such as the challenge of
purifying recombinant mammalian proteins from bacterial cell
components (e.g., the cell wall) and the possibility of endotoxin
contaminants (Singh et al., 2016), there were several successfully-
produced therapeutic proteins in E. coli in the 1980s. These
including Humulin® (a recombinant form of insulin),
Protropin® and Humatrope® (to treat hGH deficiency),
Roferon A® (to treat hairy cell leukemia), and IntronA® (to
treat genital warts and hepatitis) (Sanchez-Garcia et al., 2016).
In retrospect, the inability of E. coli to N-glycosylate proteins, and
therefore to take advantage of the concomitant protein folding
chaperone system in mammalian cells (Helenius & Aebi 2001),

posed a significant challenge during early attempts to express
large, difficult-to-fold mammalian proteins in E. coli that more
often than not resulted in inclusion body formation.

Unlike human and murine cells, which suffer from
fundamental limitations for biomanufacturing (e.g., low
product yield safety concerns, and high cost), a major
detriment of bacterial production systems is their lack of
mammalian-type glycosylation. In theory, this pitfall can be
overcome, at least in part, by building N-glycosylation
capabilities into E. coli used for recombinant protein
production (Wayman et al., 2019). For example, the protein
glycosylation pathway of Campylobacter jejuni, a pathogenic
bacterium (Szymanski et al., 2002), has been transferred into
laboratory strains of E. coli (Pandhal & Wright 2010; Wacker
et al., 2002). The resulting glycans, however, are distinctly
different than human N-glycans (Figure 7A) (Abu-Qarn et al.,
2008). For example, they are mainly comprised of GalNAc, a
mammalian monosaccharide that does not normally appear in
mammalian N-glycans. Similarly, the presence of glucose is
unusual for mammalian N-glycans, where this monosaccharide

FIGURE 7 |Glycoforms of concern in bacterial, plant, fungal, and insect production systems. (A) Efforts to produce glycosylated recombination proteins in bacteria
(Section 5.3.3) have resulted in the non-human glycan structure shown. (B) Mammalian N-glycans have α1,6-linked core fucose (right), which along with sialic acid,
endow IgG antibodies with anti-inflammatory properties; plant cells (Section 5.3.4) produce N-glycan with α1,6-core fucose (center), and insect cells (Section 5.3.6)
produce doubly-fucosylated N-glycans (right). (C) Xylose, a monosaccharide not present in mammalian N-glycans, is added to plant-produced N-glycans
(Section 5.3.4). (D) Mannan synthesis in fungi (Section 5.3.5). (E) GalNAc incorporation in insects as compared to human galactose addition (Section 5.3.6).

Frontiers in Chemistry | www.frontiersin.org April 2022 | Volume 10 | Article 86311818

Dammen-Brower et al. Strategies for Glycoengineering Therapeutic Proteins

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


appears in the LLO 14mer precursor structure (Figure 1A) but
not in mature N-glycans found on glycoconjugates. Finally, di-N-
diacetylbacillosamine is a prokaryotic monosaccharide not found
in eukaryotes. Despite technologies to install N-glycosylation
pathways in bacteria being in their nascent stages, proof-of-
principle experiments (Figure 7A) coupled with continuing
robust efforts to improve prokaryote glycosylation (Ding et al.,
2019; Wayman et al., 2019; Pratama et al., 2021; Yates et al., 2021)
provide hope that in the future, additional therapeutic proteins
will be manufactured in bacterial hosts.

5.3.4 Plant Cells
Therapeutic protein production in plants has several advantages,
including that the infrastructure for large scale production of
crops is in place and in theory requires only water, sunlight, and
cheap fertilizers (Burnett & Burnett 2020; Karki et al., 2021). In
practice, current plant-based manufacturing uses cell-based
methodology rather than field-grown crops but retains
advantages over mammalian cell culture. These advantages
include a lack of animal products needed for plant cell culture
that reduces the risk of viral contamination; the ability to grow
cells in inexpensive polyethylene bags rather than stainless steel
bioreactors; and room temperature manufacturing without the
need for strict temperature control. Counteracting these
advantages are the low productivity of plants (e.g., ~100 mg/kg
of plant mass) and the complexity of purifying human proteins
from plant matter where cell wall components pose a challenge
(Singh et al., 2016; Schillberg et al., 2019).

The use of plant cells for therapeutic protein production is in
its infancy, with only one FDA-approved drug. This drug,
Elelyso® (i.e., taliglucerase alfa, mentioned above in Section
2.3.3 as a treatment for GD), was approved in 2012 (Fox
2012). Elelyso® illustrates glycosylation differences between
plant N-glycans and their mammalian counterparts; for
example, the plant ProCellEx® platform directly produces
N-glycans with exposed terminal mannose residues (e.g.,
Glc2Man3 to Glc2Man5 structures, Figure 1B) needed for
macrophage targeting and uptake (Tekoah et al., 2013). The
direct production of MR-targeting glycans in plant cells offers
simplicity and cost savings compared to the use of chemical
modulators of glycosylation (required for velaglucerase alfa
production) or enzymatic modification (imiglucerase) as
described in Section 2.3.3.

On a cautionary note, plant cells produce core structures with
α1,3-linked fucose not found in humans (human α1,6- vs. plant
α1,3-core fucosylation is shown in Figure 7B) and β1,2-linked
xylose (Figure 7C) not found in mammalian proteins (Castilho &
Steinkellner 2012; Montero-Morales & Steinkellner 2018).
Initially, concerns were raised that these non-human
glycoforms could be immunogenic in a mildly harmful way
reminiscent of Neu5Gc, or possibly with the severe effects of
α-Gal. Fortunately, only a small fraction of patients had pre-
existing antibodies that recognized these glycans on Elelyso®, and
those that did experienced no adverse effects (Rup et al., 2017). By
contrast, glycan-based immunogenicity of plant-produced blood
coagulation factors VIII and XIII remains a substantial
impediment to the commercialization of these hemophilia

drugs (Top et al., 2019). In some cases, instead of being
harmful, the potential immunogenicity of plant glycans has
been proposed to enhance cancer vaccines and cancer
immunotherapeutics through lectin-based stimulation of
antigen-presenting cells (Rosales-Mendoza et al., 2015).
Overall, similar to bacterial systems where improved cell hosts
are actively being pursued to improve glycosylation,
glycoengineering efforts remain underway in plants (Sukenik
et al., 2018; Fischer et al., 2021), opening the door for
increased use of plants for therapeutic protein production.

5.3.5 Fungi
Several yeast strains, including the widely used production hosts
Saccharomyces cerevisiae and Pichia pastoris, are generally
recognized as safe (GRAS) by regulatory agencies. Advantages
to fungal production include high yield (up to 12 g/L); cost and
safety advantages by avoiding the use of animal products such as
FBS during production; and sidestepping the danger of
endotoxins from E. coli production. A glycosylation-related
drawback is the production of hypermannosylated (mannan)
N-glycans in yeast that can contain dozens to hundreds of
mannose residues [Figure 7D (Orlean 2012)]. These extremely
large mannose structures clearly are incompatible with
therapeutic glycans. Fortunately, a straightforward solution
was found by knocking out two early genes (Och1 and Mnn9,
Figure 7D) in mannan biosynthesis [Hamilton & Zha 2015; De
Wachter et al., 2021); this approach was commercialized by
GlycoFi to humanize yeast glycosylation (Beck et al., 2010)].
The success of such approaches is evident from fungal production
systems being second only to CHO cells in the breadth of
commercial products; Kulagina and coauthors summarize the
use of fungal cells to produce four hormones (Novolin®,
Glucagen®, Valtropin®, and Semglee®); six vaccines
(Recombinvax®, Tritanrix-hepB®, Gardasil®, Mosquirix®,
Hexacima®, and Heplisalv-B®); four blood-related proteins
(Revasc®, Kalbitor®, Novothirteen®, and Jetrea®); one cytokine
(Leukine®) and one enzyme (Fasturtec®) (Kulagine et al., 2021).
In addition, glycoengineering strategies are being applied to
provide humanized glycan profiles of antibody drugs such as
trastuzumab (Herceptin®), where fungal Fc domain glycans
optimize ADCC (Liu et al., 2018).

5.3.6 Insect Cells
Insect cells, which have been under investigation for recombinant
protein production since the 1970s and 1980s (Hollister et al.,
1988), represent another low-cost (by using serum-free,
chemically defined media), high-yield (~5 g/L) production
system. Manufacturing advantages include no requirement to
control CO2 levels, relaxed temperature control allowing
production at lower temperatures, and reduced biosafety and
contamination concerns (Yee et al., 2018). Insect cell lines used
include S2 from Drosophila melanogaster, Sf9 from Spodoptera
frugiperda, and High Five® from Trichoplusia ni (Yee et al., 2018).
Additionally, insect cells can perform both N- and O-
glycosylation, they efficiently secrete proteins and can cleave
signaling peptides, giving them an advantage over prokaryotic
pathways and making them plausible production hosts for large
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glycoproteins like antibodies (Palmberger et al., 2011; Toth et al.,
2014).

There are, however, several glycosylation concerns related to
the production of therapeutic proteins in insect cells. For
example, insect cells produce simpler N-glycans than
mammalian cells, which can affect bioactivity and increase
immunogenicity (Geisler et al., 2015; Loos & Steinkellner
2012). Another concern is that although there is some
evidence of sialylation in insect cells (Joshi et al., 2001; Kim
et al., 2002; Marchal et al., 2001; von Bergen Granell et al., 2011),
in general, they do not add this therapeutically important sugar to
their glycans. Another concern is that insect cells have double
core fucosylation (Figure 7B), which, if installed in the Fc domain
of IgG antibodies likely would impact downstream Fcγ receptor-
mediated effector responses. Finally, the presence of GalNAc in
the place of galactose on the elaborated antennae of N-glycans
produced in insect cells (Figure 7E) is another potential concern.
Overall, we note that although there has been decades-long
interest in producing IgG antibodies in non-mammalian
expression hosts including yeast, plants, and insect cells
(Palmberger et al., 2011; Loos & Steinkellner 2012), these
efforts have not resulted in commercially successful products.
We posit that these difficulties stem in part from glycosylation
hurdles, and as such, new glycoengineering approaches will be
critical for future production of therapeutic antibodies in a wider
range of host cells.

Despite these glycosylation concerns, which have thwarted
production of IgG antibodies, several other commercial products
have been successfully produced in insect cells. One product is
Cervarix®, a virus-like particle (VLP) cervical cancer vaccine
produced in High Five cells® (Senger et al., 2009). A second is
Provenge®, the first immunotherapy for hormone-refractory
prostate cancer, which is produced in Sf21 cells (Contreras-
Gómez et al., 2014). A third is Glybera®, a now discontinued
adeno-associated virus-based gene therapy for lipoprotein lipase
deficiency (LPLD) produced in Sf9 cells (Kurusawa et al., 2020).
Finally, Flublok® is a hemagglutinin protein used as an influenza
vaccine, which is also made in Sf9 cells (Cox & Hollister 2009).
Based on the title of Yee and coauthor’s review article “The
coming age of insect cells for manufacturing and development of
protein therapeutics” (Yee et al., 2018), there is reason for cautious
optimism for continued expansion of insect cells as a production
platform based on long-standing glycoengineering efforts (Ailor
et al., 2000; Hollister et al., 1988; Lawrence et al., 2001; Toth et al.,
2014). For example, Mabashi-Asazuma and coworkers have
developed a new baculovirus vector that eliminates core α1,3-
fucosylation in insect cells (Figure 7B) (Mabashi-Asazuma et al.,
2014), decreasing the immunogenicity of glycoproteins produced
in these cells.

6 CONCLUDINGCOMMENTS AND FUTURE
DIRECTIONS

As the most abundant and varied post-translational modification
in mammals in general and humans in particular, glycosylation

offers great potential to improve today’s predominant drugs,
which are protein therapeutics. As described in this report,
which focuses on N-glycans, there are numerous opportunities
to glycoengineer current and upcoming proteins to improve their
folding, trafficking, ligand interactions, solubility, stability, and to
improve the safety, activity, pharmacokinetics, and
pharmacodynamics of this increasingly important class of
therapeutics. There already are a handful of deliberately
glycoengineered products on the market, with prominent
examples being afucosylated pro-inflammatory antibodies and
β-glucoceraminidase endowed with high mannose-type glycans
for macrophage targeting to treat GD. To date, glycoengineered
drugs have exploited a single strategy, typically selection of a host
cell line capable of biosynthetically producing the desired type of
glycosylation. In the future, as already demonstrated pre-
clinically by the glycoengineered ENPP1-Fc (Figure 3),
multiple glycoengineering strategies (installing new N-glycan
sites, production in ST6-overexpressing cells, and media
supplementation with a sialic acid precursor) can be
productively combined for multifaceted improvement.

Also in the future, additional forms of glycosylation including
O-, C-, or S- will provide additional avenues to improve
therapeutic proteins. Moreover, the glycoengineering “toolkit”
described in Section 5 provides methodology to improve
additional biological therapeutics including antimicrobial
peptides (AMPs); glycosylated nanoparticles, liposomes, and
exosomes for drug delivery and bioimaging; and
glycodendrimers (Jain et al., 2012; Grimsey et al., 2020;
Torres-Pérez et al., 2020). The safety of these
biopharmaceuticals, including toxicity and immunogenicity,
are impacted by glycosylation and, similar to antibodies, their
glycoprofiles are critical quality control attributes during
biomanufacturing (Mastrangeli et al., 2019).

In conclusion, key examples provided for various
glycosylation scenarios demonstrate the potential of
individualized, targeted glycan modification to improve
various therapeutic proteins. As therapeutic proteins advance,
the specific adjustment of glycosylation profiles will hold greater
importance as biomanufacturers increasingly move from tuning
glycosylation to avoid immunogenicity or toxicity to proactively
improving drug efficacy.
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