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SUMMARY

Antibodies are an important group of biological molecules that are used as thera-
peutics anddiagnostic tools.Althoughmillionsofantibodysequencesareavailable,
identifying their structural and functional similarity and their antigen binding sites
remains a challenge at large scale. Here,wepresent a fast, sequence-based compu-
tational method for antibody paratope prediction based on protein language
models. The paratope information is then used to measure similarity among
antibodies via protein language models. Our computational method enables
binning of antibody discovery hits into groups as the function of epitope engage-
ment. We further demonstrate the utility of the method by identifying antibodies
targetinghighly similar epitopesof the sameantigens froma largepool of antibody
sequences, using twocase studies: SARSCoV2ReceptorBindingDomain (RBD) and
Epidermal Growth Factor Receptor (EGFR). Our approach highlights the potential
in accelerating antibody discovery by enhancing hit prioritization and diversity
selection.

INTRODUCTION

Antibody (Ab) epitope knowledge is crucial for understanding B cell-mediated immunity. It is also essential

information in developing therapeutic antibodies.1 To date, grouping a library of monoclonal antibodies

(mAbs) by their epitopes against a common antigen (Ag), i.e., epitope binning, is recognized as one of

the critical steps of a discovery campaign. Epitope binning early can reduce redundancies in Ab hit selec-

tion and accelerate our understanding of mechanism of action. The sooner such information is available,

the greater the probability of maintaining epitope diversity in the selection process; thus, improving the

identification of unique, functional, and effective antibodies with better immunogenicity, ADME, or

developability properties is paramount.

Among the advancements in antibody technology platforms, Next Generation Sequencing (NGS) provides

tens of thousands of antibody clones that can easily challenge the highest throughput experimental meth-

odology currently employed. Consequently, an in silico approach is highly desired for its capacity, speed,

and cost. Effective use of in silico binning can supply epitope relevant information much earlier in the

process, on a greater diversity of molecules, to inform decision-making and focus labor/cost intensive

experimental steps on molecules with increased probability of technical success. Moreover, reliable in

silico binning is especially valuable for challenging targets, such as membrane antigens, unstable reagents,

or targets with limited functional assay capacity. in silico Ab epitope prediction is a long-standing goal and

challenged by the complexity of finding cognate pairs among the immense Ab repertoire and the multi-

tude of Ag epitopes.2–4 As a result, there are no such in silico tools readily available. However, ever

increasing computing power and emerging technologies,5,6 joined with accumulating experimental

database and deep-learning algorithms,7–10 support the position that in silico prediction is possible. To-

ward the grand goal of Ab epitope prediction, we propose a divide-and-conquer approach by focusing

on a specific task – in silico binning of thousands of Abs into functional groups of similar binding specificity

by assessing their paratope properties, computationally. The establishment of an in silico binning tool,

together with NGS, will further enhance the NGR discovery process. The ability to screen 100s–1000s

Abs as a function of epitope engagement will speed up hit selection, ensure maintenance of maximal

diversity, and contribute to intellectual property positioning versus competitors. There are several

categories of computational methods that aim to find epitope similarity,11 including clonotyping,
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paratyping and structural profiling. Some of the methods rely on sequence similarity. But relying solely on

sequence identity is not sufficient to identify Abs with similar epitopes, as antibodies can form similar in-

teractions with notably low sequence identity.11 In addition, several works rely on structural complementary

and docking methods, some in combination with machine learning, to predict epitope-paratope

engagement.12–17

Abs have a conserved structural framework and their Ag specificity is determined by the surface of their

binding site composed of six ‘‘hypervariable loops’’ referred to as Complementary Determining Regions

(CDRs), which collectively comprise the paratope. Generally, the paratope of an Ab recognizes an

epitope on the Ag with a high degree of specificity, which is achieved via unique molecular interactions.

The specific interaction between paratope and epitope is driven by shape and physiochemical property

complementarity, e.g., hydrophobicity, charge distribution, polarity, and shape index. Conceptionally,

Abs with similar paratope features likely interact with similar epitopes on the Ag surface. Ab CDR se-

quences alone are not sufficient to distinguish epitope specificity; for example, necitumumab and cetux-

imab exhibit different CDR loop lengths and compositions, yet they bind to a very similar epitope on

EGFR.18 Similarly, Ovalbumin (OVA) Abs with various H3 lengths can bind a similar epitope region

evidenced by binding competition assays.19 This underpins the importance of analyzing the paratope

features for binning, in addition to the sequence. Ab structure prediction by homology modeling is

well-established, from which structural fingerprints of paratope can be retrieved. In the past, protein

fingerprinting has demonstrated wide applications from searching for remotely homologous proteins

in databases, screening ligand binding for targeted proteins. Along this line, works such as Ab-ligity,20

used structural similarities among modeled antibodies to present a structural comparison of paratopes,

however, they rely on homology modeling, and inaccurate prediction of antibody’s loops may pose a

challenge. In addition, generating homology for very large pools of antibodies can be computationally

expensive.

Here, we propose a computational approach that predicts the paratope residues of antibodies first, then

uses those to generate representations that can be utilized to measure similarity and used for clustering.

There have been several works to predict antibody’s paratope residues from the sequence. Programs such

as Parapred,21 ProABC22 and ProAbC-223 predict the paratopes using machine learning. In this work, we

demonstrate a paratope prediction model based on protein language models and show the application

of this method on two examples: binning of SARS CoV2 RBD antibodies and screening for novel antibodies

which bind similar epitopes of commercial EGFR antibodies. Our proposed approach does not require a

priori knowledge of antigen/epitope. Rather, we attempt to predict whether two or more Abs are likely

to bind the same epitope via paratope similarity analysis; thus, computationally clustering Abs into func-

tional bins. Our results show great promise for themethod in acceleration and reducing the screening costs

of novel antibody discovery.

RESULTS

Paratope prediction

Table 1 shows the paratope prediction model’s performance measured by cross-validation according to

several common metrics used for evaluating machine learning models. Several methods have been devel-

oped in the past for paratope prediction; however, one should take note of the factors that can affect

performance, other than the model itself, such as dataset size, dataset preparation, train and test splitting

method, CDR and paratope definition, etc. Needless to say, with available antibody structural data growing

every year, newer methods have access to larger data compared to their predecessors. Also, different CDR

and paratope definitions may cause themetrics values to be different even if themethods perform similarly.

Such factors can make direct comparison among methods difficult.

Table 1. Paratope prediction performance by different metrics of the fine-tuned protein language model on the

Development (Dev.) and Test sets via 10-fold cross-validation

Set ROC AUC F1 MCC

Dev. 0:895G0:010 0:702G0:016 0:589G0:021

Test 0:890G0:007 0:686G0:015 0:569G0:019

Average G standard deviations among validation sets shown.

ll
OPEN ACCESS

2 iScience 26, 106036, February 17, 2023

iScience
Article



Nevertheless, here we report ourmethod’s performance comparedwith another notable work, namely, Par-

apred21 on the same test set that we prepared for this comparison (Data S2), ensuring no sequences in the

set are in either ours or Parapred’s training set. The set consists of 115 heavy and 94 light chains from 121

PDBs with redundant chains with higher than %95 sequence identity removed. Parapred uses the same

criteria for CDR and paratope definition, and is freely available and therefore is suitable for this comparison.

Performance comparison with Parapred is shown in Table 2.

Paratope similarity via neural representations

Measuring the similarity of words and sentences using neural representations is common in the field of

natural language processing. Trained languagemodels provide a convenient way of finding text and words

with similar meanings by comparing the closeness of their neural embeddings. A language model learns

similarity among words or sentences and generates similar representations for them during the pretraining

phase. Works such as24 showed that such an approach is applicable for protein sequences as well by

demonstrating that functional or structural similarities can be discovered using protein sequence embed-

dings generated by the model. The embeddings can directly be used as input to other models or be used

for clustering and similarity measurements.

Although the paratope prediction by fine-tuning the language model is a supervised task, the generation

and comparison of neural embeddings of the paratope residues does not require further training. This

provides great advantage because novel antibodies for novel antigens can be compared immediately

without requiring training data. Our method only measures paratope similarity: no information about

the antigen has to be known, making this method antigen-agnostic.

Antibodies targeting SARS-CoV2 Receptor Binding Domain (RBD)

RBD epitope similarity analysis

Barnes et al. defined four major classes of epitopes for the RBD domain binders.25 A dataset of COVID’s

spike protein’s binders with their corresponding epitope class labels was obtained from.26 The dataset

contains 133 unique antibodies with the majority binding RBD. A collection of antibody pairs was gener-

ated by pairing each sequence with all other sequences. The pairs were labeled as ‘‘similar epitope’’

and ‘‘different epitope’’ depending on whether or not they belonged to the same epitope class. The

embedding distance of each member of the pair with another was also calculated to see how our predicted

paratope similarity relates to epitope similarity.

Low neural embedding distance indicates epitope similarity

The lower the Euclidean distance between two paratopes, the more likely they are to belong to the same

class. This is revealed by the analysis shown in Figure 1. In this analysis, the pairwise embedding distances

of all combinations of RBD binders collected from26 (Data S3), are measured. The analysis shows that

distances lower than 0.9 are very likely to bind the same epitope.

Identification of antibodies with similar epitopes on EGFR

During the process of antibody discovery, immunization against an antigen can yield a high number of

antibodies that bind the antigen. However, not all epitopes are equally important: Blocking certain epi-

topes may cause a stronger inhibition of the antigen, while binding other epitopes may weakly interfere

with the antigen’s normal functionality. Therefore, it is important to be able to identify those binders

that bind the epitopes of interest; however, the experimental process can be costly for larger numbers

of antibodies. Here, we demonstrate that how novel antibodies for specific epitopes can be identified if

there are known antibodies that bind the same epitope. This can be done by finding nearest neighbors

of the known antibody in the pool of antibodies with unknown epitopes. In other words, we find the anti-

bodies with the most similar paratope representation to the known binder. The advantage of this approach

Table 2. Paratope prediction performance comparison with Parapred by different metrics on the same test set

Set ROC AUC F1 MCC

Parapred 0.876 0.663 0.533

Ours 0:876 0.660 0.541
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is that antibodies with lower sequence similarities or different loop lengths to the known binder can be

found, as long as the paratope representations are closely similar. We demonstrate the utility of this

approach by finding 20 nearest neighbors of commercial antibodies (panitumumab and Necitumumab,

10 neighbors for each antibody) that target EGFR out of 1800 sequences. We identify the neighbors among

antibody sequences obtained by single cell PCR (sequences not shown) from the human antibody

repertoire and experimentally validate their epitope similarity.

High-throughput SPR experiments on the selected subset of 20 recombinantly-expressed antibodies

(including benchmark controls) were performed to assess EGFR-ECD protein epitope coverage. These

studies included epitope binning, isolated subdomain binding, and hEGFR-ECD-His binding. We

employed two benchmark antibodies known to bind to the D3 domain and that share highly similar binding

epitopes. The pairwise sequence similarity and paratope representation distances among the selected and

benchmark antibodies are shown in Figures S1–S3. The antibodies (including benchmarks) were clustered

into 3 bins using Carterra epitope analysis software based on the competition heatmap and were divided

into bins among known subunits of the EGFR protein. Antibodies from each of the bins did not cross-block

any of the antibodies belonging to the other bins (Figure 2). Affinity and competition data are shown in

Table S1, and Figures S4 and S5.

Paratope and epitope similarity in sequence-dissimilar antibodies

It is reasonable to assume antibody sequences with high similarity possess similar paratopes and bind

similar epitopes. Although measuring sequence similarity is trivial, an important question that may arise

is whether the paratope similarity method can go beyond sequence similarity by only using sequence

data. Previous works on protein language models showed the language model is able to derive evolu-

tionary and structural patterns by performing the pretraining task, and the pretrained model was later

used to make predictions regarding structure, such as secondary structure and protein contact prediction,

in addition to learning the alignment of sequences.24 Furthermore, the comparison of neural embeddings

instead of sequences themselves provides an alignment-free approach to searching for similarity, allowing

similarities to be found in different residues and loop lengths.

Among the RBD’s antibodies, four crystal structures with PDB codes:7CH4, 6XC2, 7CH5 and 6XC4 present

an interesting example, where the pair 7CH4 and 6XC2 and the pair 6XC2 and 7CH5 are derived from

different patients and represent different clonotypes27; nevertheless, their paratope distances are in the

range that imply similar epitopes: 0.81 and 0.79 respectively.

For the EGFR antibodies, the nearest neighbors picked were not necessarily the ones with highest

sequence similarity. Particularly in the H3 loop region, all sequences differed by more than 3 residues,

with some being of different loop length. The above observations indicate the applicability of the paratope

similarity method regardless of sequence and lineage similarity. The pairwise sequence similarity and para-

tope representation distances among the selected and benchmark antibodies are shown in Figures S1–S3.

DISCUSSION

In this work, we described a fast and effective method, based on the sequence only, to measure similarity

among predicted antibody paratopes and showed its utility to estimate the epitope similarity regardless of

Figure 1. Fraction of same epitope pairs (blue) to the number of pairs within a certain distance

All possible pairs of the RBD binders in the dataset were generated and pairwise paratope embedding distances were

measured. It is revealed that with distance under 0.9, it is highly likely for pairs to target the same epitope.

ll
OPEN ACCESS

4 iScience 26, 106036, February 17, 2023

iScience
Article



the sequence similarity of the variable domain. We first fine-tuned a protein language model to predict the

paratope residues of a given antibody sequence with high accuracy. Next, we used a pretrained language

model to generate the neural representations of the predicted paratope residues and used them to

measure the similarity between antibody pairs. Our study on two cases of RBD and EGFR binders showed

promising results for using the similarity measurements for purposes such as computational epitope

binning and diversity selection of antibody molecules in a discovery pipeline, making the process faster

and reduce the costs. There are a number of potential applications for this work: Paratope predictions

can be utilized to ranking in Ab:Ag docking, by finding the poses that agree with predicted paratopes.

Furthermore, the nearest neighbor search enables identifying similar hits to the sequences of interest,

which do not necessarily have high sequence similarity. In addition, antibodies can be clustered based

on paratope similarities, providing an additional tool to experimental methods such as Carterra binning.

Such clusterings can be also used for diversity selection – selecting a subset of sequences with high diver-

sity that would increase the probability of finding antibodies with novel epitopes or unique functions. Given

that language models can capture some structural information from the sequence,24 there are possible

uses in B cell structural profiling,8 to investigate structural diversity among antibodies.

Limitations of the study

The method described above was designed to be antigen-agnostic, because often detailed information

about the antigen’s structure and the epitope is not available. Although being antigen-agnostic makes

the method more general, only considering paratope similarity may pose a limitation for cases in which

antibodies with different paratopes (sequentially and structurally) bind a similar epitope.

In addition, our method uses a CDR annotation to limit the paratope space, whereas it is known that in

some instances, residues outside of the CDR may participate in binding28 and those are not predicted

by the algorithm.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

Figure 2. Epitope Binning Bins (Carterra LSA�) for 20 selected scPCR nearest neighbors of commercial

antibodies

(A) The binning function of the Carterra Epitope software allows for clustering of antibodies that have identical blocking

profiles. 20 selected antibodies are grouped into 3 bins.

(B) Antibodies are shown to bind the D3 domain cluster together (Red) with no overlap between D1 domain-binders

(Yellow) and antibodies that bind D4 domain (Green).
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Qing Chai (chai_qing_qc@lilly.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All original code and the paratope dataset generated from the PDB used to train and validate the para-

tope prediction model has been deposited at https://github.com/aghanbar-lilly/parasim and is publicly

available.

d EGFR antibody sequence data is confidential company data and therefore is not published.

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-hEGFR antibodies This paper N/A

Necitumumab This paper N/A

Cetuximab This paper N/A

Chemicals, peptides, and recombinant proteins

hEGFR-ECD-His This paper N/A

hEGFR-D1-His This paper N/A

hEGFR-D1-D2-His This paper N/A

hEGFR-D3-D4-His This paper N/A

hEGFR-D4-His This paper N/A

Critical commercial assays

Carterra LSA Carterra-Bio https://carterra-bio.com/lsa/

HC30M Chip Carterra-Bio 4279

Software and algorithms

Carterra KITTM 1.7.2.3202 Carterra-Bio https://carterra-bio.com/resource-category/

software/

Carterra EpitopeTM 1.7.1.3055 Carterra-Bio https://carterra-bio.com/resource-category/

software/

Python 3.8.5 Python Software Foundation https://www.python.org/

Pytorch 1.7.1 + cu101 Paszke et al., 201929 https://pytorch.org/

Transformers 4.5.1 Wolf et al., 201930 https://huggingface.co/

ProtBert Elnaggar et al., 202031

Scikit-learn Pedregosa et al., 201132 https://scikit-learn.org/

Matplotlib Hunter, 200733 https://matplotlib.org/

Pandas The pandas development team34 https://pandas.pydata.org

Scipy Virtanen et al., 202035 https://scipy.org/

Molecular Operating Environment Chemical Computing Group, 202236 https://www.chemcomp.com/

Model Codes Github https://github.com/aghanbar-lilly/parasim
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d Any additional inquiries regarding the data generated in this study should be directed to the lead con-

tact.

PARATOPE PREDICTION USING A PROTEIN LANGUAGE MODEL

Dataset

We scanned the antigen-antibody complexes available in the PDB database by the MOE program36 to find

structures with unique antibody sequences. 1479 antibody-antigen complexes (2958 heavy and light

chains) were collected. The sequences were clustered using CD-HIT37 and redundant sequences with iden-

tity of %95 or higher were removed. The remaining sequences (1179 heavy and 955 light) were used as the

dataset for training and validation of the paratope prediction model (Data S1).

CDR ANNOTATION AND PARATOPE DEFINITION

All antibodies were annotated using Chothia38 annotation scheme, while also adding two residues before

and after the annotated region to also cover possible interactions outside of the annotated region, an

approach that was also used by.21 Any residue in the annotated sequence with an atom within 4.5 Å of

any atom of the antigen was labeled as paratope. The annotation and paratope detection were done using

an SVL script39 run by MOE.36

CLASSIFICATION OF PARATOPE RESIDUES VIA A PROTEIN LANGUAGE MODEL

The task of identifying paratope residues can be formulated as a token classification task, where each

residue is a token and is labeled as being a paratope or not (binary classification). A pretrained language

model40 is fine-tuned to carry out such task. Since antibody’s paratopes are expected to be on the CDR, the

model’s loss is chosen so that it is optimized to predict the label of the residues only in the annotated

region.

For residue (token) r the model’s loss L is calculated as follows:

L =

8<
:

�
X2

i = 1

ti log
�
pi

�
r ˛CDR

0 r;CDR

(Equation 1)

where CDR is the set of residue indices annotated as CDR domains, r ˛ f1; 2.;ng and n is the length of the

chain, ti is the true label taking ether 1 or 0 which indicate the residue being a paratope or not, respectively,

as defined by the distance criteria, and pi is the Softmax probability of the ith class.

Model’s was done using Huggingface’s transformers library.30

FINE-TUNING THE MODEL

The model was fine-tuned for 8 epochs with the initial learning-rate set to 10� 6 and 3 as the batch size.

10-fold cross-validation was used to measure the prediction performance of the model. The validation

set was divided into two sets, the development and test sets. During training, the best performing model

on the development set was saved and the test set was used for final validation.

NEURAL REPRESENTATIONS OF PARATOPES

In the next step, the predicted paratopes are used to generate neural representations of antibody’s para-

topes. The details are described in the following subsections.

EMBEDDING GENERATION BASED ON PREDICTED PARATOPES

For an antibody chain’s sequence with length n, given the final hidden representations ðh1;.; hnÞ retrieved
from the pretrained version of the languagemodel, the paratope embedding vector e is represented as the

weighted average of the representations of each residue r where each weight is the probability p of the

residue belonging to the paratope class predicted by the fine-tuned model, with a value ranging from

0 to 1.
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e =
1Pn

r = 1pr

Xn

r = 1

prhr (Equation 2)

The final representation of the antibody eAb using the two embedding vectors eH and eL for heavy and light

chains, respectively, is obtained by concatenating the two vectors: eAb = eH4eL.

QUANTIFYING PARATOPE SIMILARITY

Pairwise similarity of two antibodies in terms of their paratope representations are quantified by calculating

the Euclidean (L2) distance of their representing vectors. Hence, antibodies with distance closer to zero, are

assumed the most similar. Pairwise distance is used for visualization and search for nearest neighbors of

antibodies as the ones with most similarity and likelihood to bind a similar epitope.

EXPERIMENTAL EPITOPE BINNING OF EGFR BINDERS

Recombinant proteins

Recombinant human EGFR extracellular domain (ECD) was expressed in Chinese hamster ovary (CHO) cells

as a His-tagged protein and purified by standard chromatography techniques. Domain specific proteins

were designed by substituting D1, D1-D2, D3-D4, and D4 domains of EGFR into HER3 protein scaffold. Pro-

teins were expressed as His-tagged fusions in 293 cells and purified by size exclusion chromatography

technique. The purity percentages for D1, D1-D2, D3-D4, D4 domains and ECD were determined as

99.1, 98.9, 99.3, 100 and 100, respectively. Antibodies were expressed in CHO cells and supernatants

were utilized for all kinetics and binning experiments. The antibodies were used as supernatants for the

competition experiments and therefore their purity values were not determined.

EPITOPE BINNING

All epitope binning experiments were performed on a Carterra� LSATM instrument equipped with an HC-

30M chip type (Carterra-bio), using a 384-ligand array format as previously described (Shu and McCauley,

2017). Assays were performed according to the manufacturer’s operational guidelines. The instrument

used a multi-channel buffer of 25 mM 2-(N-morpholino) ethanesulfonic acid (MES), pH 5.5, and a single-

channel buffer of 10 mM 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES), 150 nM NaCl,

3 mM EDTA, and 0.05% v/v surfactant P20 (HBS-EP+). The array preparation was performed as described

above, using a HC30M chip and coupling unpurified antibody from CHO supernatant diluted to 3 mg/mL

and 10 mg/mL in 10 mM acetate, pH 4.0, for 10 minutes, and deactivation for 7 minutes in 1M ethanolamine,

pH 8.5.

For epitope binning experiments, antibodies coupled to the chip surface were exposed to 400 nM hEGFR-

ECD-His for 5 minutes followed injections of antibodies at 30 mg/mL both diluted in 1X HBSEP +0.1mg/mL

BSA running buffer). Three regeneration cycles of 20 seconds were performed after each antibody sample

by injecting 10 mM glycine pH 2.0 onto the chip surface. An antigen injection followed by a buffer-only

injection was performed every 8 cycles to assess maximumbinding to hEGFR-ECD-His protein and in-order

to accurately determine the binning relationship.41

The data were analyzed using the Carterra Epitope analysis software for heatmap and competition network

generation. Analyte binding signals were normalized to the antigen-only binding signal, such that the an-

tigen-only signal average is equivalent to zero RU (response unit). A threshold window ranging from 0.2 RU

to 0.25 RU above averaged signal obtained by antigen alone, was used to classify analytes into 3 categories:

blockers (binding signal under the lower limit threshold), sandwiching (binding signal over the higher limit

threshold) and ambiguous (binding signal between limit thresholds). Antibodies with low coupling to the

chip, poor regeneration or with absence of self-blocking were excluded from the binning analysis. Like-

behaved antibodies were automatically clustered to form a heatmap and competition plot where

antibodies with identical blocking interactions within the sample set are clustered in a bin within the

Carterra Epitope analysis software.42

SURFACE PLASMON RESONANCE (SPR) AFFINITY MEASUREMENTS

A Carterra� LSATM instrument was used to measure binding kinetics of antibodies to hEGFR-ECD-His and

domain-specific proteins. To measure binding kinetics and affinity, the mAb-coupled HC30M chip surface

was exposed to injections of the proteins, with an association period of 5 minutes and dissociation period
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of 15 minutes. The tested concentrations of the full length hEGFR-ECD-His were 1000, 100, 33.3, 11.1, 3.70,

1.23, and 0.41 nM in HBS-EP+ containing 0.1 mg/mL BSA. Regeneration of the chip surface between the

different concentrations was performed using 20 mM glycine, pH 2.0, for three 20 second cycles. Kinetic

data was analyzed using Carterra KITTM software using a 1:1 Langmuir binding model. To determine bind-

ing to domain-specific proteins, the antibody-coupled HC30M chip surface was exposed to injections

proteins, with an association period of 5 minutes and dissociation period of 15 minutes. The tested concen-

trations domain-specific proteins were 1000, 250, 111 and 62.5 nM in HBS-EP+ containing 0.1 mg/mL BSA.

Regeneration of the chip surface between the different concentrations was performed using 20 mM

glycine, pH 2.0, for three 20 second cycles. Kinetic data was analyzed using Carterra KITTM software using

a 1:1 Langmuir binding model. Domain binding was simplified into a yes or no binding results for

categorization only purpose.
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