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Abstract
Purpose Physical activity, particularly mechanical loading that results in high-peak force and is multi-directional in nature, 
increases bone mineral density (BMD). In athletes such as endurance runners, this association is more complex due to other 
factors such as low energy availability and menstrual dysfunction. Moreover, many studies of athletes have used small sample 
sizes and/or athletes of varying abilities, making it difficult to compare BMD phenotypes between studies.
Method The primary aim of this study was to compare dual-energy X-ray absorptiometry (DXA) derived bone phenotypes 
of high-level endurance runners (58 women and 45 men) to non-athletes (60 women and 52 men). Our secondary aim was to 
examine the influence of menstrual irregularities and sporting activity completed during childhood on these bone phenotypes.
Results Female runners had higher leg (4%) but not total body or lumbar spine BMD than female non-athletes. Male run-
ners had lower lumbar spine (9%) but similar total and leg BMD compared to male non-athletes, suggesting that high levels 
of site-specific mechanical loading was advantageous for BMD in females only and a potential presence of reduced energy 
availability in males. Menstrual status in females and the number of sports completed in childhood in males and females had 
no influence on bone phenotypes within the runners.
Conclusion Given the large variability in BMD in runners and non-athletes, other factors such as variation in genetic make-
up alongside mechanical loading probably influence BMD across the adult lifespan.

Keywords Bone mineral density · Elite · Marathon · Mechanical loading · Menstruation

Abbreviations
BPAQ  Bone Physical Activity Questionnaire
BMD  Bone mineral density
DXA  Dual-energy X-ray absorptiometry
MANOVA  Multiple analysis of variance
MANCOVA  Multiple analysis of covariance
RED-S  Relative energy deficiency in sport

Introduction

Bone mineral density (BMD) is considered to be the pri-
mary predictor of osteoporotic fracture (Cranney et al. 2007) 
although other factors such as geometry, architecture and 
collagen properties are important determinants of bone 
strength (Cheung et al. 2016). BMD may also be impor-
tant for success in the elite sporting environment due to the 
potential influence on training, performance and injury (Her-
bert et al. 2019). Diet, hormones and genetics are all known 
to influence BMD and contribute to large variability within 
the phenotype (Pluijm et al. 2001). In addition, mechanical 
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loading experienced during regular physical activity influ-
ences BMD, with load-bearing, high-impact sports associ-
ated with increased strain rates, higher peak-force loading 
and higher BMD (Andreoli et al. 2001). However, the influ-
ence of mechanical loading on BMD in endurance athletes 
is more complex.

Whilst higher leg BMD has been reported in male runners 
in comparison to non-athletes (Stewart and Hannan 2000; 
Kemmler et al. 2006) across adulthood (Velez et al. 2008), 
and in female adolescent runners compared to non-athletes 
at multiple sites (Duncan et al. 2002), some endurance run-
ners may be at risk of low BMD. In endurance runners, 
low BMD may increase the risk of stress fracture, which 
can have negative implications for health and performance 
(Hind et al. 2006; Barrack et al. 2008; Pollock et al. 2010). 
Excessive training volumes and/or insufficient dietary intake 
by endurance runners can result in reduced energy avail-
ability, which can negatively impact metabolic processes 
and potentially reduce BMD (Loucks 2007). Hind et al. 
(2006) showed low lumbar spine BMD (< − 1.0 T-score) 
in 37% of 44 male runners aged 19–50 years in comparison 
with the manufacturer’s reference control database (Lunar 
Prodigy, GE Systems, UK), whilst lower lumbar spine BMD 
(Z-score of − 1.0 to − 2.0) has also been reported in adoles-
cent and adult female runners (Barrack et al. 2008; Pollock 
et al. 2010). Lower BMD was more evident in those runners 
exhibiting menstrual irregularities (Pollock et al. 2010) or 
where dietary restraint was occurring (Barrack et al. 2008).

Possession of low or lower BMD by some runners in 
comparison to other runners may be influenced by a number 
of factors. Low energy availability and/or menstrual dys-
function, for example, may explain why low or lower BMD 
is particularly evident in some female runners compared to 
other female runners or non-athletes (Pollock et al. 2010; 
Scofield and Hecht 2012). Whilst low energy availability is 
prevalent in endurance runners, detecting and assessing the 
impact of menstrual dysfunction and/or low energy avail-
ability on BMD and other phenotypes is difficult (Heikura 
et al. 2018).

No studies, to our knowledge, have assessed the impact of 
sporting activity in childhood on BMD in adulthood in high-
level endurance runners. Physical activity during childhood 
can play an important role in the attainment of peak BMD in 
adulthood (Tveit et al. 2013; Weaver et al. 2016), but it is dif-
ficult to complete studies that are both longitudinal and valid 
due to the challenge of obtaining accurate measurement of 
activity. Thus, the impact of childhood physical activity in 
populations, such as endurance runners, and the outcome for 
BMD is still unclear (Herbert et al. 2019).

In comparison to non-athletes, runners typically demon-
strate higher site-specific BMD but similar, or lower, total 
body and non-loading site BMD (e.g. lumbar spine), due to 
the associated mechanical loading on the lower extremity 

(Scofield and Hecht 2012). It is difficult, however, to directly 
compare and draw conclusions between the majority of stud-
ies in this area due to the substantial differences in methodo-
logical design. For example, many studies report on vary-
ing sample sizes that comprise athletes of differing ability, 
which is likely to increase the inter-individual variability 
within the measured phenotype. Some studies do consist 
of athletes of a similar ability/standard by recruiting only 
‘national’ or ‘regional’ level athletes, but the definitions of 
what constitutes national or regional level athletes are not 
always clear and consistent (Swann et al. 2015). BMD com-
parisons between these populations is, therefore, difficult 
due to a probable difference in training load characteristics. 
Furthermore, most of these studies have been conducted on 
non-elite athletes (i.e. defined here as those who have not 
competed at international or national level), with only one 
study thus far comprising wholly UK elite endurance run-
ners (Pollock et al. 2010).

In sports, where ability/success is based upon time to 
complete a specific distance, such as endurance running, 
criteria based upon personal best time (PB) rather than 
representative level arguably allows for better assessment 
of athlete calibre, because national representation requires 
faster running in some countries than others. Utilising a 
large cohort of high-level endurance runners of similar com-
petitive standard (based on PB), many undertaking similar 
training volumes and/or intensities, may somewhat allevi-
ate the aforementioned issues arising from loosely defined 
populations and their potential confounding variables.

The primary aim of this investigation was to com-
pare total body (TBMD), leg (LBMD) lumbar spine BMD 
(LSBMD), and total-body T-score and Z-score between high-
level endurance runners (selected based upon PB) and non-
athletes. The secondary aims were to assess the influence of 
menstrual irregularities and sporting activity during child-
hood on these bone phenotypes.

Materials and methods

Participants and participant recruitment

All experimental procedures were conducted in accordance 
with the guidelines in the Declaration of Helsinki and were 
approved by the local Ethics Committee of Manchester Met-
ropolitan University. Participants consisted of 103 high-level 
Caucasian runners (45 males, 58 females) who competed 
in events ranging from 3000 m to marathon distance and 
112 ethnically matched individuals (52 males, 60 females), 
who did not compete in any sport with a major physical fit-
ness component at regional, national or international level, 
defined as non-athletes. A sub-group of these participants 
and some of the associated information and protocols have 
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been described previously when assessing the impact of 
body composition on stress fracture incidence (Varley et al. 
2021). Specifically, runners were primarily recruited from 
the London Marathon Expo between 2012 and 2015 as well 
as national/regional athletic clubs and organisations. The 
non-athlete group were recruited through mail-outs, posters 
and word of mouth. Race PB time was verified by official 
race chip timings through individual race result websites, 
the power of 10 (http:// www. thepo werof 10. info/) and/or the 
International Association of Athletics Federations (IAAF) 
(https:// www. iaaf. org/ home). Runners were included if they 
had completed at least one official distance event ≥ 3000 m 
in a time faster than a predetermined threshold (Table 1). 
The predetermined threshold time for each distance was 
chosen to ensure all runners placed in at least the top 600 
in the UK rankings for a calendar year based on the years 
2012–2017. Average weekly running distance ranged from 
24 to 175 km and training hours per week ranged from 8 to 
18 h.

Protocol

All runners completed a questionnaire detailing geographic 
ancestry, performance, training practices and injury, as 
well as sporting history via an adapted version of the Bone 
Physical Activity Questionnaire (BPAQ) (Weeks and Beck 
2008). This allowed initial assessment of running competi-
tion standard and assessed the type and number of sporting 
activities undertaken in childhood. A sporting activity was 
included if this had been completed for a minimum of 1 year 
at least twice per week. To assess the influence of sporting 
history in childhood on bone phenotypes, the past BPAQ 
(pBPAQ) algorithm was utilised, whereby the effective load 
stimulus (derived from previous ground reaction force test-
ing) was multiplied against the number of years of partici-
pation and the age weighting factor as developed by Weeks 
and Beck (2008). One male participant was removed from 
pBPAQ analysis due to discrepancies in the information pro-
vided. Female runners also completed a questionnaire detail-
ing menstruation history that allowed identification of those 
who demonstrate, or have demonstrated, amenorrheic char-
acteristics. Absence of menses until the age of 16 years or 

6 months without menstruation were considered potentially 
amenorrheic (Gordon and Nelson 2003). Non-athletes com-
pleted a questionnaire detailing geographic ancestry, general 
health and physical activity to establish matched geographic 
ancestry and ensure no history of high-level sport.

All participants completed a whole-body DXA scan 
(Hologic Discovery W, Vertec Scientific Ltd, UK) to gather 
BMD (g/cm2) data by one trained operator following the 
manufacturer’s guidelines. Whole-body and segmental anal-
ysis was utilised to obtain TBMD, LBMD and LSBMD. Total-
body T-score and total-body Z-score were also acquired via 
the DXA scan and subsequent analysis. Precision of regional 
analysis for this DXA model has been reported as 1.1% pre-
viously (Ward et al. 2007).

Statistical analysis

Multiple analysis of variance (MANOVA) was used to com-
pare bone phenotypes (TBMD, LBMD, LSBMD, T-score and 
Z-score) between the female runners and non-athletes and 
as well as between male runners and their non-athlete coun-
terparts. Coefficient of variation (CV) for TBMD, LBMD 
and LSBMD for both male and female runners as well as 
their non-athlete counterparts was calculated to assess vari-
ability. To account for menstruation, the bone phenotypes 
of female runners who exhibited signs of amenorrhoea were 
compared with those who were classed as eumenorrheic 
via MANOVA. Independent T tests compared age, height 
and body mass between runners and non-athletes, whilst 
body mass-adjusted bone phenotype values were analysed 
via multiple analysis of covariance (MANCOVA). Linear 
regression was utilised to investigate whether the calculated 
pBPAQ score was related to bone phenotypes (TBMD, LBM-
Dand LSBMD) in adulthood. Alpha was set at 0.05 and data 
are reported as mean (standard deviation) unless otherwise 
stated.

Results

Variability (> 16%) for the three BMD site measures existed 
for both males and females within runners and non-athletes. 
Differences in body mass (P ≤ 0.001) but not age or height 
(P ≤ 0.760) were present between runners and non-athletes 
for both males and females (Tables 2 and 3). A significant 
difference in bone phenotypes between runners and non-ath-
letes was shown for both males and females when adjusted 
and not adjusted for body mass (P ≤ 0.004).

Specifically, LSBMD was 9% lower in male runners than 
non-athletes (P = 0.004) but there were no differences in 
TBMD (P = 0.176), LBMD (P = 0.963), T-score (P = 0.141) 
or Z-score (P = 0.092) between these two groups (Table 2). 
Body-mass adjusted TBMD and LBMD were 4% (P = 0.036) 

Table 1  Personal best selection criteria for both male and female run-
ners

Distances Males Females

3000 m < 8 min 45 s < 10 min 15 s
5000 m/5 km road < 15 min 45 s < 18 min 45 s
10,000 m/10 km road < 32 min 45 s < 38 min 45 s
Half marathon < 74 min 00 s < 88 min 00 s
Marathon < 2 h 45 min 00 s < 3 h 15 min 00 s

http://www.thepowerof10.info/
https://www.iaaf.org/home
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and 6% (P < 0.001) higher, in male runners than non-athletes 
but there were no differences in LSBMD (P = 0.345), T-score 
(P = 0.091) or Z-score (P = 0.106) between the two groups 
(Table 2).

LBMD was 4% higher in female runners than non-ath-
letes (P = 0.015), but there were no differences in TBMD 
(P = 0.508), LSBMD (P = 0.110), T-score (P = 0.478) or 
Z-score (P = 0.847) between these two groups (Table 3). 
Body mass-adjusted TBMD was 5% (P = 0.005) and LBMD 
9% (P < 0.001) higher in female runners compared to non-
athletes. Body mass-adjusted T-scores (P = 0.005) and 
Z-scores (P = 0.008) were also higher in runners compared 
to non-athletes but no differences in body mass-adjusted 
LSBMD were observed between the two groups (P = 0.893; 
Table  3). No differences in TBMD (P = 0.293), LBMD 
(P = 0.528), LSBMD (P = 0.677), T-score (P = 0.295) or 
Z-score (P = 0.740) were observed between amenorrheic and 
eumenorrheic runners (Table 1 in supplementary material).

The calculated pBPAQ score (assessing the type of and 
number of sports completed in childhood) did not predict 
TBMD, LBMD or LSBMD in adulthood for males (P = 0.832, 

P = 0.962, P = 0.864; Fig. 1; Supplementary Material Fig. 1) 
or females (P = 0.398, P = 0.324, P = 0.781; Fig. 1; Supple-
mentary Material Fig. 2).

Discussion

This investigation is the first to compare bone phenotypes 
(TBMD, LBMD, LSBMD, T-score and Z-score) in high-level 
endurance runners with a non-athlete group, whilst also 
assess the impact of childhood sporting activity and men-
strual status on BMD within high-level endurance runners.

Higher LBMD but not TBMD or LSBMD was shown 
in female runners compared to non-athletes. Specifically, 
LBMD was 0.050 g/cm2 higher in runners than non-athletes, 
highlighting the potential effects of site-specific mechani-
cal loading on the lower extremity in endurance runners, 
which is congruent with some previous research (Brahm 
et al. 1997; Duncan et al. 2002; Nevill et al. 2003; Scofield 
and Hecht 2012). Mechanical loading initiates a response 
in molecular pathways mediating mechanical signalling 

Table 2  Anthropometric characteristics and bone phenotype data in male high-level endurance runners and non-athletes

Data are mean (SD) except adjusted values that are mean (SE), range variables that are mean (minimum–maximum) and coefficients of variation 
(CV) that are percentages

TBMD total bone mineral density, LBMD leg bone mineral density, LSBMD lumbar spine bone mineral density, Adj adjusted
*Indicates difference from non-athletes

Runners (n = 45) Non-athletes (n = 52) P value 95% CI of the mean difference

Age (years) 36 (9) 35 (14) 0.565 − 3.360 to 6.118
Height (m) 1.78 (0.06) 1.79 (0.07) 0.354 − 0.034 to 0.018
Mass (kg) 66.9 (6.6) 78.0 (10.8) < 0.001 − 14.770 to − 7.438
Fat mass (kg) 11.4 (4.3) 17.6 (6.5) < 0.001 − 8.463 to − 4.038
Lean mass (kg) 52.8 (4.97) 57.3 (6.5) < 0.001 − 6.776 to − 2.124

TBMD (g/cm2) 1.285 (0.094) 1.315 (0.114) 0.176 − 0.072 to 0.013
CV (%) 7.30 8.71 N/A N/A
Adj TBMD (g/cm2) 1.325 (0.014)* 1.281 (0.013) 0.036 0.003–0.086

LBMD (g/cm2) 1.477 (0.108) 1.476 (0.132) 0.963 − 0.048 to 0.050
CV (%) 7.33 8.93 N/A N/A
Adj LBMD (g/cm2) 1.523 (0.016)* 1.436 (0.015) < 0.001 0.040–0.135

LSBMD (g/cm2) 1.088 (0.151)* 1.189 (0.181) 0.004 − 0.170 to − 0.034
CV (%) 13.84 15.25 N/A N/A
Adj LSBMD (g/cm2) 1.123 (0.026) 1.159 (0.024) 0.345 − 0.112 to 0.040
T-score 0.84 (0.88) 1.14 (1.07) 0.141 − 0.697 to 0.100
Adj T-score 1.19 (0.14) 0.84 (0.13) 0.091 − 0.055 to 0.742
Z-score 0.82 (0.85) 1.13 (0.95) 0.092 − 0.678 to 0.052
Adj Z-score 1.14 (0.12) 0.85 (0.11) 0.106 − 0.064 to 0.656

TBMD range 0.488 (1.034–1.522) 0.564 (1.067–1.631) N/A N/A

LBMD range 0.526 (1.193–1.719) 0.749 (1.036–1.785) N/A N/A

LSBMD range 0.812 (0.750–1.560) 0.818 (0.830–1.650) N/A N/A
T-score range 4.60 (− 1.70–2.90) 5.10 (− 1.40–3.70) N/A N/A
Z-score range 4.30 (− 1.60–2.70) 4.70 (− 0.90–3.80) N/A N/A
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in bone (e.g. nuclear factor k–b/nuclear factor k–b ligand/
osteoprotegerin (RANK/RANKL/OPG), Wnt signalling and 
purinergic signalling pathways), influencing bone formation 
and resorption (Nakashima et al. 2011). Nevill et al. (2003) 
reported higher BMD in the legs of female endurance run-
ners in comparison to upper body sites. They concluded that 
site-specific loading may enhance lower body BMD (via a 
positive osteogenic effect) at the expense of bone mass of 
the upper body sites, which may explain why we showed no 
difference in TBMD or LSBMD between female runners and 
non-athletes.

In one of the only other studies to investigate BMD in UK 
female endurance runners competing at a high-level, Pollock 
et al. (2010) demonstrated low TBMD (Z-score of − 1.0 to 
− 2.0) in two (4.9%) of the runners only but a median total-
body Z-score of approximately 0.1 for their entire cohort. 
In the current study, the lowest observed total-body Z-score 
was − 0.9 in the female runners, with a median Z-score of 
1.1 for the female runner group, suggesting higher TBMD 
in the runners we investigated. Sixty-six percent of the run-
ners within this investigation had achieved the PB cutoff 

criteria for the marathon and at least one other running dis-
tance whilst differences in the mean age of the participants 
between the two studies existed (22 ± 6 vs 34 ± 12 years). 
Consequently, the impact of age as well as potential differ-
ences in the proportion of runners competing across the dif-
ferent running distances (> 800 m) between the two studies 
and the associated variation in body mass, running training 
volume and/or strength and resistance-based training prac-
tices could have contributed to the differences in findings.

Greater running distance per week has been negatively 
correlated with BMD (Burrows et  al. 2003; Hind et  al. 
2006), but higher level runners (such as those participating 
in our investigation) are more likely to undertake resistance/
strength training (Blagrove et al. 2017), which may apply 
greater amounts of high and multi-directional force to the 
bone, consequentially benefiting BMD (Nevill et al. 2003). 
Runners who complete higher volumes of resistance train-
ing have higher LSBMD that those who may complete lower 
volumes (Gordon and Nelson 2003), which may explain why 
we showed no difference in LSBMD between female runners 
and non-athletes.

Table 3  Anthropometric characteristics and bone phenotype data in female high-level endurance runners and non-athletes

Data are mean (SD) except adjusted values that are mean (SE), range variables that are mean (minimum–maximum), and coefficients of varia-
tion (CV) that are percentages

TBMD total bone mineral density, LBMD leg bone mineral density, LSBMD lumbar spine bone mineral density, Adj adjusted
*Indicates difference from non-athletes

Runners (n = 58) Non-athletes (n = 60) P value 95% CI of the mean difference

Age (years) 34 (12) 38 (16) 0.235 − 8.287 to 2.053
Height (m) 1.65 (0.06) 1.64 (0.06) 0.760 − 0.019 to 0.025
Mass (kg) 52.9 (5.2) 64.7 (11.4) < 0.001 − 14.970 to − 8.480
Fat mass (kg) 12.2 (3.2) 22.7 (8.1) < 0.001 − 12.699 to − 8.186
Lean mass (kg) 38.7 (3.6) 39.2 (5.9) 0.615 − 2.225 to 1.322

TBMD (g/cm2) 1.203 (0.088) 1.191 (0.108) 0.508 − 0.024 to 0.480
CV (%) 7.32 9.09 N/A N/A
Adj TBMD (g/cm2) 1.226 (0.013)* 1.168 (0.013) 0.005 0.018–0.100

LBMD (g/cm2) 1.285 (0.099)* 1.235 (0.121) 0.015 0.010–0.091
CV (%) 7.71 9.80 N/A N/A
Adj LBMD (g/cm2) 1.316 (0.015)* 1.205 (0.014) < 0.001 0.067–0.155

LSBMD (g/cm2) 1.127 (0.149) 1.175 (0.178) 0.110 − 0.109 to 0.111
CV (%) 13.19 15.16 N/A N/A
Adj LSBMD (g/cm2) 1.154 (0.023) 1.149 (0.023) 0.893 − 0.065 to 0.075
T-score 1.14 (1.05) 0.99 (1.28) 0.478 − 0.273 to 0.579
Adj T-score 1.42 (0.16)* 0.72 (0.16) 0.005 0.222–1.182
Z-score 1.05 (0.90) 1.02 (1.15) 0.847 − 0.340 to 0.413
Adj Z-score 1.33 (0.14)* 0.75 (0.14) 0.008 0.155–0.989

TBMD range 0.350 (1.010–1.360) 0.448 (0.991–1.439) N/A N/A

LBMD range 0.468 (1.029–1.497) 0.521 (0.993–1.513) N/A N/A

LSBMD range 0.760 (0.710–1.460) 0.700 (0.870–1.570) N/A N/A
T-score range 4.10 (− 1.20–2.90) 5.30 (− 1.50–3.80) N/A N/A
Z-score range 3.70 (− 0.90–2.80) 4.30 (− 0.80–3.50) N/A N/A
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Fig. 1  A Total bone mineral 
density (TBMD); B leg bone 
mineral density (LBMD); and 
C lumbar spine bone mineral 
density (LSBMD) in male and 
female high-level endurance 
runners in relation to their 
calculated past bone-specific 
physical activity questionnaire 
(pBPAQ) score
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Lower LSBMD but no differences in TBMD or LBMD 
were present in male runners. It is surprising to report no 
difference in LBMD between the male runners and non-ath-
letes, given the differences observed in the female runners 
within this study. Previous investigation has also reported 
LBMD can be up to 14% higher in runners compared to 
non-athletes (Stewart and Hannan 2000; Kemmler et al. 
2006). Kemmler et al. (2006), however, only investigated 
20 high-level runners whilst Stewart and Hannan (2000) 
investigated bone phenotypes in runners with a range of 
ability, from club to international level, with specific racing 
distances not stated. Lower LSBMD in runners compared 
to non-athletes observed in our investigation is, however, 
comparable with other research. Lower vertebral (but not 
tibial or radial) BMD has been shown in male endurance 
runners completing 92.2 ± 6.3 km per week (Bilanin et al. 
1989), whilst Hind et al. (2006) and Fredericson et al. (2007) 
reported low LSBMD in comparison to a reference popula-
tion in male endurance runners. Endurance runners tend to 
have lower body mass than non-athletes (as shown in this 
study; Tables 2 and 3) and thus, if all else is equal, lower 
load will be exerted on these anatomical sites than in non-
athletes. In addition, as the lumbar spine is considered a site 
of relatively less loading during endurance running (Pollock 
et al. 2010), less mechanical loading will occur here com-
pared to the lower extremity, which might explain why BMD 
was lower at this site in runners compared to non-athletes, 
despite no difference in LBMD and TBMD (Cappozzo 1983; 
Pollock et al. 2010). However, other factors such as genetic 
predisposition, hormones and nutritional intake may also 
influence BMD in endurance runners.

Male runners may be at risk of relative energy defi-
ciency in sport (RED-S), as highlighted in the recent IOC 
consensus statement (Mountjoy et al. 2018). Low energy 
availability induced by insufficient dietary intake and/or 
excessive energy expenditure may increase bone resorp-
tion and negatively impact bone metabolic markers, result-
ing in decreased bone formation, lower bone mass and 
altered structure (Papageorgiou et al. 2018). The benefits 
of mechanical loading on BMD, could, therefore, be lost, 
or reduced, by energy deficiency. Although difficult to 
assess directly from circulating bone (re)modelling mark-
ers, the balance of bone metabolism following repeated 
training in male endurance runners does not appear to be 
affected unless an energy deficiency is present, resulting in 
suppression of bone formation (Papageorgiou et al. 2018). 
A greater magnitude of loading at the lower extremity 
and the associated mechanical impact from running may 
protect against the potentially negative effect of reduced 
energy availability on BMD and consequently explain 
why lower LSBMD but similar TBMD and LBMD were 
shown compared to non-athletes. Energy availability was 
not measured in this investigation due to the difficulty in 

accurately measuring this complex phenomenon in such 
a large sample, so this surmised influence is based upon 
previous literature. The current methods available to 
assess energy availability are not without difficultly and 
consequently, it remains extremely problematic to identify 
“true” energy availability (Logue et al. 2020).

It is interesting that lower LSBMD was only evident in 
male, and not female, runners in comparison to their non-
athlete counterparts. Higher oestrogen may preserve LSBMD 
in female runners. Indeed, studies reporting lower LSBMD 
in female endurance runners versus non-runners have pri-
marily been in those who may have low energy availability 
and/or menstrual irregularities (Barrack et al. 2008; Scofield 
and Hecht 2012). However, we observed no difference in 
BMD at any site between amenorrheic and eumenorrheic 
runners (data appeared slightly lower in amenorrheic run-
ners but did not approach statistical significance), suggesting 
that menstrual status did not affect BMD in our cohort. We 
assessed potential amenorrhoea and the number of sports 
completed in childhood via self-report questionnaire. Whilst 
measurement error exists (Small et al. 2007; Prince et al. 
2008), questionnaires are inexpensive and easy to imple-
ment in larger cohorts, and widely used (Hoch et al. 2009; 
Farr et al. 2011; Martin et al. 2017). Other parameters that 
may influence bone phenotypes, such as smoking history and 
alcohol intake were not assessed as part of this investiga-
tion. Obtaining such information via self-report may not be 
particularly representative of the truth (Gorber et al. 2009), 
which in turn impacts the ability to assess or account for 
these parameters appropriately.

Physical activity during childhood is a key period for 
bone accretion (Weaver et al. 2016). Therefore, a limited 
range of physical activities during childhood could have 
negative implications for adult BMD. Herein, however, we 
identified no association between pBPAQ score (the type 
of sport and the number of sports completed in childhood) 
and any bone phenotype. Consequently, our findings sug-
gest an appropriate volume of physical activity is completed 
(in childhood) to provide sufficient loading and associated 
mechanosensory benefit to elevate BMD in most runners.

Of note, we observed higher body-mass adjusted bone 
phenotypes for both male (TBMD and LBMD) and female 
(TBMD, LBMD, T-score and Z-score) runners in compari-
son to their non-athlete counterparts. Greater body mass 
has been shown to positively influence BMD, likely due to 
the increased load experienced by the bone (Felson et al. 
1993). However, when body mass is accounted for, runners 
demonstrated higher relative BMD, possibly as a result of 
completing larger volumes of physical activity and benefit-
ting from the associated mechanostransductive effect, than 
their non-athlete counterparts. The impact of body mass on 
BMD, however, is influenced by both muscle and fat tis-
sue mass differently as well as the complex relationships 
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between these body composition components and mechani-
cal factors (Bierhals et al. 2019).

The large variance in TBMD, LBMD and LSBMD in 
both non-athletes and endurance runners is notable. This 
cannot be attributed solely to age- or physical activity-
associated effects on BMD and indicates that other factors 
such as genetic variation also influence BMD. Heritability 
of BMD is estimated at 50–85% (Ralston and Uitterlinden 
2010) and numerous genes may play a role (Hsu and Kiel 
2012; Golchin et al. 2016).

Conclusion

The findings of this study in high-level endurance runners 
suggest some may have higher, or similar, BMD at sites 
experiencing higher mechanical loading but lower BMD 
at less-loaded sites when compared to non-athletes. These 
results are consistent with previous research on smaller 
cohorts (Kemmler et al. 2006), younger populations (Dun-
can et al. 2002) and in athletes of undefined/lower ability 
(Hind et al. 2006) but are the first to demonstrate such 
results in a larger cohort of high-level Caucasian endur-
ance runners, selected based upon PB. Female runners had 
higher LBMD but not TBMD or LSBMD than female non-
athletes, whilst male runners possessed but similar TBMD 
and LBMD compared to non-athletes. Male runners, how-
ever, also displayed lower BMD at the lumbar spine in 
comparison with non-athletes, which, hypothesised, may 
be due to the presence of reduced energy availability. Men-
struation status and the number of sports completed in 
childhood did not appear to influence bone phenotypes, 
although large variability in BMD was observed in both 
the male and female runners and non-athletes, suggesting 
that other factors such as genetic variation, diet and types 
of loading influence BMD across the adult lifespan.
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