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Abstract: In this study, a nonlinear, spring-based finite element approach is employed in order
to predict the nonlinear mechanical response of graphyne structures under shear loading. Based
on Morse potential functions, suitable nonlinear spring finite elements are formulated simulating
the interatomic interactions of different graphyne types. Specifically, the four well-known types
of γ-graphyne, i.e., graphyne-1 also known as graphyne, graphyne-2 also known as graphdiyne,
graphyne-3, and graphyne-4 rectangular sheets are numerically investigated applying appropriate
boundary conditions representing shear load. The obtained finite element analysis results are
employed to calculate the in-plane shear stress–strain behaviour, as well as the corresponding
mechanical properties as shear modulus and shear strength. Comparisons of the present graphyne
shearing response predictions with other corresponding estimations are performed to validate the
present research results.

Keywords: γ-graphyne structures; nonlinear finite element analysis; shear; stress–strain

1. Introduction

In recent years, there has been a request to advance the related research area by finding
new graphene-like materials and structures at the nanoscale, with similar, if not better, than
graphene physical properties and structural characteristics [1–6]. The key success behind
this development of carbon allotrope technology is based on their outstanding mechanical
behaviour characteristics, such as low density, high stiffness, and strength [7,8].

Among the most promising recently explored types of graphene-like nanostructures
is the graphyne family of materials [9], which was theoretically studied, perhaps for the
very first time, by Narita and Nagai [10], applying first-principles analysis. In a more
recent typical theoretical effort using semi-empirical quantum mechanical methods and
ab initio calculations, Belenkov et al. [11] found the geometrically optimised structures of
graphyne base layers composed of carbon atoms in the hybridised sp and sp2 states. In
particular, they illustrated the stable molecular structure of seven basic modifications of
graphyne—namely, α-, β1-, β2-, β3-, γ1-, γ2-, and γ3-graphyne.

The experimental studies related to graphyne structures available in the literature
seem to be limited. In a typical attempt, Ivanovskii [12] thoroughly investigated various
types of graphyne and graphdiynes providing basic structural and mechanical properties,
determined by experiments or evaluated by ab initio theoretical techniques. Furthermore,
Zhang et al. [13] systematically studied the Raman spectra of graphyne and graphdiyne
and investigated their performance under mechanical stress and strains. More recently,
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Chen et al. [14] presented recent advances in graphdiyne concerning its synthesis, function-
alisation, and electronic applications.

The main objective of the present study is to predict the nonlinear shear mechanical
response of the γ family of graphynes by using a computationally efficient finite element
method. Therefore, a detailed literature survey regarding the analysis of graphynes will be
presented below in order to make the novel points of the proposed approach distinguishable
from other models. A great variety of theoretical–computational calculations may be found
in the available literature regarding the mechanical characterisation of graphyne structures.
Taking advantage of the generalised computational accuracy of first-principles calculations
in approximating the behaviour of complex molecular systems, the mechanical performance
and properties of single-atomic-layer graphyne sheets have been already predicted based
on the density functional theory (DFT) [15–19]. On another front, molecular dynamics (MD)
simulations have evolved into a strong technique that can be applied efficiently to recognise
macromolecular structure-to-function relationships. MD has been also utilised [20–28] for
the investigation of the mechanical response of various graphyne structures. It is worth
noting that even though there are several first-principles and MD computations concerning
two-dimensional graphynes, only some reports are associated with SM-based approaches
for graphynes [29–36]. Still, most of these theoretical analyses, which are grounded on
SM, concentrate on the calculation of the linear elastic properties of graphynes. Silvestre
et al. [30,31] are perhaps the only researchers who tried to simulate the nonlinear mechanical
behaviour of an almost square graphyne-1 sheet of a specific size using SM.

Shear loading is one of the basic loadings of every structure producing shear stress
and shear strain. Developing new products, it is particularly useful for the designers the
mechanical behaviour of the components under shearing to be predictable. Concerning
the response of graphyne structures under shearing, most of the presented studies in
the literature are limited to the prediction of shear modulus, while few present the shear
stress–strain behaviour until fracture. Silvestre et al. [30,31] predicted the nonlinear shear
response of γ-graphyne complete sheet with the dimensions 10.9 nm × 9:8 nm using
uniaxial and biaxial shear tests. Yi et al. [37] performed extensive molecular dynamics
simulations on four different graphynes (α-, β-, γ-, and 6,6,12-graphynes) to explore
their mechanical properties under shearing and bending. For γ-graphynes, the authors
predicted that the fracture shear strength and strain of γ-graphynes differ in the two
directions, indicating that the fracture shear strength and strain of graphynes are anisotropic.
Specifically, they calculated shear fracture stress of 53.9 GPa and 41.4 GPa in the x and y
direction, respectively, for a square γ-graphyne sheet with a side length of approximately
20 nm.

It follows from the foregoing that, although studies on the tensile behaviour of
graphene structures are numerous, very little research has been conducted on the nonlinear
response of these structures when subjected to shear. To the best of the authors’ knowledge,
the present paper may be the first in the available literature to address the behaviour of dif-
ferent types of γ-graphyne structures of different sizes under shearing in a comprehensive
way. To achieve this goal, a spring-based finite element method is utilised for the prediction
of the whole shear stress–strain mechanical response and the corresponding both linear
and nonlinear arising mechanical properties.

2. Computational Modelling

This section presents the structural geometry for different γ-graphyne structures in
nanoscale, the force field describing the interatomic interactions in the structure, as well as
the finite element technique utilised for the prediction of the behaviour of structures under
shearing.

2.1. Geometry of γ-Graphyne Structures

The γ-graphynes is a group of 2D carbon allotropes composed of sp and sp2 hybridised
carbon atoms. These graphene-like nanosheets consist of aromatic hexagonal rings and
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acetylenic groups. Depending on the nanostructural architecture and the combination of
the single (C–C), aromatic (C=C), and triple (C≡C) bonds different types of γ-graphyne
sheets may be obtained. Here, the types of this graphyne group that were computationally
investigated include graphyne-1 (graphyne), graphyne-2 (graphdiyne), graphyne-3, and
graphyne-4, presented in Figure 1a–d, respectively, using a global Cartesian coordinate
system (x,y). The aromatic bonds are obviously observed in the hexagonal molecules, while
the single and triple bonds are found in acetylenic links. It is apparent that the length of the
acetylenic links, controlled by the containing number of single and triple bonds, specifies
the naming of the graphyne sheet.
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2.2. Force-Field and Interatomic Interactions

Along with the molecular mechanics, the total potential energy of the graphyne molec-
ular systems can be presented as the sum of energies due to the interatomic interactions.
Given that nonbonded interactions are negligible for the size of the molecular systems
investigated here and that only the in-plane properties were to be examined, the total
potential energy of a structure of the γ-graphyne group is expressed as

Utot = ∑ Ub
r + ∑ Ub,β

θ , (1)

where both superscript b and β denote the bond type and take the string values s, a, and
t when referring to the simple, aromatic, and triple bond, respectively. The Ub

r and Ub,β
θ

represent the potential energy terms due to the length change in the bond and bending
angle change between the two linked bonds b and β, and for their representation, the
following functions were adopted, respectively:

Ub
r = Db

e

{
[1 − e−Bb(rb−rb

0 ))]
2
− 1
}

, (2)

Ub,β
θ =

1
2

kb,β
θ (θb,β − θb,β

0 )
2
[1 + kb,β

sextic
(θb,β − θb,βb

0 )
4
]. (3)
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Equations (2) and (3) describe the Morse potential field [38]. The parameters rb and rb
0

in Equation (1) represent the deformed and undeformed bond length, respectively. Fur-
thermore, Db

e and Bb are force-field constants that are dependent on the nature of the bond
b = s, a, t. The parameters θb,β and θb,β

0 in Equation (3) are the bending angles regarding
the deformed and initial geometry between two linked bonds b and β, respectively, while
the parameters kb,β

θ and kb,β
sextic are corresponding constants governing the linear and nonlin-

ear force–deformation behaviour regarding the bond angle bending interactions. It should
be noted that, usually, in such graphene-like nanostructures, the nonbonded interatomic
interactions and the corresponding produced nonlocality have negligible effects on their
overall mechanical behaviour and, thus, may be excluded by the mathematical formulation
of the problem.

The force field indicated by the above two equations can be straightforwardly de-
scribed by differentiating the potential function terms, i.e., Equations (2) and (3), with regard
to the bond length variation ∆rb and bond bending angle change ∆θb,β, respectively:

Fb
r (∆rb) =

∂Ub
r

∂(∆rb)
= 2BbDb

e (1 − e−Bb∆rb
)e−Bb∆rb

, (4)

Mb,β
θ (∆θb,β) =

∂Ub,β
θ

∂(∆θb,β)
2 = kb,β

θ ∆θb,β[1 + 4

≈0︷ ︸︸ ︷
kb,β

sextic
(∆θb,β)

3
] ≈ kb,β

θ ∆θb,β, (5)

where Fb
r is the developed axial force between two bonded atoms because of the

change in their inter-distance ∆rb, while Mb,β
θ is the arisen bending moment due to the

change in the angle between two linked bonds ∆θb,β.

2.3. Finite Element Formulation

Equations (4) and (5) indicate that the force field established within the γ-graphyne
structure could be simulated by employing a suitable combination of straightforward mechan-
ical analogues. Specifically, each bond length variation or bond angle bending interatomic
interaction could be efficiently represented using a translational and a rotational spring, respec-
tively. The longitudinal stiffness of the necessary translational springs may well be defined by
differentiating Equation (4) with respect to the bond length variation ∆rb:

∂Fb
r

∂∆rb = 2(Bb)
2
Db

e (2 − eBb∆rb
)e−2Bb∆rb

= kb
r (∆rb). (6)

Similarly, the necessary rotational stiffness of the rotational spring can be derived via
the differentiation of Equation (5) in regard to the bending angle variation ∆θb,β as follows:

∂Mb,β
θ

∂∆θb,β ≈ kb,β
θ . (7)

In accordance with the presented finite element formulation, the potential energies
due to the bond length and bending angle variations are simulated by the use of two-noded,
straight, spring-like line-finite elements interconnecting two bonded carbon atoms. The
stiffness matrix of the proposed elements in addition to their force–displacement response
is derived by a local Cartesian coordinate system (x, y), which is presented in Figure 2. As
Figure 2 illustrates, their local coordinate system origin is positioned at the centre of the
line that connects the two bonded atom positions, while the x-axis is aligned with this
linking line and, thus, passes through its both nodes. The proposed joint finite element is
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expressed by a 2 × 2 stiffness elemental matrix, which includes two basic coefficients with
respect to the x and y directions.

kel =


kel

x 0 −kel
x 0

0 kel
y 0 −kel

y
−kel

x 0 kel
x 0

0 −kel
y 0 kel

y

. (8)

where the notation el of the element obtains the four different string values sas, ast, sts,
and tst meaning that the present formulation needs the implementation of four types of
spring-like elements having different longitudinal and transverse stiffness coefficients, as
Figure 2b demonstrates. For instance, the notation sts relates to a spring-like element,
which was employed for the description of a triple bond placed between two single bonds.
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According to the local coordinate system of the elements, it is true that ∆rs = ∆ra =
∆rt = ∆x. Thus, the nonlinear axial stiffness coefficients of these elements may be defined
by using Equation (9) as follows:

kel
x =


2(Bs)2Ds

e(2 − eBs∆x)e−2Bs∆x, el = ast, tst
2(Ba)2Da

e (2 − eBa∆x)e−2Ba∆x, el = sas
2(Bt)

2Dt
e(2 − eBt∆x)e−2Bt∆x, el = sts

. (9)

According to the simplified modeling technique followed here, provided in detail
in [39], the bond angle bending variation can be efficiently treated by solely using an
appropriate stiffness coefficient in the y-direction for each finite element el = sas, ast, sts,tst,
given by

kel
y =


(2ka,s

θ + ks,t
θ )(rs

0)
−2, el = ast

2ks,t
θ (rs

0)
−2, el = tst

(2ka,a
θ + 2ks,a

θ )(ra
0)

−2, el = sas
2ks,t

θ (rt
0)

−2, el = sts

. (10)

To examine the elastoplastic performance of a γ-graphyne sheet, one can write the
equilibrium expression for each assumed nonlinear spring-like finite element as

keluel = fel. (11)

where uel and fel are the elemental displacement and force vector, respectively. If i and j
are the two nodes of the finite element, these vectors can be written as

uel =
[

uel
xi uel

yi uel
xj uel

yj

]T
, (12)

fel =
[

f el
xi f el

yi f el
xj f el

yj

]T
. (13)

Transforming the elemental stiffness equation for every finite element to the global
coordinate system, the final system of nonlinear equations may be assembled, according to
the requirements of nodal connectivity, into the following form:

Kel(Uel)Uel = Fel, (14)

where Kel(U)el, Uel, and Fel is the assembled deformation-dependent stiffness matrix,
assembled displacement vector, and assembled force vector.

Applying the boundary conditions, i.e., appropriate supports and loads, in order
to simulate shearing, a standard incremental–iterative procedure based on the Newton–
Raphson algorithm was applied to numerically manage the inherent nonlinearity of the
global stiffness matrix and attribute the corresponding performance of the structure. More
details about the fundamentals regarding the computational implementation of the pro-
posed finite element-based scheme may be found elsewhere [39,40].

3. Results and Discussion

A number of 2D finite element models were established for the graphyne, graphdiyne,
graphyne-3, and graphyne-4 case. A total of 20 almost-square models of different sizes and
types were developed and analysed under shearing loads along the x (armchair) and y
(zigzag) direction, as illustrated in Figure 1d. The size of each 2D nanosheet is characterised
by the side length. For small sheet dimensions, the nonlinear mechanical behaviour under
shear loadings seems to be highly size-dependent. Table 1 provides the relevant information
and details about the geometric and computational characteristics of the structures that
were investigated in this study.
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Table 1. Information regarding the utilised FEM models.

Type Side Length
~ (nm) Lx (nm) Ly (nm)

Total
Number
of Nodes

Total
Number

of Elements

Graphyne

3.5 3.30 3.58 404 930
4.5 4.68 4.77 748 1738
6.0 6.06 5.97 1196 2794
8.0 8.12 8.35 2218 5210
10 9.50 9.55 2952 6948

Graphdiyne

3.5 3.67 3.30 304 686
4.5 4.62 4.95 558 1270
6.0 6.52 6.60 1034 2368
8.0 8.42 8.24 1654 3802
10 10.32 9.89 2418 5572

Graphyne-3

4.5 4.71 4.21 404 884
6.0 5.93 6.31 742 1636
8.0 8.36 8.42 1376 3050
10 10.79 10.52 2202 4895

5.5 5.77 5.12 504 1084
Graphyne-4 7.5 7.46 7.68 926 2004

10 10.20 10.23 1718 3734

To provide insight regarding the nature of the shear stress–strain curves of the four
different γ-graphyne types, Figure 3 depicts the shear stress–strain variations in the almost
square-shaped graphyne sheets, only along the x–y direction, for graphyne (Figure 3a),
graphdiyne (Figure 3b), graphyne-3 (Figure 3c), and graphyne-4 (Figure 3d), respectively.
This figure demonstrates that the graphyne is clearly stiffer and of higher strength in shear
strain than the other types. Furthermore, there is obviously a dependence of the shear
stress–strain response on the size of the structure. In all cases, it seems that the smaller
structures present a stronger response than the larger ones. Similarly, Figure 4 depicts the
shear stress–strain variations in the almost square-shaped graphyne sheets, only along the
y–x direction, for graphyne (Figure 4a), graphdiyne (Figure 4b), graphyne-3 (Figure 4c),
and graphyne-4 (Figure 4d), respectively. Analogous trends but different behaviours, in
general, are observed for the γ-graphyne structures in the y–x direction, compared with the
x–y direction.

Figure 5 depicts the variations in the shear moduli due to different sizes for all the
types of graphyne structures that were investigated in this study. In Figure 5a, the size
and type-dependent behaviour of shear modulus in the x–y direction is clearly described.
The smaller the dimensions are, the higher is the Gxy. The highest stiffness is reported
for γ-graphyne and is equal to 262.44 GPa for a side length of almost 3.5 nm (3.30 nm in
x-direction and 3.58 nm in y-direction). The lowest stiffness is obtained for graphyne-4 and
is equal to 143.10 Gpa for a side length of almost 10 nm (10.20 nm in x-direction and
10.23 nm in y-direction). Similar observations are noted also for the behaviour of shear
modulus in the y–x direction. The highest stiffness is reported for γ-graphyne and is equal
to 257.68 Gpa for a side length of almost 3.5 nm, and the lowest stiffness is computed for
graphyne-4 and is equal to 137.92 Gpa for a side length of almost 10 nm. It is observed that
the shear stiffness of graphyne structures is slightly lower in the y–x direction than the x–y
direction.

Figure 6 presents the variations in the shear strength for all the types of graphyne
structures for different structure dimensions. The smaller the dimensions are, the higher
are the τxy and τyx. In Figure 6a, the strong size- and type-dependent behaviour of
shear strength in the x–y direction is observed. The maximum strength is reported for
γ-graphyne and is equal to 75.60 GPa for a side length of almost 3.5 nm. The smallest
strength is calculated for graphyne-4 and is equal to 23.34 GPa for a side length of almost
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10 nm. Comparable results are also observed for the behaviour of shear strength in the y–x
direction. The highest strength is reported for γ-graphyne and is equal to 85.74 GPa for
a side length of almost 3.5 nm, and the lowest strength is computed for graphyne-4 and
is equal to 31.23 GPa for a side length almost 10 nm. It is noted that the shear strength of
graphyne structures is clearly higher in the y–x direction than the x–y direction. The values
of shear strength seem to be consistent with the shear strength values of graphene, i.e.,
100–120 GPa [40], respectfully following a certain tendency. As the number of single–triple–
single configurations increases, and therefore, the acetylenic linkage becomes longer, the
shear moduli and strength decreases.
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phyne -4 structures in x–y direction.

Figure 7 presents the behaviour of the shear fracture strain versus the structure size
for all the types of graphyne structures. The smaller the dimensions, the higher the γxy and
γyx. The size- and type-dependent behaviours of shear fracture strain in the x–y direction
were examined, the results of which are presented in Figure 7a. The greatest fracture
strain is achieved for γ-graphyne and is equal to 0.46 for a side length of almost 3.5 nm.
The smallest fracture strain is computed for graphdiyne and is equal to 0.208 for a side
length of almost 10 nm. For higher sizes, all structure types seem to converge at a specific
shear fracture strain range 0.20–0.25. Comparable results are computed for variations in
shear fracture strain in the y–x direction too. The highest fracture strain is reported for
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γ-graphyne and is equal to 0.588 for a side length almost 5.5 nm, and the lowest fracture
strain is calculated for graphdiyne and is equal to 0.272 for a side length almost 10 nm. It is
noted that the fracture strength of graphyne structures is clearly higher in the y–x direction
than the x–y direction. For lower sizes, the fracture strain range is about 0.55 ± 0.05, and
for higher sizes, all structure types seem to converge at a specific shear strain range of
0.31 ± 0.05 (side length ~ 10 nm). These values of shear fracture strain are also predicted
for square graphene of 10 nm side length [40].
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Figure 4. Shear stress–strain response of (a) graphyne, (b) graphdiyne, (c) graphyne-3, and
(d) graphyne-4 structures in y–x direction.

To validate the proposed computational approach concerning the performance of
γ-graphynes under shearing forces, Table 2 demonstrates various comparisons between
the results of the present numerical technique and estimations gathered from different
approaches found in the literature. A reasonable agreement with the results of the other
published studies may be observed. Differences observed may be occurred due to the
size dependency of the structural mechanical response. Concerning the nonlinear results
for graphynes imposed to shear loading, the published data are limited to a few studies
concerning only graphyne and for specific sizes, without any analysis about the size
effect. More results can be found about the elastic properties of graphyne structures, and
the comparisons about the shear stiffness performed to demonstrate the accuracy of the
proposed method.
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Table 2. Some comparisons between the present numerical outcome and other corresponding data.

Type Method Side
Length~(nm)

Gxy
(N/m)

Gyx
(N/m)

τxy
(N/m) γxy τyx

(N/m) γyx

Graphyne

Present 10 81.10 76 24.19 0.268 20.62 0.313
MD [37] 20 85.60 67.2 13.28 0.143 17.24 0.153
DFT [41] 15 77.04 0.18
FE [30] 10 40.70 4.6 0.18 5.5 0.16
FE [36] 10 70.50 0.1145 0.1147

DFT [13] 12 57.64
FE [31] 10 56.53 10.4 0.25

MD [42] 12 15.7
(Gpa) 0.07 23.1

(Gpa) 0.246

Graphdiyne Present 10 66.61 65.69 11.81 0.208 14.16 0.272
DFT [13] 12 43.18

4. Conclusions

A nonlinear finite element method was presented for the modelling of shear stress–
strain response of γ-graphyne structures, i.e., graphyne, graphdiyne, graphyne-3, and
graphyne-4, up to their fracture, for a range of geometric characteristics. To model the
nanostructures, nonlinear, spring-like finite elements were employed to model the inter-
atomic interactions between carbon atoms. From the stress–strain variations, essential
material properties such as shear modulus, shear fracture stress, and shear fracture strain
were revealed. As a general conclusion, graphynes have higher shear stiffness and shear
strength than the other types of the family, and all the structures present size-dependent
behaviour. The properties seem to become gradually less for higher sizes. The proposed
approach, through comparisons where it was possible, is proved to be an effective and
sufficiently accurate tool for the characterisation of graphyne structures and potentially
other similar nanostructures.
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