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Aim: Coronavirus disease still poses a global health threat which advocates continuous research efforts
to develop effective therapeutics. Materials & methods: We screened out an array of 29 cannabis
phytoligands for their viral spike-ACE2 complex and main protease (Mpro) inhibitory actions by in silico
modeling to explore their possible dual viral entry and replication machinery inhibition. Physicochemical
and pharmacokinetic parameters (ADMET) formulating drug-likeness were computed. Results: Among
the studied phytoligands, cannabigerolic acid (2), cannabigerol (8), and its acid methyl ether (3) possessed
the highest binding affinities to SARS-CoV-hACE2 complex essential for viral entry. Canniprene (24),
cannabigerolic methyl ether (3) and cannabichromene (9) were the most promising Mpro inhibitors.
Conclusion: These non-psychoactive cannabinoids could represent plausible therapeutics with added-
prophylactic value as they halt both viral entry and replication machinery.
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SARS-CoV-2 is the causative agent of raging pandemic of COVID-19 that is manifested by mild-to-severe
respiratory tract inflammation leading to pneumonia, lung fibrosis and causing even death. Up till now there is no
approved remedy for COVID-19, hence, many research endeavors have been directed toward finding therapeutic
drug leads to combat the infection propagation. SARS-CoV-2 is a sense RNA virus bearing projections on its
surface, i.e., envelope (E) and spike (S) glycoproteins with the latter initiating the infection via its attachment with
host angiotensin-converting enzyme 2 (ACE2). ACE2 is an enzyme expressed in nasal and oral mucosa as well as
lung and GI tract.
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Nature provides a huge reservoir of anti-infectious phytochemicals with anti-inflammatory potential, from which
many innovative phytotherapeutics were developed. Natural products and their metabolites in various plants were
recently reported to possess striking inhibitory action against different SARS-CoV-2 proteins which could serve
as valuable source of drug leads competent in combating COVID-19 pandemic [1]. Among which, polyphenols
and flavonoids were reported to stop SARS-CoV-2 replication and thus, mitigating the infection propagation [2].
Natural therapeutics capable of blocking vital entry into host cells can represent a plausible therapeutic avenue with
an added prophylactic action [3]. Emodin, tetra-O-galloyl-β-d-glucose and hesperidin are the only few S-protein-
ACE2 binding inhibitors reported till now [4]. The virus releases its RNA into the host cells after its entry, then
the viral genome codes for nonstructural proteins viz. main protease (Mpro), RNA-dependent RNA polymerase,
the structural glycoprotein and its helicase, and papain-like protease [4]. Inhibition of the Mpro activity is regarded
as a second most important class of antiviral therapeutics as being able to inhibit viral replication, hence halting
the infection spread [5]. Viral replication in host cells is well evidenced to be associated with hyper-induction of
proinflammatory cytokines, known as ‘cytokine storm’ and immune activation which are the main pathogenic
features of COVID-19 [6]. Oolonghomobisflavan-A, theasinensin-d, and theaflavin-3-O-gallate from tea were
reported as Mpro inhibitors [7].

Cannabis sativa L. biosynthesizes an arsenal of resorcinyl core decorated scaffolds with para-oriented terpenyl,
pentyl and isoprenyl groups collectively known as phytocannabinoids that possess a wide therapeutic spectrum viz.
anti-cancer, anti-epileptic and analgesic actions [8].

Cannabis plants are divided into three different phenotypes according to the cannabinoid content: drug-type
(phenotype I; C. indica Lam.) containing a higher proportion of THC, intermediate-type (phenotype II; C.
ruderalis Janisch.) and fiber-type or hemp (phenotype III; C. sativa L.) with cannabidiol (CBD) as the main
phytocannabinoid. The fiber-type Cannabis contains a very low �9-THC level, however it is rich in CBD
and its related nonpsychoactive phytochemicals. This type has been used for textile manufacturing and food
purposes but with no therapeutic actions. Various non-psychoactive phytocannabinoids are present in fiber-type
cannabis such as cannabinoic acids viz. cannabigerolic acid (CBGA) and cannabidiolic acid (CBDA), and their
decarboxylated forms, i.e., cannabigerol (CBG) and cannabidiol (CBD), in addition to other minor cannabinoids
viz. cannabichromene (CBC), cannabinol (CBN), cannabichromenic acid (CBCA), cannabinolic acid (CBNA)
and several phenolic compounds such as cannflavins A and B, and canniprene [9]. The phytocannabinoidal content
decreases from the upper to the lower part of the plants, i.e., hemp flowers contain the highest level, followed
by the upper leaves. The peak concentration of cannabinoids is attained during the growing periods of the plant
(10–11 weeks after cultivation) [10].

In continuation to previous research work [4,11,12], we aimed in the current study to explore the relative dual
prophylactic/therapeutic potential of 29 cannabis phytochemicals by in silico exploration of their inhibitory action
on viral spike-ACE2 complex, i.e., essential for the viral entry, as well as the viral replication machinery via the Mpro.
Further, physicochemical and pharmacokinetic parameters (ADMET) formulating drug-likeness were computed.

Materials & methods
Phytoligands under study
An array of 29 phytoligands from C. sativa belonging to different classes viz. phytocannabinoids, stilbenoids
and flavonoids were included in the study, i.e., cannabidiolic acid (CBDA) (1), cannabigerolic acid (CBGA)
(2), cannabigerolic acid monomethyl ether (3), cannabigerovarinic acid (4), cannabigerovarin (5), cannabidiol
(CBD) (6), cannabidivarinic acid (7), cannabigerol (CBG) (8), cannanbichromene (CBC) (9), cannabivarin
(10), �9-tetrahydrocannabivarin (�9-THCV) (11), cannabidivarin (CBDV) (12), (+)-cannabichromenic acid
(13), cannabinolic acid (14), cannabidinodiol (CBND) (15), cannabinol methyl ether (16), cannabinol (17),
cannabicyclolic acid (18), cannabicyclol (19), cannabielsoin A (20), cannabitriol (21), cannflavin A (22), cannflavin
B (23), canniprene (24), cannabifuran (25), dehydrocannabifuran (26), cannabicitran (27), cannabiripsol (28)
and cannabimovone (29). 2D structures of these different phytocannabinoids were downloaded as structure-data
file (SDF) from PubChem (https://pubchem.ncbi.nlm.nih.gov).

Molecular docking of the phytoligands
Molecular Operating Environment (MOE) software package version 2016.10 (Chemical Computing Group,
Montreal, Canada) was used for molecular docking of the two viral proteins under study viz. SARS-CoV-2 S protein
C-terminal domain (SARS-CoV-2-CTD) and Mpro. SARS-CoV-2-CTD crystal structure complexed with human
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ACE2 (hACE2) and the coordinates of Mpro in complex with its inhibitor 2-cyclohexyl-N-(3-pyridyl)acetamide
were retrieved from the protein data bank (PDB ID 6LZG and 5R84, respectively) [11,13–15]. The proteins were
prepared employing the default “structure preparation” module settings, where hydrogen atoms were added,
hydrogen bonds were optimized, atomic clashes were removed, and the crystal structures were refined. The docking
protocol was adopted as previously reported in [16]. Docking results were presented as a list based on the S-scores
with RMSD values below 2 Å and graphically showing the phytoligands interactions.

In silico analysis of physicochemical properties & ADME profiling of the phytoligands
The physicochemical properties and ADME profiles of the studied phytoligands in human body were predicted
using SwissADME calculation toolkit [17] and the online-server PreADMET (https://preadmet.bmdrc.kr/) [18].

Results
Molecular docking analysis of cannabis phytoligands within SARS-CoV-2 spike (S) protein–ACE2
complex
SARS-CoV-2 entry into the host cell is initiated by the spike (S) glycoprotein attachment [19] to hACE2 which
proceeds by the cleavage of S protein by host cell proteases into S1 and S2 subunits for receptor recognition and cell
membrane fusion, respectively. S1 is further subdivided into N-terminal domain (NTD) and C-terminal domain
(CTD), which both function as a receptor-binding entity [20]. The S1 CTD of SARS-CoV-2 functions as the key
region interacting with the hACE2 receptor. The crystal structure of SARS-CoV-2-CTD in complex with a single
hACE2 molecule in asymmetric unit (PDB ID: 6LZG) was used in our study [13].

Docking simulations were used to explore the ability of the studied phytoligands in destabilizing the virus-enzyme
complex or preventing its formation. We proposed that possible accommodation/fitting of such phytochemicals at
the SARS-CoV-2-CTD-h2ACE interface and their possible interactions with the key amino acids of the complex
may provide promising insights for the possible prophylactic action of the studied phytoligands.

The most suitable site for docking the phytoligands into the SARS-CoV-2-CTD-2hACE binding interface
was localized using ‘site finder’ feature of MOE 2016.10. in the absence of a co-crystallized inhibitor at the
interface of the studied complex by employing flexible docking mode using reference phytochemical viral entry
inhibitor, i.e., hesperidin [21–23]. Most of the studied phytoligands were found to display moderate to promising
binding affinities compared with hesperidin (30) (Table 1). Cannabigerolic acid (CBGA) (2) recorded the best
binding affinity (-7.55 kcal/mol), followed by cannabigerol (CBG) (8), cannabigerolic acid monomethyl ether
(3), cannabigerovarinic acid (4), cannabichromene (CBC) (9) and cannabifuran (25) showing slightly less binding
affinities ranging from -7.21 to -7.01 kcal/mol. The remaining phytoligands showed a moderate fitting (-6.93 to
-5.99 kcal/mol).

Molecular docking analysis of cannabis phytoligands within SARS-CoV-2 Mpro

Most of the investigated phytoligands displayed promising binding affinities to SARS-CoV-2 Mpro as compared
with the reference (30) (Table 2). Canniprene (24) showed the best binding affinity (-7.02 kcal/mol) followed
by cannabigerolic acid monomethyl ether (3), cannabichromene (CBC) (9), cannabigerolic acid (CBGA) (2),
cannabinol methyl ether (16), cannflavin B (23), cannabidinodiol (CBND) (15) and cannabinolic acid (14) which
exhibited less binding affinities (-6.98 to -6.67 kcal/mol) but still better than the reference (30) that exhibited a
binding affinity of -6.66 kcal/mol.

In silico prediction of physicochemical properties, ADME & drug-likeness of cannabis phytoligands
SwissADME online server was employed to predict the most important physicochemical properties that formulate
drug-likeness parameters of the most promising phytoligands [17]. The promising phytoligands exhibited drug-
like bioavailability according to Veber’s [24] and Lipinski’s [25] parameters. Among the selected phytoligands,
cannabigerovarinic acid (4), cannflavin B (23) and canniprene (24) were observed to be in full accordance
to Lipinski’s and Veber’s parameters, whereas cannabigerolic acid (CBGA) (2), cannabigerol (CBG) (8) and
cannabichromene (CBC) (9) showed one violation. Additionally, Pre-ADMET program [26] was employed for the
calculation of ADME descriptors.
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Table 1. Results of docking simulations of the studied cannabis phytoligands within SARS-CoV-2 spike (S) protein–ACE2
complex.
No. Name of phytoligands � G† (kcal/mol) Interactions at the binding interface

hACE2 residues SARSCoV-2-CTD residues

1 Cannabidiolic acid (CBDA) -6.53 Glu37 No interaction

2 Cannabigerolic acid (CBGA) -7.55 Glu37 Arg403, Glu406, Tyr505

3 Cannabigerolic acid monomethyl ether -7.21 His34 No interaction

4 Cannabigerovarinic acid -7.21 Glu37 Glu406

5 Cannabigerovarin -6.45 No interaction Glu406

6 Cannabidiol (CBD) -6.19 His34 No interaction

7 Cannabidivarinic acid -6.42 No interaction No interaction

8 Cannabigerol (CBG) -6.66 No interaction No interaction

9 Cannabichromene (CBC) -7.11 No interaction No interaction

10 Cannabivarin -6.29 His34 No interaction

11 � 9-Tetrahydrocannabivarin (� 9-THCV) -5.99 His34 No interaction

12 Cannabidivarin (CBDV) -5.99 No interaction No interaction

13 (+)-Cannabichromenic acid -6.33 No interaction Gln409, Lys417

14 Cannabinolic acid -6.64 His34 Arg403

15 Cannabidinodiol (CBND) -6.49 Glu37 No interaction

16 Cannabinol methyl ether -6.65 No interaction No interaction

17 Cannabinol -6.53 Glu37 No interaction

18 Cannabicyclolic acid -6.73 No interaction No interaction

19 Cannabicyclol -6.75 His34 No interaction

20 Cannabielsoin A -6.81 No interaction No interaction

21 Cannabitriol -6.93 No interaction Glu406

22 Cannflavin A -6.55 His34 No interaction

23 Cannflavin B -6.62 His34 No interaction

24 Canniprene -6.67 No interaction No interaction

25 Cannabifuran -7.01 His34 No interaction

26 Dehydrocannabifuran -6.83 His34 Arg403

27 Cannabicitran -6.50 No interaction No interaction

28 Cannabiripsol -6.80 His34 No interaction

29 Cannabimovone -6.93 No interaction No interaction

30 Hesperidin -7.51 His34 Lys417

The key residues involved in the SARS-CoV-2-CTD-2hACE complex formation are listed in bold.
†The ligand–receptor complex binding free energy at RMSD ≤2 Å.

Discussion
As revealed from molecular docking of the phytoligands within SARS-CoV-2 S protein–ACE2 complex, the
most promising phytoligands were cannabigerolic acid (CBGA) (2) and its monomethyl ether derivative (3),
and cannabigerol (8), belonging to cannabigerol-type phytocannabinoids which were featured by the presence of
a linear isoprenyl residue. These phytochemicals were found to be most enriched in cannabis varieties resulted
from hybridization [27]. They are nonpsychoactive with low cannabinoid (CB) receptors potency however, they
possess powerful antioxidant and anti-inflammatory properties which make them good candidates for managing
the inflammatory conditions [28].

Cannabichromene-type phytocannabinoids, represented by cannabichromene (9), possess isoprenyl moiety
that is oxidatively fused to the resorcinyl ring. This type was reported to exhibit potent TRPA1 activation,
anti-inflammatory and anti-nociceptive actions via the inhibition of cyclooxygenase enzyme and its associated
prostaglandins but with no affinity to cannabinoid receptors, i.e., devoid of psychotropic activity [29]. These com-
pounds are more abundant in the vegetative stage of hemp plant than in its reproductive stage [30]. Cannabifuran
(25), an oxidatively cyclized analog of cannabinodiol (15), is commonly isolated from aged samples of hashish with
no reported biological actions till now.

10.2217/fvl-2021-0309 Future Virol. (Epub ahead of print) future science group
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Table 2. Results of docking simulations of the studied cannabis phytoligands within SARS-CoV-2 Mpro.
No. Name of phytoligands � G† (kcal/mol) Interactions at the active site of SARS-CoV-2-main

protease protease

1 Cannabidiolic acid (CBDA) -6.12 No interaction

2 Cannabigerolic acid (CBGA) -6.81 No interaction

3 Cannabigerolic acid monomethyl ether -6.98 No interaction

4 Cannabigerovarinic acid -6.57 Glu166

5 Cannabigerovarin -6.62 Gln189

6 Cannabidiol (CBD) -5.84 No interaction

7 Cannabidivarinic acid -6.38 Cys145

8 Cannabigerol (CBG) -4.68 Asn142

9 Cannanbichromene (CBC) -6.87 No interaction

10 Cannabivarin -6.21 No interaction

11 � 9-Tetrahydrocannabivarin (� 9-THCV) -5.96 No interaction

12 Cannabidivarin (CBDV) -5.89 Glu166, Gln189

13 (+)-Cannabichromenic acid -6.29 No interaction

14 Cannabinolic acid -6.67 Glu166

15 Cannabidinodiol (CBND) -6.68 Glu166, Cys145

16 Cannabinol methyl ether -6.72 No interaction

17 Cannabinol -6.12 Glu166

18 Cannabicyclolic acid -4.58 Gln189

19 Cannabicyclol -4.31 Met165

20 Cannabielsoin A -5.88 Met165

21 Cannabitriol -5.47 Glu166

22 Cannflavin A No considerable fitting No interaction

23 Cannflavin B -6.71 Cys145, His163

24 Canniprene -7.02 Glu166

25 Cannabifuran -5.97 Cys145, Glu166

26 Dehydrocannabifuran -6.26 Cys145

27 Cannabicitran -6.21 Met165

28 Cannabiripsol -4.89 Glu166, Gln189

29 Cannabimovone -6.11 Asn142

30 2–Cyclohexyl-N-(3-pyridyl)acetamide -6.66 Asn142, His163, Glu166

The key residues involved in the complex formation are listed in bold.
†The ligand–receptor complex binding free energy at RMSD ≤2 Å.

Most of the promising phytoligands were able to accommodate into the interface and interact with the key
aminoacids (Figures 1 & 2). Accordingly, they can destabilize or halt the virus–receptor engagement which is
commonly dominated by polar contacts mediated by these key hydrophilic aminoacid residues [13]. Cannabigerolic
acid monomethyl ether (3), cannabidiol (CBD) (6), cannabivarin (10), �9-tetrahydrocannabivarin (�9-THCV)
(11), cannabinolic acid (14), cannabicyclol (19), cannflavin A & B (22 & 23), cannabifuran (25), dehydro-
cannabifuran (26) and cannabiripsol (28) showed interactions with His34 of the hACE-2 involved in the complex
formation (Figure 1), whereas (+)-cannabichromenic acid (13) interacted with Lys417 which is the key residue of
the SARS-CoV-2 CTD but did not exhibit any interactions with the hACE-2 side (Figure 1Q & R).

Cannabidiol (6) is a major phytocannabinoid in fiber hemp formed by spontaneous decarboxylation of its
acidic form by the act of light and heat upon cannabis ageing. Despite having structural similarity with �9-THC,
it exhibits a distinct pharmacological profile and lacks any psychoactive properties with a very low affinity for
cannabinoids receptors. Cannflavins A and B (22 & 23), methylated isoprenoid flavones, are two of unique C.
sativa flavonoids with a well-reported anti-inflammatory action via the inhibition of 5-Lipoxygenase (5-LO) and
prostaglandin E 2 synthase (mPGES-1) [9].

ACE2 inhibition was reported as being unfavorable in COVID-19 patients due to the consequent decrease in
the production of angiotensin 1–7, that possess anti-inflammatory, antifibrotic and vasodilatory actions via the Mas
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Figure 1. Docking simulation of the studied phytoligands into the binding interface of SARS-CoV-2-CTD in complex
with hACE2 (Protein Data Bank ID: 6LZG). (A & B) 3D and 2D binding modes of 1 (cyan sticks). (C & D) 3D and 2D
binding modes of 2 (yellow sticks). (E & F) 3D and 2D binding modes of 3 (magenta sticks). (G & H) 3D and 2D binding
modes of 4 (orange sticks). (I & J) 3D and 2D binding modes of 5 (light pink sticks). (K & L) 3D and 2D binding modes
of 6 (green sticks). (M & N) 3D and 2D binding modes of 10 (violet sticks). (O & P) 3D and 2D binding modes of 11
(white sticks). (Q & R) 3D and 2D binding modes of 13 (red sticks). (S & T) 3D and 2D binding modes of 14 (deep
yellow sticks). (U & V) 3D and 2D binding modes of 15 (pink sticks). (W & X) 3D and 2D binding modes of 17 (blue
sticks). (Y & Z) 3D and 2D binding modes of 19 (deep cyan sticks). (AA & AB) 3D and 2D binding modes of 21 (grey
sticks). (AC & AD) 3D and 2D binding modes of 22 (light brown sticks). (AE & AF) 3D and 2D binding modes of 23 (dark
blue sticks). (AG & AH) 3D and 2D binding modes of 25 (dark green sticks). (AI & AJ) 3D and 2D binding modes of 26
(brown sticks). (AK & AL) 3D and 2D binding modes of 28 (dark red sticks). (AM & AN) 3D and 2D binding modes of 30
(light cyan sticks) in the binding interface of SARS-CoV-2-CTD in complex with hACE2 (PDB ID: 6LZG). The names of
the phytoligands (1–30) are given in the Materials & methods section.
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Figure 1. Docking simulation of the studied phytoligands into the binding interface of SARS-CoV-2-CTD in complex
with hACE2 (Protein Data Bank ID: 6LZG) (cont.). (A & B) 3D and 2D binding modes of 1 (cyan sticks). (C & D) 3D and
2D binding modes of 2 (yellow sticks). (E & F) 3D and 2D binding modes of 3 (magenta sticks). (G & H) 3D and 2D
binding modes of 4 (orange sticks). (I & J) 3D and 2D binding modes of 5 (light pink sticks). (K & L) 3D and 2D binding
modes of 6 (green sticks). (M & N) 3D and 2D binding modes of 10 (violet sticks). (O & P) 3D and 2D binding modes of
11 (white sticks). (Q & R) 3D and 2D binding modes of 13 (red sticks). (S & T) 3D and 2D binding modes of 14 (deep
yellow sticks). (U & V) 3D and 2D binding modes of 15 (pink sticks). (W & X) 3D and 2D binding modes of 17 (blue
sticks). (Y & Z) 3D and 2D binding modes of 19 (deep cyan sticks). (AA & AB) 3D and 2D binding modes of 21 (grey
sticks). (AC & AD) 3D and 2D binding modes of 22 (light brown sticks). (AE & AF) 3D and 2D binding modes of 23 (dark
blue sticks). (AG & AH) 3D and 2D binding modes of 25 (dark green sticks). (AI & AJ) 3D and 2D binding modes of 26
(brown sticks). (AK & AL) 3D and 2D binding modes of 28 (dark red sticks). (AM & AN) 3D and 2D binding modes of 30
(light cyan sticks) in the binding interface of SARS-CoV-2-CTD in complex with hACE2 (PDB ID: 6LZG). The names of
the phytoligands (1–30) are given in the Materials & methods section.
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Figure 1. Docking simulation of the studied phytoligands into the binding interface of SARS-CoV-2-CTD in complex
with hACE2 (Protein Data Bank ID: 6LZG) (cont.). (A & B) 3D and 2D binding modes of 1 (cyan sticks). (C & D) 3D and
2D binding modes of 2 (yellow sticks). (E & F) 3D and 2D binding modes of 3 (magenta sticks). (G & H) 3D and 2D
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with hACE2 (Protein Data Bank ID: 6LZG) (cont.). (A & B) 3D and 2D binding modes of 1 (cyan sticks). (C & D) 3D and
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the phytoligands (1–30) are given in the Materials & methods section.
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the phytoligands (1–30) are given in the Materials & methods section.
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receptor [31]. The protective role of ACE2 was revealed in animal models of acute respiratory distress syndrome [32].
Patients who administer angiotensin-II inhibitors (ACE1) was reported to suffer from severe symptoms with a
higher mortality rate than their counterparts who did not take these medications [33]. Thus, ligands not interacting
with hACE2 side such as (+)-cannabichromenic acid (13) will be considered promising anti-SARS drug leads with
a preventive potential.

Canniprene (24), a unique dihydrostilbenoid to C. sativa, recorded the highest binding affinities to SARS-CoV-2
Mpro, which possesses anti-inflammatory action via the inhibition of pro-inflammatory eicosanoids production.
Canniprene was reported to exhibit more potent action than cannflavin A as 5-LO inhibitors, however, it is less
effective in inhibiting mPGES-1 [34].

Moderate fitting was observed in the rest of the cannabis phytoligands (ranging from -6.62 to -4.31 kcal/mol).
Most of the phytoligands were able to accommodate into the active site and showed strong interactions with the
key aminoacids (Figure 1). Cannabigerovarinic acid (4), cannabinolic acid (14), cannabinol (17), cannabitriol
(21) and canniprene (24) interacted with Glu166 that is involved in the reference inhibitor–active site complex.
Additional interactions were observed in the phytolignds, i.e., cannabidivarin (CBDV) (12) and cannabiripsol
(28) with Glu189, however, phytoligands, i.e., cannabidinodiol (CBND) (15) and cannabifuran (25) exhibited
interactions with Cys145. Cannabicyclol (19), cannabielsoin A (20) and cannabicitran (27) showed interactions
with the neighboring Met165. Cannflavin B (23) interacted with the active site through its key residue His163,
whereas cannabigerol (CBG) (8) and cannabimovone (29) interacted through Asn142. A comparative display of the
energy binding value of �G (-kcal/mol) of Spike–ACE2 complex and Mpro with the studied cannabis phytoligands
is illustrated in Figure 2.

All the investigated phytoligands displayed acceptable aqueous solubility with canniprene (24) appearing at
the top of the list with an excellent intestinal absorption (>90%), medium to high BBB penetration, moderate
permeability through CaCo-2 cells model and low permeability through MDCK ones (Table 3). Most of the
phytoligands were predicted to possess moderate to high plasma proteins binding profiles and expected to be more
bound to plasma proteins (PPB ≈ 96–100%). The investigated phytoligands were also predicted to be incapable
of inhibiting cytochromes P450 2D6 (CYP2D6) but not CYP3A4, except cannabigerolic acid monomethyl ether
(3) that was devoid of inhibiting both CYP2D6 and CYP3A4 (Table 3).

Indeed, oropharynx and nasopharynx are the main entry ports for SARS-CoV-2 as well as sources of transmission.
Both saliva and nasopharyngeal secretions harbor a significant viral load in asymptomatic or presymptomatic virus
carriers, and hence playing crucial role in both the pathogenicity and the transmission of SARS-CoV-2. Accordingly,
an antiviral oral and nasopharyngeal rinses can be considered as one of the most efficient intervention in combating
SARS-CoV-2 transmission [35]. Previous studies reported for the efficacy of mouthwashes in inhibiting viruses such
as HIV, herpes simplex virus (HSV) and Middle East respiratory syndrome coronavirus (MERSCoV) [36–38]. Since,
canniprene (24) possessed the best optimal ADMET profile, among the studied phytoligands, in addition to its
most Mpro inhibitory action, this phytoligand might serve as promising drug candidate to be administered orally
as being devoid of any psychoactivity.

Cannabigerol-type phytocannabinoids, i.e., cannabigerolic acid (2), cannabigerol (8) and its acid methyl ether
(3), possessed the most potent inhibitory action on the viral entry machinery in our in silico modeling study which
makes them promising candidates to be administered via topical application in the form of mouthwash/gargles or
intranasally. Cannabigerolic acid monomethyl ether (3) was revealed to exhibit a dual promising inhibitory action
against both the viral entry and the replication machinery. However, the efficacy and tolerability of the identified
phytoligands need to be confirmed for its effective integration into the clinical practice. Table 3.

Conclusion
There is an urgency in finding new anti-SARS therapies with an added prophylactic value to be employed side by side
to the developed vaccines for an efficient curtailment of COVID-19. The current study posed new drug leads from
cannabis with low toxicity and in silico dual inhibitory action against viral entry and replication machinery that is
essential for a more efficient management of COVID-19. The phytoligands ’cannabigerolic acid (2), cannabigerolic
acid monomethyl ether (3) and cannabichromene (9)’ possessed the highest inhibitory potential against both viral
entry and replication machineries as illustrated in the comparative histograms shown in Figure 3. It seems crucial
now to develop dosage forms for local application in the oral cavity to halt the SARS-CoV-2 load for prophylaxis [44].
Intranasal delivery of the proposed drug leads is then suggested as an additional option to minimize COVID-19
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Figure 2. Docking simulation of the studied phytoligands into the active site of SARS-CoV-2-main protease (Protein
Data Bank ID: 5R84). (A & B) 3D and 2D binding modes of 4 (cyan sticks). (C & D) 3D and 2D binding modes of 5
(yellow sticks). (E & F) 3D and 2D binding modes of 7 (magenta sticks). (G & H) 3D and 2D binding modes of 8 (orange
sticks). (I & J) 3D and 2D binding modes of 12 (light pink sticks). (K & L) 3D and 2D binding modes of 14 (green sticks).
(M & N) 3D and 2D binding modes of 15 (violet sticks). (O & P) 3D and 2D binding modes of 17 (white sticks). (Q & R)
3D and 2D binding modes of 18 (red sticks). (S & T) 3D and 2D binding modes of 19 (deep yellow sticks). (U & V) 3D
and 2D binding modes of 20 (pink sticks). (W & X) 3D and 2D binding modes of 21 (blue sticks). (Y & Z) 3D and 2D
binding modes of 23 (deep cyan sticks). (AA & AB) 3D and 2D binding modes of 24 (grey sticks). (AC & AD) 3D and 2D
binding modes of 25 (orange sticks). (AE & AF) 3D and 2D binding modes of 26 (dark blue sticks). (AG & AH) 3D and
2D binding modes of 27 (dark green sticks). (AI & AJ) 3D and 2D binding modes of 28 (brown sticks). (AK & AL) 3D and
2D binding modes of 29 (dark red sticks). (AM & AN) Overlay of the docked (light cyan sticks) and the co-crystallized
inhibitor 2-cyclohexyl-N-(3-pyridyl)acetamide 30 (green sticks) in 3D and 2D binding modes, in the active site of
SARS-CoV-2-main protease (Protein Data Bank ID: 5R84). The names of the phytoligands (1–30) are given in the
Materials & methods section.
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Figure 2. Docking simulation of the studied phytoligands into the active site of SARS-CoV-2-main protease (Protein
Data Bank ID: 5R84) (cont.). (A & B) 3D and 2D binding modes of 4 (cyan sticks). (C & D) 3D and 2D binding modes of 5
(yellow sticks). (E & F) 3D and 2D binding modes of 7 (magenta sticks). (G & H) 3D and 2D binding modes of 8 (orange
sticks). (I & J) 3D and 2D binding modes of 12 (light pink sticks). (K & L) 3D and 2D binding modes of 14 (green sticks).
(M & N) 3D and 2D binding modes of 15 (violet sticks). (O & P) 3D and 2D binding modes of 17 (white sticks). (Q & R)
3D and 2D binding modes of 18 (red sticks). (S & T) 3D and 2D binding modes of 19 (deep yellow sticks). (U & V) 3D
and 2D binding modes of 20 (pink sticks). (W & X) 3D and 2D binding modes of 21 (blue sticks). (Y & Z) 3D and 2D
binding modes of 23 (deep cyan sticks). (AA & AB) 3D and 2D binding modes of 24 (grey sticks). (AC & AD) 3D and 2D
binding modes of 25 (orange sticks). (AE & AF) 3D and 2D binding modes of 26 (dark blue sticks). (AG & AH) 3D and
2D binding modes of 27 (dark green sticks). (AI & AJ) 3D and 2D binding modes of 28 (brown sticks). (AK & AL) 3D and
2D binding modes of 29 (dark red sticks). (AM & AN) Overlay of the docked (light cyan sticks) and the co-crystallized
inhibitor 2-cyclohexyl-N-(3-pyridyl)acetamide 30 (green sticks) in 3D and 2D binding modes, in the active site of
SARS-CoV-2-main protease (Protein Data Bank ID: 5R84). The names of the phytoligands (1–30) are given in the
Materials & methods section.
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Figure 2. Docking simulation of the studied phytoligands into the active site of SARS-CoV-2-main protease (Protein
Data Bank ID: 5R84) (cont.). (A & B) 3D and 2D binding modes of 4 (cyan sticks). (C & D) 3D and 2D binding modes of 5
(yellow sticks). (E & F) 3D and 2D binding modes of 7 (magenta sticks). (G & H) 3D and 2D binding modes of 8 (orange
sticks). (I & J) 3D and 2D binding modes of 12 (light pink sticks). (K & L) 3D and 2D binding modes of 14 (green sticks).
(M & N) 3D and 2D binding modes of 15 (violet sticks). (O & P) 3D and 2D binding modes of 17 (white sticks). (Q & R)
3D and 2D binding modes of 18 (red sticks). (S & T) 3D and 2D binding modes of 19 (deep yellow sticks). (U & V) 3D
and 2D binding modes of 20 (pink sticks). (W & X) 3D and 2D binding modes of 21 (blue sticks). (Y & Z) 3D and 2D
binding modes of 23 (deep cyan sticks). (AA & AB) 3D and 2D binding modes of 24 (grey sticks). (AC & AD) 3D and 2D
binding modes of 25 (orange sticks). (AE & AF) 3D and 2D binding modes of 26 (dark blue sticks). (AG & AH) 3D and
2D binding modes of 27 (dark green sticks). (AI & AJ) 3D and 2D binding modes of 28 (brown sticks). (AK & AL) 3D and
2D binding modes of 29 (dark red sticks). (AM & AN) Overlay of the docked (light cyan sticks) and the co-crystallized
inhibitor 2-cyclohexyl-N-(3-pyridyl)acetamide 30 (green sticks) in 3D and 2D binding modes, in the active site of
SARS-CoV-2-main protease (Protein Data Bank ID: 5R84). The names of the phytoligands (1–30) are given in the
Materials & methods section.
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Data Bank ID: 5R84) (cont.). (A & B) 3D and 2D binding modes of 4 (cyan sticks). (C & D) 3D and 2D binding modes of 5
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(M & N) 3D and 2D binding modes of 15 (violet sticks). (O & P) 3D and 2D binding modes of 17 (white sticks). (Q & R)
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2D binding modes of 27 (dark green sticks). (AI & AJ) 3D and 2D binding modes of 28 (brown sticks). (AK & AL) 3D and
2D binding modes of 29 (dark red sticks). (AM & AN) Overlay of the docked (light cyan sticks) and the co-crystallized
inhibitor 2-cyclohexyl-N-(3-pyridyl)acetamide 30 (green sticks) in 3D and 2D binding modes, in the active site of
SARS-CoV-2-main protease (Protein Data Bank ID: 5R84). The names of the phytoligands (1–30) are given in the
Materials & methods section.
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2D binding modes of 29 (dark red sticks). (AM & AN) Overlay of the docked (light cyan sticks) and the co-crystallized
inhibitor 2-cyclohexyl-N-(3-pyridyl)acetamide 30 (green sticks) in 3D and 2D binding modes, in the active site of
SARS-CoV-2-main protease (Protein Data Bank ID: 5R84). The names of the phytoligands (1–30) are given in the
Materials & methods section.
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Figure 3. Histograms showing the energy binding value of �G (-kcal/mol) of Spike-ACE2 complex and Mpro with the studied cannabis
phytoligands.

propagation and this represents an important area in viral respiratory diseases research. However, this is worthy of
further exploration for the sake of identifying optimal parameters for intranasal delivery.

The remarkable in silico anti-SARS entry and replication machinery potential of cannabis phytoligands has shed
the light on revisiting the cannabis bright side. This further stimulates the exploration of the possible biological
actions of other cannabis phytochemicals than the psychoactive cannabinoid motif.

Summary points

• In silico screening of 29 cannabis phytoligands against SARS spike-ACE2 complex and Mpro.
• Cannabigerolic acid and cannabigerol were revealed as inhibitors of SARS-CoV-hACE2 complex.
• Canniprene and cannabigerolic methyl ether possessed anti-Mpro activity.
• The identified phytoligands could serve as anti-SARS therapies with an added prophylactic value.
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