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ABSTRACT Water samples from the Hudson Valley watershed indicate that the area
is host to many violacein-producing bacterial isolates. Here, we report the draft
whole-genome sequence of Janthinobacterium sp. strain BJB412, an isolate lacking
violacein production yet containing genes responsible for prodigiosin, biofilm pro-
duction, and quorum sensing, like its purple-pigmented counterparts.

Janthinobacterium spp. are aerobic motile Gram-negative bacteria that are commonly
characterized by their production of a purple metabolite, violacein (1). This product

of a five-gene vio operon (2) was recently linked to killing effects on an amphibian-
specific fungus, Batrachochytrium dendrobatidis (3–6). Many Janthinobacterium strains
possess quorum-sensing capabilities (7–9) to regulate phenotypes, such as violacein
and biofilm production (9–12). The bacterial isolate in this study, BJB412, was cultured
from the Hudson River watershed in New York and does not produce the purple
violacein pigment characteristic of the genus. Instead, BJB412 is characterized by a
vibrant red color, predicted to result from the production of prodigiosin, a pigment
with antimicrobial properties (13). Interestingly, BJB412 was isolated from a water
sample alongside violacein-pigmented colonies.

Genomic DNA extraction was completed with the Qiagen Gentra Puregene Yeast/
Bact. kit using vendor-provided protocols. Paired-end Illumina libraries (150 bp) were
prepared, and HiSeq sequencing using Illumina HiSeq 4000 was completed offsite
(Wright Labs, Huntington, PA). Read assemblies were built using a modified version of
a local pipeline described elsewhere (14). To this protocol, adapters and contaminants
were removed, and reads were quality filtered with a Q score cutoff of 10 using BBDuk
from the BBMap package version 37.50 (https://sourceforge.net/projects/bbmap). A
draft assembly was built using SPAdes version 3.11.0 (15) (k-mers selected, 21, 33, 55,
77, 99, and 127). Contigs shorter than 500 bp or that comprised fewer than four reads
were subsequently filtered out of the assembly. Assembly improvement was attempted
using a combination of SSPACE and GapFiller (16–18).

Draft assembly of the whole genome yielded 78 contigs, with an N50 value of
333,942 bp. The genome of BJB412 is predicted to be 6,786,668 bp in length, which is
comparable to that of other analyzed Janthinobacterium species. Interestingly, analysis
revealed a G�C content of 67.16%, while most other published Janthinobacterium
genomes have a G�C content ranging from 62 to 63% (12, 19, 20). The assembled
contigs were annotated using a local pipeline running the Prokka genome annotation
software (21), the RASTtk annotation software, via the PATRIC pipeline (22, 23), and the
NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (24). Annotations for BJB412
yielded an average of 5,932 coding sequences (CDSs). As expected, a violacein biosyn-
thesis operon was not present in any annotation, while the sequences for the pig genes,
which are responsible for prodigiosin production, were observed. Additionally, anno-
tation involved genes that participate in the bacterial quorum-sensing cascade (jqsA
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and qseC) and genes related to cyclic-di-GMP (c-di-GMP) levels, biofilm production
(wspC), chemotaxis-mediated biofilm dispersion (bdlA), and twitching motility (pilT, pilJ,
pilH, and pilG) (25, 26). Related to the biofilm genotype, BJB412 displays an interesting
colonial morphology distinct from all other Janthinobacterium isolates observed:
the bacterial colonies are firmly embedded in the medium when cultured on 1.5%
R2A agar.

BJB412 was found in the same aquatic community as violacein-producing bacterial
strains. It is possible that the pigments produced by BJB412 work in association with
violacein, potentially having additive killing effects on local pathogens. Future work
aims to better understand how these bacterial genomes contribute to fungal reme-
diation and their eventual therapeutic implementations.

Accession number(s). The whole-genome shotgun projects have been deposited at
DDBJ/ENA/GenBank under accession number PDZP00000000. The version described in
this paper is version PDZP01000000.
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