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An omics investigation into chronic widespread
musculoskeletal pain reveals epiandrosterone
sulfate as a potential biomarker
Gregory Livshitsa,b, Alexander J. Macgregora,c, Christian Giegerd, Ida Malkinb, Alireza Moayyeria,e,
Harald Grallertf,g,h, Rebecca T. Emenyg, Tim Spectora, Gabi Kastenmüllera,i, Frances M.K. Williamsa,*

Abstract
Chronic widespreadmusculoskeletal pain (CWP) is common, having a population prevalence of 10%. This study aimed to define the
biological basis of the CWP/body mass association by using a systems biology approach. Adult female twins (n 5 2444) from the
TwinsUK registry who had extensive clinical, anthropometric, and “omic” data were included. Nontargetedmetabolomics screening
including 324 metabolites was carried out for CWP and body composition using dual-energy X-ray absorptiometry. The biological
basis of these associations was explored through a genome-wide association study and replicated in an independent population
sample (Cooperative Health Research in the Region of Augsburg [KORA] study, n 5 2483). A causal role for the genetic variants
identified was sought in CWP using a Mendelian randomisation study design. Fat mass/height2 was the body composition variable
most strongly associated with CWP (TwinsUK: P 5 2.4 3 10215 and KORA: P 5 1.59 3 10210). Of 324 metabolites examined,
epiandrosterone sulfate (EAS) was highly associated with both CWP (P5 1.053 10209 in TwinsUK and P5 3.703 10206 in KORA)
and fat mass/height2. Genome-wide association study of EAS identified imputed single nucleotide polymorphism rs1581492 at
7q22.1 to be strikingly associated with EAS levels (P # 2.49 3 10278), and this result was replicated in KORA (P 5 2.12 3 1029).
Mendelian randomization by rs1581492 genotype showed that EAS is unlikely to be causally related to CWP. Using an agnostic
omics approach to focus on the association of CWP with body mass index, we have confirmed a steroid hormone association and
identified a genetic variant upstreamof the CYP genes, which likely controls this response. This study suggests that steroid hormone
abnormalities result from pain rather than causing it, and EAS may provide a biomarker that identifies subgroups at risk of CWP.
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1. Introduction

Chronic widespread musculoskeletal pain (CWP)—a key feature
of fibromyalgia—is common in the general population with
a prevalence of 5% to 15%.21,28 The condition is associated

with frequent physician consultations and high public health
cost.31 Of the many aetiological factors that have been proposed
in CWP, the association with elevated body mass index (BMI) is
one of the strongest and most consistently reported and has been
demonstrated both in cross-sectional14,19 and longitudinal stud-

ies.18 The observation that raised BMI predicts the onset of pain

suggests that BMI may be casually related to CWP and not simply

a reflection ofweight gain resulting from, for example, pain-induced

immobility. We have shown previously that there is a common

genetic basis for multisite musculoskeletal pain33 and have recently

contributed to an international genome-wide association study

(GWAS) meta-analysis for CWP.22 The power of “agnostic”

metabolomics as an intermediate phenotype in the association

analysis of complex traits has been demonstrated.29

In this study, a systems biology approach was used to dissect
the biological basis of the relationship between BMI and CWP.

We used omics data (genomics and metabolomics) to perform

agnostic testing of 2 large population samples of Northern

European origin. First, we defined the relationship between BMI

and CWP using whole-body dual-energy X-ray absorptiometry to

define the component of BMI (fat vs muscle) mediating the

relationship. Then, we examined a panel of 364 metabolites to

determine associations with both CWP and body composition.

Identified metabolites were further explored through GWAS in

a strategy that has proved useful in other common complex

traits29 including age-related traits16 and diabetes.15 The

combined omic approach represents a novel and powerful
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attempt to apply new technological methods10 to the elucidation
of biological pathways underlying CWP.

2. Methods

The study samples included the TwinsUK as the discovery set
with replication performed using data available in a sample from
the Cooperative Health Research in the Region of Augsburg
(KORA) study.8

2.1. Study samples—phenotypes

The TwinsUK discovery sample available for this study included
1269 monozygotic and 1175 dizygotic twins.17,27 The register of
healthy adult female twins has been developed over 22 years, and
participants are representative of the general UK population.2

Twins are sent regular questionnaires and may be invited to
a clinical visit and sample collection. Where possible, twins were
not made aware of the precise hypothesis being tested before
inclusion in a particular study.

Twins included in this study had been sent the London
Fibromyalgia Epidemiology Symptom Screening Questionnaire
(LFESSQ) for self-completion without reference to the co-twin.32

Twinswith pain on both left and right sides of the body, above and
below the diaphragm, andwith a duration of 7 days ormorewithin
the preceding 3 months were considered as cases. At the clinical
visit, height wasmeasured inmetres andweight in kilograms, and
BMI was calculated (kg/m2). Participants also underwent
a whole-body dual-energy X-ray absorptiometry (Hologic Dis-
covery W; Hologic, Bedford, MA) following the manufacturer’s
recommendations.3 This method quantified the contributions of
lean body mass and fat body mass.

Participants from KORA included 1231 men and 1252 women
from a subsample of the KORA S4 survey, which was performed
between 1999 and 2000. The KORA study includes a series of
independent population-based surveys (S1-S4) recruiting partic-
ipants from the region of Augsburg in SouthernGermany. TheKORA
study is a cross-sectional survey of the development and course of
chronicdiseases in a randomlycollected sampleof adult individuals.8

In KORA, pain was assessed as part of a self-report questionnaire
based on the question “To what extent did pain hinder you in your
daily tasks at home and atwork during the past 4weeks?,” for which
the participants could select from following answers: “no pain” (0),
“not at all” (1), “slightly” (2), “moderately” (3), “quite” (4), “very” (5), “do
not know.” The pain variable was examined twice, first, as
a dichotomous variable with controls (CWPq , 3) vs cases (CWPq
$ 3) and then as a continuous trait. For the assessment of leanmass
and fat mass, bioelectrical impedance analysis (BIA) measurements

of resistance (R), reactance (Xc), and the phase angle (a) were taken
using a bioelectrical impedance analyser (BIA 2000-S; Data Input
GmbH, Frankfurt, Germany). Based on these measurements, lean
and fat mass were calculated by Segal’s equations.25,26

2.2. Metabolomics

Nontargeted ultrahigh-performance liquid chromatography and
mass spectrometry was performed on fasting plasma samples of
TwinsUK participants (n 5 5003) and fasting serum samples of
KORA S4 participants (n 5 1614) using the Metabolon’s
platform.24,29 The metabolomic data set contained amino acids,
peptides, acylcarnitines, sphingomyelins, glycerophospholipids,
lipids, carbohydrates, nucleotides, vitamins, steroids, and xeno-
biotics. Raw data were median normalized for daily fluctuations of
the method and then inverse normalized. In the discovery set,
missing valueswere imputed using theminimummeasures of each
metabolomic feature for the particular run days. To avoid spurious
false-positive associations because of small sample size, meta-
bolic traits having .20% missing values were excluded.

2.3. Genomics

TwinsUK subjects had been genotyped for association markers
using a combination of Illumina arrays (Human Hap300 and the
Human Hap610Q) as previously reported.12 For this analysis,
single nucleotide polymorphisms (SNPs) were excluded if call rate
,97% (SNPs with minor allele frequency, MAF $5%) or ,99%
(for 1% # MAF ,5%), Hardy–Weinberg p values ,1026, and
MAF ,1%. Subjects were removed if genotyping failed in .2%
SNP. The overall genotyping efficiency was 98.7%. Imputation of
genotypes was carried out using the software IMPUTE version
213 using HapMap II as the reference panel. Population sub-
structure was examined using the STRUCTURE program23 and
correspondingly controlled for spurious associations. In KORA,
Affymetrix Axiom chip had been used for genotyping. HapMap
build 37 served as population reference, and the criteria of call
rate.98% and P (Hardy–Weinberg).53 1026 were applied as
filters for SNP quality. Genotyped SNPs were imputed with
IMPUTE v2.3.0 using the 1000G set as reference panel.

2.4. Analytical approach

The analysis was conducted in several steps. First, potential risk
factors for CWP including age and anthropometric measure-
ments (weight, height, BMI, and body composition variables)
were examined in univariate analysis (Student t test). Second, we
sought metabolites significantly associated with CWP, preserving

Table 1

Descriptive statistics for the discovery and replication samples from TwinsUK and KORA, respectively.

Covariates TwinsUK KORA

Cases (n 5 490) Controls (n 5 1954) Student t test Cases (n 5 701) Controls (n 5 1782) Student t test

Mean (SD) Mean (SD) t P Mean (SD) Mean (SD) t P

Age, y 58.3 (10.6) 53.5 (14.0) 8.39 7.8 3 10217 59.6 (9.3) 56.9 (10.0) 6.39 2.28310210

FBM, g 26,438.2 (9157.1) 23,145.2 (8112.6) 7.28 4.6 3 10213 28,857.5 (8794.8) 27,003.2 (8117.5) 4.78 1.99310206

LBM, g 40,130.7 (5767.0) 39,488.8 (5071.8) 2.25 2.4 3 10202 49,625.0 (9676.8) 50,897.4 (9582.7) 22.93 3.50310203

Height, cm 160.79 (5.50) 162.01 (6.28) 24.25 2.2 3 10205 165.52 (8.94) 167.19 (9.04) 24.18 3.09310205

Weight, kg 70.47 (14.14) 66.47 (12.03) 5.76 9.3 3 10209 78.51 (15.11) 77.91 (14.24) 0.90 3.67310201

BMI, kg/m2 26.11 (4.85) 24.52 (4.19) 6.67 3.2 3 10211 28.64 (4.90) 27.83 (4.43) 3.76 1.78310204

FBM/H2, kg/m2 10.23 (3.49) 8.85 (3.14) 7.97 2.4 3 10215 10.64 (3.52) 9.76 (3.21) 5.68 1.67310208

LBM/H2, kg/m2 15.50 (1.93) 15.03 (1.65) 4.94 8.5 3 10207 17.97 (2.18) 18.05 (2.07) 20.89 3.74310201

The table shows risk factors for CWP including body composition variables, by case and control status.

BMI, body mass index; FBM, fat body mass; H, height; LBM, lean body mass.
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power by including only those metabolites available in $2000
subjects in TwinsUK. To this aim, all 324metabolites available were
tested separately in a series of t tests comparing each metabolite
among the affected vs nonaffected individuals. Metabolites
showing metabolome-wide significant association with CWP (false
discovery rate ,5%5) were tested for association with BMI and
body composition variables and then underwent GWAS using
GenABEL software,4 adjusting for familial relationship.

To determine the relative contributions of factors influencing
CWP, we conducted binary logistic regression, taking into account
twin relatedness. Variables that were introduced stepwise into the
regression model included age, BMI/body composition, metabo-
lites, the most highly associated genotyped SNP, and co-twin
status. This analysis included 4metabolites that had been identified
at the previous stage as statistically significant and independently
associatedwith CWP.We also note that GWAS revealed only a few
highly significant “candidate” SNPs, which were included in the
binary logistic regression as potential covariates.

To assess the causal influence of the identified metabolites on
CWP, we performed Mendelian randomisation analysis using the
instrumental variable method.20 Multivariate regression analysis
of the selectedmetabolite(s) with simultaneous adjustment for the
top SNP and other significant covariates was used. In KORA,
where the sample comprised unrelated individuals and pain
phenotype was scored as a semiquantitative variable (CWPq), we
used multivariable linear regression analyses to determine the
association of CWP with all potential covariates, including age,
body composition variables, and circulating levels of metabolites.
In addition, the CWP was further classified as a dichotomous
variable—controls (CWPq , 3) vs cases (CWPq $ 3).

3. Results

3.1. Body mass phenotype

The discovery sample comprised 2444 TwinsUK participants and
the replication sample comprised 2483 participants from KORA
(of which 1614 had metabolomic data). Table 1 shows
a comparison of the age and body composition risk factors by
case–control status for the 2 groups. Controls were found to be
significantly younger (Twins UK: 53.5 vs 58.3, P 5 7.8 3 10217;
KORA: 56.9 vs 59.6 years, P 5 2.3 3 10210), taller, and leaner
than cases of CWP. Chronic widespread musculoskeletal pain
cases demonstrated greater adiposity than controls in all body
composition variables of which relative fat mass (fat body mass/
H2—referred to as fat mass index or FMI hereafter) was most
significantly associated with CWP in both samples (TwinsUK: P5
2.43 10215, KORA: P5 1.73 10208) and was used as the main
variable in subsequent analyses (Table 1).

3.2. Metabolomics

Of the 324 metabolites having complete data in TwinsUK, 6
showed significant association with CWP (after adjusting for age,
false discovery rate ,0.05; Table 2). Epiandrosterone sulfate
(EAS)was themost strongly associated before (P5 6.813 10229)
and after adjustment for age (P 5 1.05 3 10209), demonstrating
a strong inverse association, that is, lower levels of EAS
associated with higher risk of CWP. In univariate analyses, 5 of
the 6 metabolites found associated with CWP were also
significantly correlated with FMI, the exception being unidentified
metabolite X-1440 (Table 2). The significant associations of all 6
metabolites with CWP survived adjustment for other covariates
(age, FMI, twin relatedness) in multiple logistic regression T
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(Table 2). The corresponding OR ranged between 0.676 (P 5
1.05 3 10209) for EAS and 0.838 (P 5 4.84 3 10203) for
nonadecanoate (19:0).

In KORA, similar associations were observed (Table 2). Testing
pain as a continuous phenotype, with simultaneous adjustment
for age, sex, and FMI, confirmed the association of pain with 4 of
the 5 metabolites, including EAS (P5 3.703 10206) and DHEAS
(P 5 1.86 3 10206). Of note, on subgroup analysis by gender in
KORA, the associations were consistently significant and in the
same direction in females and males (data not shown).

3.3. Genomics of metabolites

The discovery GWA study of EAS using 2.5million genotyped and
imputed SNPs in TwinsUK revealed a highly significant associ-
ation at a single peak on chromosome 7q22.1 between 98.85

and 99.05 Mbp (P # 2.49 3 10278; Fig. 1). The lead SNP
rs1581492 was imputed and was in strong linkage disequilibrium
with several other genotyped and imputed highly associated
SNPs (for the 6 genotyped SNPs D9 5 0.89-1.00 (Fig. 2)). The
proportion of variance in EAS explained by the variants varied
between 7.6% and 8.1%. In silico replication in KORA provided
confirmation of the signal with the overlapping SNPs showing an
almost identical pattern, with the lead SNP rs1581492 havingP5
2.12 3 10209 (Fig. 1B).

For nonadecanoate (19:0), we found no genome-wide
significant association signals. The results of GWAS of 3-(4-
hydroxyphenyl)lactate revealed a single genome-wide significant
peak (P $ 1029), which mapped to chromosome 17 between
77.67 and 77.77Mbp.Of 9 SNPs genotyped in this region, 8were
in almost perfect LD (D9 ; 1, r2 . 0.99). Although the nearest
gene is CCDC57, the SLC16A3 locus also lies in that region and is

Figure 1. Manhattan plot of GWAS of metabolite M33973 in TwinsUK and KORA. The upper figure shows the GWAS results for EAS in TwinsUK*, with KORA
results below. *Including only unaffected individuals in the GWAS gives almost identical results, although the corresponding P values were attenuated.
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more likely to harbour the causal variant, as this gene is known to
encode a protein that transports lactate and derivatives thereof.

Finally, all covariates significantly associated with CWP were
included in a single multiple logistic regression model simulta-
neously to test their relative contribution to CWP risk (Table 3). In
particular, we tested the independent association of genotyped
SNP, rs10235235, which was virtually in perfect LD with our top
but imputed SNP rs1581492. The analysis revealed that besides
age and FMI, EAS, SNP rs10235235, and co-twin affection status
(residual genetic effect) made major contributions to overall
model significance (x2(10) 5 340.8, P ,, 0.001) and the
prediction of CWP. When all 6 metabolites were tested
simultaneously, only 3 remained significantly and independently
associated with CWP. Of these, EAS was highly associated with

CWP (P 5 5.9 3 10210) in a combined model including age, co-
twin status, FMI, and SNPs (Table 3).

3.4. Mendelian randomisation

Taken together, the results suggested that EAS levels influence
the development of CWP. To test this hypothesis, we performed
a Mendelian randomization study of the lead genotyped SNP. If
circulating levels of EAS genetically determined by rs10235235
are causally related to CWP, individuals carrying the rs10235235
C allele would be expected to have reduced EAS levels and
a higher prevalence of CWP. In fact, our results showed that CWP
prevalence among C allele carriers was lower compared with
noncarriers (0.17 vs 0.21, P 5 0.046). Conducting the 2 stage

Figure 2. Regional plot of association results and recombination rates for the chromosome 7q22.1.2log10 P values (y axis) of the SNPs are shown according to
their chromosomal positions (x axis) with lead SNP shown as a purple diamond. The colour intensity of each symbol depicting an SNP reflects the extent of LDwith
the rs1581492, coloured red (r2 . 0.8) through to blue (r2 , 0.2). Genetic recombination rates (cM/Mb), estimated using HapMap CEU samples, are shown with
a light blue line. Physical positions are based on build 36 (NCBI) of the human genome. Also shown are the relative positions of genes mapping to the region of
association. Genes have been redrawn to show the relative positions and, therefore, the maps are not to physical scale.

Table 3

Relative contribution of metabolomic and genomic predictors to risk of CWP in TwinsUK.

Regression parameters Parameter estimate SE Wald’s x2 P OR (per SD) 295% CI 195% CI

Constant 22.03 0.09 485.32 ,0.0001 N/A

Age 1.54 0.60 6.61 0.010 4.68 1.44 15.20

Age2 21.32 0.56 5.67 0.017 0.27 0.09 0.79

DZCWP 1.41 0.16 75.50 3.8 3 10218 4.09 2.98 5.62

MZCWP 2.05 0.18 134.79 3.4 3 10230 7.74 5.48 10.93

Fat/H2 0.23 0.06 13.93 1.9 3 10204 1.26 1.12 1.43

EAS 20.44 0.07 38.37 5.9 3 10210 0.64 0.56 0.74

rs1581492 20.88 0.24 12.94 3.2 3 10204 0.42 0.26 0.67

rs952319 0.44 0.19 5.22 0.02 1.55 1.06 2.26

Multiple binary logistic regression analysis of CWP was performed with risk factors including co-twin status, metabolite EAS, and genotyped (rather than imputed) SNPs associated with EAS. The distribution of all quantitative

continuous variables was standardized before analysis.

Model likelihood 5 832.3; x2(10) 5 340.8, P , 0.00001.

The study sample size including all variables: n 5 2003.

EAS, epiandrosterone sulfate; OR, odds ratio.
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instrumental variable analysis using genotype-predicted EAS
levels showed that predicted levels do not significantly influence
the risk of CWP (b 5 0.458 6 0.239, P 5 0.055), whereas EAS
residuals, after adjustment for genotype effect and other cova-
riates, were significantly associated with CWP (b 5 20.512 6
0.066, P 5 2.01 3 10214). These finding are consistent with EAS
levels falling as a consequence of pain, rather than predisposing to
it, determined by the genotype at 7q22.1. However, the presence
of an unobserved confounding variable influencing the outcome of
this analysis cannot be excluded.

4. Discussion

Fibromyalgia is a highly prevalent health problem in the EU and
USA comprising CWP, fatigue, and sleep disturbance.6 Chronic
widespread musculoskeletal pain is recognised to coexist with
other common pain states, and they are thought to share
a genetic underlying predisposition.30 We used novel omics
technologies to dissect the biological mechanisms underlying the
CWP–BMI relationship. Our analysis, replicated in an indepen-
dent sample, has shown that adiposity or FMI is the major
mediating body composition factor. The associations we
observed were consistently significant in the 2 data sets, despite
differences in their phenotyping of both CWP and body
composition. Metabolomic data analysis revealed joint indepen-
dent associations between steroid hormones, FMI, and CWP in
both TwinsUK and KORA cohorts with an inverse association of
CWP riskwith EAS—that is, the risk of CWP increasingwith falling
levels of EAS.

We are not the first to identify steroid hormone metabolism
abnormalities in chronic pain.1,7 However, our approach had the
advantage of being an agnostic search of metabolites in a large
population sample and having an independent population cohort
for replication. Although CWP was associated with cortisone
levels onmetabolomic screen (P5 0.00069), the association was
only marginally statistically significant when adjustment was
made for FMI (P 5 0.052, data not shown). Taken together, our
data provide compelling evidence of a strong association
between androgen hormone metabolism and CWP, suggesting
that chronic pain leads to a reduction in hormone levels.

The use of metabolites as an intermediate phenotype in GWAS
is providing a tractable approach to understanding better the
genetic variants, and hence the pathways, involved in common
complex traits.29 GWAS of EAS levels revealed multiple highly
associated SNPs on chromosome 7q22.1 in TwinsUK, a finding
that was replicated in KORA, providing robust evidence of a true
association. The lead genotyped SNP rs10235235 explained 8%
of the total variance of EAS, and it was our expectation that this
represented a novel genomic locus predisposing to CWP. Note,
however, that the inclusion of the top imputed SNP rs1581492,
instead rs10235235, gives virtually the same result. Chromo-
some 7q22.1 is a gene-rich region and includes both the zinc
finger gene ZNF789 and cytochrome p450 gene CYP3A5, which
lies 0.3 Mbp upstream of the SNP (Fig. 2). The latter is known to
be involved in intracellular drug metabolism11 and synthesis and
breakdown of a variety of lipids including cholesterol and steroid
hormones and so very likely has an influence on the androgen
steroid metabolism pathway containing both dehydroepiandros-
terone and its breakdown product, EAS. Mendelian randomiza-
tion analysis, however, did not confirm that EAS lies in the causal
pathway for CWP. Explanations for this include lack of power to
detect a real effect: power for this analysis was estimated at 56%.
Alternatively, there may be pleiotropic effects of SNP rs10235235
on CWP and EAS or else reverse causation: that CWP leads to

reduced EAS levels. Finally, it is possible that other factors
(genetic loci or epigenetic influences) could be responsible for this
consistently observed correlation. Either way, falling EAS levels
may represent a sensitive marker of chronic pain manifestation
and has the potential greatly to assist in the clinical management
of CWP.

There are a number of limitations of the study. Questions used
to define the pain phenotype in the TwinsUK and KORA
collections differed, as did the precise definition of CWP that
was applied. This is a field of study where standardisation of
phenotype is greatly needed; however, both samples have
contributed to the successful GWAS meta-analysis of CWP,22

which was limited by similarly varied diagnostic criteria from
among themany contributors. The advantage of using population
cohorts is the availability of large sample sizes—which are
essential in omic studies. With less well-defined conditions, the
trade-off with phenotype consistency would serve to bias findings
towards the null—and lessen the chance of positive findings or
successful replication. TwinsUK has CWP prevalence high
enough to provide informative case/control numbers, and the
questions used were taken from a validated questionnaire
(LFESSQ),32 whereas the CWP data for KORA consistently
replicated the findings regardless of how the phenotype was
defined (semiquantitative or dichotomous). Our findings are
pertinent to chronic pain in the community as both TwinsUK
and KORA are population samples. TwinsUK has been shown to
be similar for common traits and outcomes to age-matched
singleton women.2 These results might also extend to other
chronic pain syndromes such as irritable bowel syndrome and
chronic pelvic pain, and this needs to be investigated. Other
limitations include the predominance of females in the TwinsUK
sample, something that might be regarded as an advantage here
as CWP is more prevalent in women. It is noteworthy that in
KORA, a similar relationship between body composition and
metabolites in men and women was observed—despite the use
of a differentmethod to determine body fat. These results suggest
that our findings are robust and pertinent to both sexes.

To date, genetic studies of pain phenotypes have explored an
array of candidate genes taken from putative and diverse
biochemical pathways.9 By narrowing our focus to the associ-
ation between CWP and BMI/body composition, we have shed
light on possible neuroendocrine and central hormonal mecha-
nisms that are shared between the 2 traits. The findings show that
CWP influences EAS in a highly genotype-dependent manner,
the specific nature of which remains to be established. It is
possible that this effect is mediated by the cytochrome P450
enzyme 3A5, the gene, which is mapped to the genomic region
highly associated with EAS variation. Further exploration of the
chromosomal region is under way, and the use of EAS as a clinical
biomarker in CWP and other chronic pain states will need to be
assessed in independent samples.
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