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Abstract: The use of surfactants in polymerization reactions is particularly important, mainly in
emulsion polymerizations. Further, micelles from biocompatible surfactants find use in pharma-
ceutical dosage forms. This paper reviews recent developments in the synthesis of novel gemini
and bicephalous surfactants, micelle formation, and their applications in polymer and nanoparticle
synthesis, oil recovery, catalysis, corrosion, protein binding, and biomedical area, particularly in
drug delivery.
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1. Introduction

According to IUPAC definition, a micelle is a “Particle of colloidal dimensions that
exists in equilibrium with the molecules or ions in solution from which it is formed” [1,2].
Further, micelles are formed by spontaneous aggregation (self-assembly, supramolecular
assemblies) of amphiphilic molecules that contain a hydrophilic/polar region (head) and
a hydrophobic/nonpolar region (tail). Besides forming micelles, amphiphiles can self-
assemble in different structures, such as vesicles, nanotubes, nanofibers, and lamellae [3].
In this contribution, the formation of micelles from two families of non-conventional
amphiphiles, gemini and bicephalous surfactants, is reviewed, and their applications in
polymer synthesis in dispersed media, catalysis, protein binding, and as drug carriers are
presented, as well as future developments.

2. Surfactants

Surfactants are amphiphilic molecules that have hydrophobic (head) and hydrophilic
(tail) components, allowing their solubility in both organic solvents and water. At the
air–water interface, the hydrophobic tail is in the air and the hydrophilic head in the water,
causing a decrease of both, in the surface tension, which is defined as the force of attraction
between the molecules at the air–water interface, and in the interfacial tension between two
liquids [4,5]. Usually, the hydrophobic tail is a relatively long hydrocarbon, fluorocarbon,
or siloxane chain, while the hydrophilic part could be an ion (cation or anion).

Surfactants are key compounds in many industrial processes (lubricants, foaming
agents, wetting agents, solubilizers, corrosion inhibitors, antistatic agents, and viscosity
modifiers) and a variety of useful products (disinfectants, emulsifiers, dispersants, de-
tergents, and soaps) have been vigorously developed in terms of functional variety and
structural diversity in the last few years [6–8].
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2.1. Classification of Surfactants

These compounds may be classified based on the chemical nature of their polar
head [9]. If the head group has no charge, the surfactant is called non-ionic. They can be
classified as anionic, cationic, non-ionic, and zwitterionic (Figure 1)
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Figure 1. Schematic representation of the different types of surfactants.

2.1.1. Anionic Surfactants

In this type of surfactants, the hydrophilic group has a negative charge on the polar
head, such as carboxylate (RCOO−), sulphonate (RSO3−), or sulphate (RO-SO3−) [10].
When these surfactants dissolve in water, negatively charged particles (anions) are created.
Anionic surfactants are widely used for industrial as well as household cleaning and for
pesticide formulations;for example, potassium laurate, sodium lauryl sulphate, sodium
decyl sulfate, sodium N-lauroyl-N-methyltaurate, sodium tetradecyl sulphate, sodium
stearate, α-olefin sulfonate, etc. (Figure 2).
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2.1.2. Cationic Surfactants

These surfactants possess a positive charge on the polar head, which may be either
permanent or only exist in a range of pH values. The cationic surfactants can dissociate
in water with the formation of surface-active cations [11]. One of the advantages of the
cationic surfactants is the diversity of their head groups, which permits the chemical
modification and introduction of desirable moieties. In addition, these surfactants have
compatibility with both non-ionic and amphoteric surfactants and incompatibility with
the ionic ones. Usually, cationic surfactants are found in fabric softener formulations,
antistatic agents, particle dispersants, corrosion inhibitors, and emulsifiers [12,13]. Cationic
surfactants also have found important application in pharmacy and biomedicine as drug
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nanocarriers [14–16]; for example, cetyltrimethylammonium bromide, cetylpyridinium
chloride, and alkyldimethyl amine oxides (Figure 3).
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2.1.3. Non-Ionic Surfactants

The non-ionic surfactants have polar head groups that are not electrically charged.
In general, the solubility of non-ionic surfactants in water is not good compared with the
solubility of ionic surfactants; however, they do not change the pH of the solution. Usually,
these surfactants show a better biocompatibility than ionic ones, making them suitable for
biomedical applications [17–20]. The non-ionic surfactants are also the most used in the
food industry [21–23]. Typical non-ionic surfactants are Tween 20, Tween 80, Triton X-100,
Brij-35, and alkylethers of poly(ethylene glycol) and poly(propylene glycol) (Figure 4).
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2.1.4. Amphoteric or Zwitterionic Surfactants

This type of surfactant contains both positive and negative polar heads. They are
surfactants with a zero net charge, so the surfactant molecule is essentially neutral [24,25].
Usually, the positive head is either an amine or a quaternary ammonium cation, whereas
the anionic part is mostly a carboxylic, sulfuric, or phosphoric acid functional group [26,27].
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Some examples of amphoteric surfactants are the carboxilates RCOO- with quaternary
amine (R4N+), phospholipids, betaines, and sulfobetaines (Figure 5).
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2.2. Hydrophile–Lipophile Balance (HLB)

The appropriate determination of the hydrophilic–lipophilic nature of surfactants
plays an essential instrumental role in leading the way for the formulation of emulsions and
microemulsions. The hydrophile–lipophile balance (HLB) approach has been used to mea-
sure the degree of hydrophilicity (tendency to solubilize in water) or lipophilicity (tendency
to solubilize in oil) of surfactants. The HLB numbers are determined by calculating values
for the hydrophilic and lipophilic regions of the molecule, as described by Griffin [28–30].
The range of values for this parameter goes from 0 to 20 [31]. In this sense, surfactants with
low HLB values tend to be more lipophilic while surfactants with high HLB values are
more soluble in water. The HLB value also can be used to predict the potential application
for a given surfactant; e.g., a value in the range of 0–3 indicates an antifoaming agent while
a range of 13–15 is typical of detergents [32]. Surfactant formulation development based
on the HLB approach has worked well for ethoxylated, non-ionic surfactants but not so for
the ionic ones.

3. Micelles

One of the most important properties of surfactants is their capacity to self-assembly to
create nanometer size structures. When the concentration of surfactant molecules exceeds
the limit of their solubility, these molecules become organized themselves into nanomeric
structures called micelles [33,34].

Micelles are commonly defined as core-shell surfactant-based systems dispersed in a
bulk phase. Surfactants can spontaneously create these nanometric systems in either an
aqueous or oily phase. The micelles formed in aqueous solution are called conventional
(or normal) while those formed in an oily bulk phase are called reverse (or inverse). In
the conventional micelles, the shell is bordered by the hydrophilic region of the surfactant
molecules, while the hydrophobic one forms the core (Figure 6). Micelles can be spherical,
cylindrical, or organized in multi-layered flat sheets. In addition, the morphology of the
micelles can be tuned by varying some parameters, including the size and type of the
hydrophobic tail of the surfactant, the nature and size of the polar head, as well as the
concentration, temperature, pH, etc. [35–37].
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Micellar solutions are used in some important applications, such as tertiary oil recov-
ery [38–40], catalysis [41–43], food and cosmetics formulations [44–46], pharmaceutical
drug delivery systems [47–50], polymer synthesis [51], etc. Pharmaceutical application
of micelles is of considerable interest regarding its importance in biological systems in
which therapeutic efficiency is crucial. Micelles can be employed to solubilize drugs, and
thus increase their bioavailability. This depends upon the interaction between the drug
and micellar core as well as the stability of the system being formed [52,53]. Likewise, the
application of micelles in polymer synthesis is of utmost importance: a wealth of useful
polymers is synthesized in monomer swollen micelles; e.g., emulsion polymers via the
micellar nucleation mechanism [51].

3.1. Critical Micellar Concentration (CMC)

The CMC is defined as the concentration of dissolved surfactant molecules above
which aggregates, called micelles, are spontaneously formed (self-assembly) [54,55]. At
the CMC, small spherical micelles are typically formed while at larger concentrations,
they may grow to worm- or vesicle-like micelles. At concentrations above the CMC, the
micelles are in dynamic equilibrium with free molecules but are thermodynamically stable
and tend to resist disassembly [56]. In addition, upon reaching the CMC, any further
addition of surfactants will just increase the number of micelles. On the contrary, below
the CMC, the micelles are dissociated at a rate that depends mainly on the nature of the
surfactant and the degree of interaction between the surfactant molecules. For a given
system, micellization occurs over a narrow concentration range. Besides concentration,
temperature also influences micelle formation, and the temperature corresponding to the
initiation of micelle formation is designated as the Krafft point [4,5].

Usually, low-molecular weight surfactants exhibit higher CMC values than the high-
molecular weight and block copolymer surfactants, which show a greater resistance to
dissociation upon dilution [56]. The micelles formed by block copolymer surfactants
generally present a core-shell morphology wherein the hydrophobic segments form the
core within a size range of 10–100 nm.

3.2. Aggregation Number

The aggregation number is defined as the average number of surfactant molecules
constituting a micelle once the CMC has been reached [57,58]; it also gives information
about the micelle size and shape, which are important in determining their stability and
applications. This number can be affected by temperature, pH, type of surfactant, the addi-
tion of either electrolytes or organic compounds, etc. Several methods have been reported
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for the determination of the micellar aggregation number, including light-scattering [59],
fluorescence [35,60] transmission electron microscopy [61,62], isothermal titration calorime-
try [63,64], small-angle neutron scattering (SANS) [65–67], among others.

4. Gemini Surfactants
4.1. Definition

Gemini surfactants are dimeric structures, composed of two hydrophobic chains
and two hydrophilic heads, linked by a spacer at or near the head groups (Figure 7).
They present lower CMC, better efficiency to form micelles, and solubilization capacity
comparedto their conventional (monomeric) counterparts [68–70]. They can also reduce
the surface tension of water and the oil–water interfacial tension from 10 to 100 times. This
behavior depends mainly on the nature of their components (heads, hydrophobic chains
and spacer); thus, their synthesis is focused mainly on varying the type and length of
these components.
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4.2. Structure

Gemini surfactants have attracted interest among the scientific community in various
applications due to their very low CMC, greater solubilization power, as well as better
wetting and foaming properties compared to single-chain surfactants [71]. Gemini surfac-
tants have a polymorphic phase behavior and a great variety of self-assembled structures
forming aggregates that can be observed as micelles, bilayers, and vesicles, depending on
the head groups, the size of the hydrophobic tails, and the nature of the spacer [72]. Figure 8
shows the structure of normal micelles obtained from conventional and gemini surfactants.
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4.3. Type of Gemini Surfactants

Gemini surfactants are classified by their physicochemical characteristics, groups
present in the hydrophobic tails, and spacers. Regarding rigidity, the spacers in the
chemical structure of a gemini surfactant can be classified into two subcategories, flexible
(methylenes) and rigid (stilbene) (Figure 9a,b, respectively). Spacers also can be classified
according to their length into short (Figure 9c) or long (Figure 9d). It is worth mentioning
that the length of the spacer influences the geometry of the micelles. The presence of short
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spacers increases the repulsion between the head groups, resulting in micelles with a fiber-
like structure, even at low concentrations of surfactant (Figure 10a). On the contrary, when
the spacers are long, the micelles have elliptical geometries (Figure 10b). The transition
from spherical micelles (Figure 10c) (4–8 carbon atoms in the spacer) to elliptical micelles
occurs when repulsion between the groups of the polar heads decreases [73].
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On the other hand, the groups present in the spacer can be classified into polar (Figure 9e)
or nonpolar (aliphatic and aromatic groups). Furthermore, the polar head can be positive,
negative, zwitterionic, or non-ionic (Figure 9f–i). Finally, gemini dissymmetric (hetero-
geminis) surfactants contain two groups of non-identical polar heads (or identical) and
different (or identical) lengths of alkyl tails, so they can also be classified into gemini
surfactants of different head or hydrophobic tails and gemini surfactants of identical head
and hydrophobic tails (Figure 9j–l) [74].

The surface activity of heterogeneous surfactants is highly dependent on the degree
of asymmetry. For pyrene-based asymmetric gemini surfactants synthesized in five-step



Int. J. Mol. Sci. 2022, 23, 1798 8 of 25

reactions, the Krafft temperature increases as the alkyl chain length increases. Similarly,
the CMC values are much lower than their symmetric counterparts [75].

4.4. Synthesis Pathways

There are three main routes to synthesize symmetric gemini surfactants (Figure 11):
(a) reaction of long chain tertiary amines with dihalogenated substrates as organic di-
bromides or dichlorides; (b) reaction of N,N,N′,N′-tetramethylpolymethylene diamines
with alkyl halides; and (c) reaction of long chain tertiary amines with a haloalkylene
oxide substrate.
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The yield of the synthesis of gemini surfactants depends mainly on the reactivity
of the dihalogenoalkanes and the polarity and protic character of the solvent [76]. The
best results have been achieved in aprotic and polar solvents. Some of these reactions can
also be carried out without a solvent under mild conditions with very high yields [77].
Amino acid-based gemini surfactants are synthesized by condensation reactions at the
amino group or the carboxyl group of the amino acid [78]. There are many studies on the
synthesis and biological evaluation of gemini surfactants based on amino acids derived
from arginine [79]. Some gemini surfactants have also been obtained from lysine, glycine,
and cysteine [80,81]. Wang et al. synthesized a sugar-based gemini surfactant with a N, N′-
acetylethylenediamine spacer (N,N′ (N-dodecyl-2-D-glucosaminyl acetyl) ethylenediamine
and D-(+)-glucono-1,5-lactone as the starting material, in three steps. The CMC value
(10−5 mol·L−1) determined by surface tension indicates a higher surface activity than the
corresponding monomeric sugar-based surfactants [82]. With the aim of applying the
surfactants in the oilfield, Hussain et al. [83] synthesized quaternary ammonium gemini
surfactants with a different length of the spacer group (C8, C10, and C12), by solvent-free
amidation of glycolic acid ethoxylate lauryl ether with 3-(dimethylamino)-1-propylamine.
Similarly, Zhou et al. synthesized gemini surfactants in three steps using triethylene
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tetramine, fatty-acid methyl esters, ethyl chloride, N, N′-dimethyl ethylenediamine, and
3-chloro-2-hydroxypropane sulfonic acid sodium as the main raw materials to be applied
in oilfields [84].

Thermodynamic and surface parameters are often evaluated for gemini surfactants.
The effect of variations in the hydrophobic chain length of the gemini imidazolium surfac-
tants on thermodynamic and surface parameters was studied by Ren et al. [85] (Figure 12).
The results indicated that the micellization process could be both enthalpy and entropy
driven, and that the increase in alkyl chain length causes the decreases in CMC and
aggregation number.
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On the other hand, the synthesis and characterization of the anionic sulfonate gemini
surfactants (Figure 13) with different hydrophobic chain length shows that this kind of sur-
factant presentsa lower density, viscosity, and CMC than sodium dodecylbenzene sulfonate
(SDBS), a monomeric surfactant with twelve carbon atoms in the hydrophobic chain [86].
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To improve the biodegradability of the cationic gemini surfactants, biodegradable
moieties such as ester and amide groups have been used (Figure 14). It has been found
that gemini surfactants are pH-responsive in alkaline conditions due to the ester group
between the cationic head groups. The cationic gemini surfactants with an ester group in
the spacer are more biodegradable than those with the ester bond in the tail [87].
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4.5. Micelles Formation

Gemini surfactants can produce aggregates such as micelles, bilayers, vesicles, and
other structures with different additives [88]. Several authors have carried out recent
studies related to the formation of aggregates from gemini surfactants due to the benefits
of these surfactants compared to those with a single hydrophobic chain.

A study of the interaction of the drug amitriptyline hydrochloride and the gemini
surfactant ethane-1,2-diyl bis (N,N-dimethyl-N-tetradecylammonium acetoxy) (14-E2-14)
in three aqueous media showed the high ability of gemini surfactants to form spherical
micelles in aqueous systems [89].

Yang et al. studied the properties of different gemini surfactants synthesized with
different sizes of hydrophobic chains [90]. During the analysis, they found that the size
of the aggregates formed by the surfactants increased when the surfactant concentration
was raised, reaching sizes from 200 to 400 nm. In the case of studies using the transmission
electron microscopy (TEM) technique, surfactants with hydrophobic chains of 12, 16, and
18 carbon atoms formed spherical groups of hundreds of nanometers in solution with a
tendency to form spherical aggregates.

In 2017, Feng et al. synthesized gemini alkyl glucoside surfactants to develop vesicles
using (+)—catechin (C) and (−)—epigallocatechin (EGC) laureate, finding that the thermal
stability of C or EGC was improved due to the encapsulation in more ordered structures.
In addition, the incorporation of these drugs at low concentrations strengthened the
bilayer formed [91].

In 2018, Gan et al. reported the formation of vesicles and micelles from gemini
surfactants based on glucono-δ-lactone, which depended on the length of the hydrocarbon
chain as well as the surfactant concentration [92].

In addition, there are studies on the influence of some parameters, such as the con-
centration, pH, temperature, and the presence of salts, on the morphology of aggregates
formed by cationic gemini surfactants. These studies have shown a change from micelles to
vesicles and vice versa by varying either the pH or temperature. Furthermore, the presence
of salts may cause a transition from vesicles to micelles (Figure 15) [93].
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More recently, Asadov et al. synthesized and characterized the cationic gemini surfac-
tant N,N′-bis(alkyl)-N,N′-bis (2-hydroxypropyl) ethylene diammonium dibromide with
chain lengths of 9, 12, and 14 carbon atoms [94]. They found that the aggregate diameters
decreased when temperature was increased. In another work, Rajput et al. studied the ef-
fect of the addition of diclofenac sodium to gemini surfactant micellar aggregates, reporting
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a transition from micelles to vesicles as a result of an increase in the drug:gemini surfactant
molar ratio. They claimed that the stability of vesicles at the human body temperature also
makes them candidates for use in drug release [95].

4.6. Applications

Gemini surfactants have found application in medicine, physics, optics, and electron-
ics. Polymerizable gemini anionic surfactants also have been synthesized to improve its
interfacial properties [96]. These surfactants have been used as a template for the synthesis
of nanoparticles. Tiwari et al. described the preparation and characterization of gold,
silver, and gold-silver alloy nanoparticles using gemini surfactants as stabilizers of the
nanoparticles around metal surfaces [97]. In addition, gemini surfactants have been used
to obtain supramolecular solvents (SUPRAS), which are nanostructured liquids formed by
aggregates of surfactants obtained through a self-assembly process. This type of solvent is
assigned mainly to microextraction methods with applications in the cosmetic industry [98].
On the other hand, the formation of a spatial network of well-dispersed molecules is very
important for biomedical and optoelectronic applications and these surfactants have been
effective to form a three-dimensional network with supramolecular micellar hybridiza-
tion [99]. Furthermore, these surfactants have been used as stabilizers in enhanced oil
recovery [100]. For applications in this field, sulfonates gemini surfactants were shown
to reduce the oil–water interfacial tension to ultralow values, around 10−3 mN/m, with
surfactant concentrations less than 0.5 wt % [101]. Another important parameter for ap-
plications in oilfields, is thermal stability. In this sense, Hussain et al. studied the thermal
degradation of three cationic poly(ethylene oxide) gemini surfactants containing flexible
and rigid spacers. The thermal gravimetric analysis showed a degradation temperature
higher than that observed in an oilfield (90 ◦C) [102].

In the polymer area, gemini surfactants play an important role in the synthesis of
hybrid systems based on surfactant-polymer materials that have different applications.
Hussain et al. investigated the properties of a surfactant-polymer hybrid material as
candidate for carbonate reservoir at high temperatures [103]. They studied how the
spacer length of the surfactant affects the rheological properties of the surfactant-polymer
solutions. Furthermore, nanoemulsions stabilized by a gemini surfactant (14-6-14 GS)
have been reported [104]. In the polymerization, Dreja and Thieke [105] reported the
polymerization of styrene by free radicals at 25 ◦C in oil-in-water microemulsions stabilized
by a series of cationic dimeric (gemini) surfactants and initiated by 60Co-γ-radiation. The
resulting polymeric dispersions contained spherical latex particles (30–60 nm average
diameter) and their size could be controlled by the monomer/surfactant ratio as well as
by the surfactant spacer length. The polymer weight average molecular weight varied
from 0.164 to 1.400 × 106 Da and depended on the spacer length and crosslinking. In
a more recent study, Wang et al. [106] synthetized six quaternary ammonium salts from
cardanol, a renewable resource, that can perform as gemini reactive surfactants. The
surfactants, with a spacer consisting of a saturated aliphatic hydrocarbon chain, had a
CMC of ≤0.2 mmol·L−1. A photo-active gemini surfactant with CMC = 0.05 mmol·L−1

was the stabilizer of a methyl methacrylate (MMA) emulsion, which was successfully
polymerized using 2,2′-azobisisobutyronitrile as the initiator. Additionally, the gemini
surfactant containing benzyl bromide was used as initiator and emulsifier during the atom
transfer radical polymerization. The polymer obtained contained a cardanol-end unit and
had an Mn = 45.1 kDa.

Regarding the use of gemini surfactants in the biomedical area, we found the research
of Cardoso et al., who studied the effectiveness of complexes of serine-derived gemini
surfactants and DNA in mitochondrial expression [107]. For their part, Faustino et al. re-
ported the synthesis of gemini anionic surfactants from L-cysteine, D-cysteine, DL-cysteine,
and their monomeric counterparts (Figure 16a,b), as well as the study of their properties in
solution at physiological pH. In this work, gemini surfactants showed low CMC values
and higher efficiency than their monomeric counterparts. Furthermore, surfactants were
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found to interact with bile acids, membrane phospholipids, oligosaccharides, and bovine
serum albumin protein [81]. Furthermore, it has been reported that the solubilization of the
drug amphotericin B (AmB) in micelles formed with an anionic gemini surfactant (derived
from the amino acid cysteine) prevents self-aggregation of the drug, which makes it less
toxic during administration (Figure 16c). In addition, the use of gemini surfactants avoid
the use of organic solvents, often used in the preparation of other drug carriers such as
polymeric micelles, liposomes, and nanoparticles [108].
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Specifically, in drug delivery, Cruz et al. used cationic gemini surfactants to deliver
RNA for gioblastoma treatment [109], while Michel et al. developed a cationic gemini
surfactant modified with β-cyclodextrin to improve the biological and physicochemical
behavior of the drug mephalan. [110]. There are some reports on the use of amino acid-
derived gemini surfactants for drug delivery; in this regard, lysine-derived surfactants
have been used to form niosomes as delivery systems for the parenteral administration
of the anticancer drug methotrexate [111]. Srivastava et al. developed gemini surfactant
vesicles for encapsulation and release of the anticancer drug doxorubicin. They found that
vesicles reduce the toxicity and showed better therapeutic effects at high drug concentra-
tions [112]. Recently, Choi et al. synthesized disulfide-bridged gemini surfactants and
their micellar properties were analyzed in the release of drugs for reactive oxygen species.
The self-assembled surfactants as stable micellar aggregates were subjected to a reductive
environment that caused destabilization of the micelles, suggesting that this response of
the micelles could be used in the release of anticancer drugs [113].
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On the other hand, one of the properties of gemini surfactants that allows their uses in
medicine is their antimicrobial activity, for example, against Gram-positive bacteria such as
Bacillis subtilis and Staphylococcus aureus [114]. This reason makes them good capping agents
for metal nanoparticles synthesis with unique and strengthened biocidal properties [67].

Cationic gemini surfactants have also found application as corrosive inhibitors
(Figure 17) [115] and in the area of environmental protection, for example, in soil re-
mediation to remove hydrophobic organic pollutants, heavy metals, and radionuclides
from the soil [116].
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Otherwise, the study of the interactions between proteins and surfactants is very
important due to the numerous technical applications in the fields of pharmaceuticals,
cosmetics, paints, coatings, etc. [117–120]. Surfactants can cause the protein conformational
changes via electrostatic and hydrophobic interactions, leading to the protein folding or
unfolding depending on the concentrations of surfactants and proteins [121–123]

Recently, gemini surfactants were shown to be more efficient to interact with proteins
by comparing them with single-chain surfactants [124–127]. Zhou et al. studied the effect
of the structure of cationic surfactants on the conformation of bovine serum albumin (BSA)
with a series of imidazolium gemini surfactants. The results showed that the gemini
surfactant with either a shorter spacer or longer chain has a larger effect on BSA unfolding,
and that the interactions of BSA with imidazolium gemini surfactants are stronger than
those for single quaternary ammonium surfactants [128]. For their part, Branco et al.
studied the interaction between a cationic amino acid-based gemini surfactant derived
from cysteine and BSA under physiological conditions [129].

Luo et al. focused on the investigations of the interactions between single-chain or
gemini quaternary ammonium surfactants with hemoglobin.They observed that the interac-
tions between the surfactants and hemoglobin were mainly caused by both electrostatic and
hydrophobic interactions, and the hydrophobic chain length and linking group length of
the surfactants had a significant influence on tuning the conformations of hemoglobin [130].
For their part, Amiri et al. reported the interactions of gemini surfactants with ribonuclease
Sa, and the results indicated that the tune of protein conformations is changed with the
structure of surfactants and proteins [131]. More recently, Aslam et al. reported the prepa-
ration of pyridinium-based gemini surfactants and the study of interaction with BSA. They
found a strong interaction between the gemini surfactants and protein due to the decrease
of the CMC of surfactant as the BSA concentration was increased [132].

Micellar catalysis is a process that consists of the accumulation of a catalyst in the
internal part of a micelle [133]. The micellar catalysis was shown to improve the reaction
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rate between the oil–water interphase and selectivity of the target molecules in organic
reactions, such as electrophilic and nucleophilic substitution, hydrolysis, etc. [134,135].

Micellar catalysis using gemini surfactants was shown to have high catalytic efficiency
and accelerates processes reducing the generation of secondary reactions [136,137]. Bunton
et al. proposed for the first time the use of gemini surfactants in micellar catalysis [138].
The gemini surfactant synthesized by this group showed a better catalytic efficiency
than CTAB in nucleophilic substitutions reactions. Since then, morestudies have been
reported [139–142]. Micellar catalysis using gemini surfactants has been applied in reac-
tions of ester hydrolysis [143], chloromethylation [144], and nucleophilic and electrophilic
substitutions [137]. Furthermore, the catalytic properties of these surfactants have favored
the development of aqueous micellar catalytic processes, where the substitution of organic
solvents for water is achieved, contributing to the development of more sustainable and
environmentally friendly processes [145].

5. Bicephalous Surfactants
5.1. Definition and Structure

Conventional surfactants are amphiphilic organic compounds that have a hydrophilic
head and hydrophobic tail whose main functions are to reduce the interfacial tension in
a colloidal system, forming an interface between the two immiscible phases [146]. They
are also responsible for promoting the formation of micelles [147]. The properties of each
surfactant can be modified by various factors, such as pressure, temperature, and the
molecular structure of the compound [148].

In recent years, novel surfactants have been reported with different structural arrange-
ments by comparing with the conventional ones. These new structures consist of two
hydrophilic heads, a hydrophobic tail, and a spacer that prevents repulsion, which have
been called “bicephalous” surfactants [149]. There are two type of bicephalous surfactants:
dicationic, which have a chemical structure formed by a hydrophobic tail, a spacer, and two
positively charged heads (Figure 18a); and dianionic, whose heads have negative charges
(Figure 18b).
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5.2. Synthesis Pathways

Bicephalous surfactants have been synthetically obtained by the 1,4 addition Michael
reaction, in step 1, using as precursorspropanolamine (1) and tert-butyl acrylate (2) in
methanol under constant stirring at room temperature, followed by a series of steps
(2–5) that are represented in the route of synthesis for this surfactant type, as reported by
Kalhapure et al. (Figure 19) [146].
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Figure 19. Synthesis of bicephalous dianionic surfactant proposed by Kalhapure et al. [147].

One year later, Ojewole et al. [149] made small modifications to the method proposed
by Kalhapure. Initially, Ojewole et al. used the same propanolamine precursor with tert-
butylacrylate under the same conditions and reaction medium (step 1). The difference
consists of the use of other reactants for the reduction of the carboxylic acid group (step 2).
They used hydrochloric acid (HCl), 4-dimethylaminopyridine (DMAP), methylene chloride
(DCM), and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) (step 2). The next
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steps were similar under the same reaction conditions reported by Kalhapure et al. [147]
(Figure 20).
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More recently, Chaudhari et al. simplified the method of Kalhapure, using the same
initial precursors and modifying the reaction media [150]. They achieved a reduction in
the number of steps and reaction time (Figure 21).
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On the other hand, Hanssan et al. proposed a three-step synthesis to obtain a qua-
ternary bicephalous cationic surfactant through the Michael reaction, using a different
precursor to the previously reported synthetic methods [151]. They used trihexylamine
with tert-butylacrylate only using methanol (MeOH) (step 1). The product obtained re-
acts with triisopropylsilane (TIPs) and trifluoroacetic acid (TFA) (step 2), and finally the
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resulting product reacts with methyliodide (MeI) (step 3) to give as a result the cationic
bicephalous surfactant (Figure 22).
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A select group of researchers has reported the synthesis of bicephalous surfactants
in a relative short period. Among the most notable groups working along this line, it
can be mentioned the group of Kalhapure and Ojewole, who have revealed four novel
surfactants of this type. For their part, Bazylinska et al. [152] have provided information on
the synthesis of three new bicephalous surfactants. Figure 23 shows the chemical structures
of some examples of bicephalous surfactants reported by these and other researchers.
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5.3. Micelle Formation

The critical micellar concentration is an important parameter to characterize a surfac-
tant since it describes the required concentration of this compound for the formation of
stable micelles [146]. Two-headed surfactants, compared to conventional surfactants, have
been shown to increase their surface activity by around a thousand times [148,150], due
to their structure that has two hydrophilic heads and influences micellar formation, and
at the same time requiring a lower concentration as compared to that of the equivalent
monocephalous conventional surfactant to form micelles [146].

An example of the decrease in the CMC is the bicephalous dianionic surfactant called
disodium (Z)-3,30-((3-(oleoyloxy) propyl) azanediyl) dipropanoate, which reduces the CMC
by almost 50% compared to the conventional sodium oleate surfactant This corroborates
that the CMC can be reduced by increasing the amount of polar heads in the chemical
structure of the surfactant [146].

Micellar formation using a conventional surfactant is different from that resulting
from a bicephalous surfactant. The main difference is that a greater amount of conventional
surfactant is required to form a micelle (Figure 24a) than the bicephalous one (Figure 24b).
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5.4. Applications

In 2013, Kalhapure et al. synthesized a bicephalous dianionic surfactant, which was
used to prepare solid lipid nanoparticles with ketoconazole, a drug with low solubility and
high permeability. They achieved a decrease in CMC (<50%) compared to a formulation
prepared with sodium oleate, increasing the solubility, stability, biocompatibility, and
biosafety of the drug [146,148].

For their part, Ojewole et al. obtained three bicephalous dianionic surfactants derived
from oleic acid to obtain gels for oral administration of the antiretroviral drug didano-
sine. These surfactants were the 9-octadecenolic acid(9Z)-,3-[bis[3-(1,1-dimethylethoxy)-
3-oxopropyl]amino] propyl ester, 9-octadecenolic acid(9Z)-,3-[bis(2-carboxyethyl) amino]
propylester, and 9-Octadecenoic acid (9Z)-, 3-[bis(2-carboxyethyl) amino] propyl ester
sodium salt. The results showed that the use of this type of surfactant increased the oral
permeability of the drug compared to formulations where only oleic acid was used. It
also was determined that an increase of the concentration of these surfactants caused an
increase in oral drug permeation [149].

In another report, Bazylinska et al. used the bicephalous dianionic surfactant dis-
odium N-dodecyliminodiacetate, C12N(COONa)2 to formulate normal microemulsions
with isopropyl myristate and/or oleic acid as the oil phase, achieving a thermodynamically
stable microemulsion. This microemulsion was shown to have zero toxicity in the in vitro
study with gingival fibroblast (HGF) and skin keratinocyte (HaCaT) cell lines, proving
its potential application in the cosmetic industry for treatments that require cutaneous
administration [153]. Three years later, the same research group reported the use of this
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type of surfactant to encapsulate photosensitizers (meso-tetradenylporphyrin, TPP, and
verteporphytin, VP). It was demonstrated that nanoencapsulation increased the solubility
of the highly hydrophobic TPP and VP compounds, allowing their prolonged release and
protection from photolytic degradation [124].

In 2015, Dhumal et al. developed a self-emulsifying drug delivery system with
curcumin (an anticancer bioactive) using the (Z)-di-tert-butyl 3,3′-((3-112 (oleoyloxy)propyl)
azanediyl)dipropanoate a bicephalous dianionic surfactant, which was obtained from oleic
acid. They achieved the formation of a microemulsion that allowed to improve the solubility
of curcumin at least 2.6 times when compared to a microemulsion obtained by using ethyl
oleate. In addition, greater amounts of drug were loaded, and in vitro tests against the
HeLa cell line showed that the formulation not only improved the solubility but also the
permeability and bioavailability of curcumin [154].

Rambharose et al. used the bicephalous dianionic surfactant 9,12,15-octadecatrienoic
acid, 3-[bis[3-(1,1-dimethylethoxy)-3-oxopropyl] amino] propyl ester, (9Z,12Z,15Z), whose
precursor is a saturated fatty acid (linolenic acid), as an oil phase for the preparation of a
nanoemulgel loaded with tenofovir, which is used in the treatment of human immunode-
ficiency virus. The permeation profiles were carried out and the results showed that the
use of the bicephalous compound improved almost 40 times the permeation of the drug
through the skin [155]. On the other hand, Chaudhari et al. obtained the bicephalous dian-
ionic surfactant G0-PETIM dendron based on a bicephalous heterolipid (BHL), which was
used for the preparation of microemulsions loaded with Efavirenz used for HIV treatment.
The results indicated that using this surfactant, the solubility was improved 7.75 times
compared to the use of only erucic acid oil. Furthermore, the release of the drug was
increased at least six times, improving the bioavailability [150].

More recently, Hassan et al. synthesized ammonia-based quaternary bicephalic cationic
surfactants to formulate quatsomes with a broad-spectrum antimicrobial drug (vancomycin)
to be tested against methicillin-resistant Staphylococcus aureus. The toxic and hemolytic re-
sults demonstrated its biosafety and antimicrobial effect, which was improved up to eight
times compared to a formulation without the use of the quaternary cationic bicephalic surfac-
tant. In addition, sustained drug release was achieved by an intelligent system sensitive to
pH 7.4 [151].

As can be seen above, there are no reports about the use of bicephalous surfactants
in the polymer area, including synthesis and characterization; therefore, many areas of
opportunity and research can be opened in this field in the future.

6. Conclusions

This review presents the synthesis, micelle formation, and applications status of two
classes of non-conventional surfactants: gemini (dimeric) and bicephalous. The former is,
by far, the most investigated of the two. Even though gemini surfactants have been known
since 1935, commercial applications are scarce and conventional amphiphiles continue to
dominate the market. Research has demonstrated that dimeric surfactants have improved
properties over the conventional ones, which could lead to important savings in selected
applications. The lower CMC indicates the potential to be advantageously applied, mainly
in the cosmetic, pharmaceutical, oil recovery, catalysis, and polymer synthesis (emulsion
polymerization) fields. Bicephalous surfactants represent a new generation of surface-
active compounds that are starting to call to attention the need for future developments
in applications dominated by conventional surfactants. Simplified synthetic routes for
both gemini and bicephalous surfactants should be emphasized to open applications and
markets in the near future.
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77. Brycki, B.; Drgas, M.; Bielawska, M.; Zdziennicka, A.; Jańczuk, B. Synthesis, spectroscopic studies, aggregation and surface
behavior of hexamethylene-1,6-bis(N,N-dimethyl-N dodecylammonium bromide). J. Mol. Liq. 2016, 221, 108. [CrossRef]

78. Morán, M.C.; Pinazo, A.; Pérez, L.; Clapés, P.; Angelet, M.; García, M.T.; Vinardell, P.; Infante, R. “Green” amino acid-based
surfactants. Green Chem. 2004, 6, 233–240. [CrossRef]

http://doi.org/10.1016/j.addr.2012.09.016
http://doi.org/10.1039/C3RA47370H
http://doi.org/10.1016/j.molliq.2017.06.117
http://doi.org/10.1039/C5RA18462B
http://doi.org/10.1016/j.jconrel.2009.11.012
http://doi.org/10.1021/la980565x
http://doi.org/10.1016/S0006-3495(93)81528-5
http://doi.org/10.1016/j.colsurfa.2015.02.008
http://doi.org/10.3390/molecules24081481
http://doi.org/10.1021/ja101523v
http://doi.org/10.1166/jnn.2015.9836
http://www.ncbi.nlm.nih.gov/pubmed/26504975
http://doi.org/10.1016/j.tca.2014.04.028
http://doi.org/10.1016/j.jcis.2015.03.069
http://doi.org/10.1016/j.molliq.2020.114558
http://doi.org/10.1016/j.xphs.2019.12.016
http://doi.org/10.1016/j.jcis.2018.09.005
http://www.ncbi.nlm.nih.gov/pubmed/30245340
http://doi.org/10.1007/s11743-013-1472-2
http://doi.org/10.3390/app11010154
http://doi.org/10.1039/C4SM00881B
http://doi.org/10.1039/C4SM00881B
http://www.ncbi.nlm.nih.gov/pubmed/24969740
http://doi.org/10.1016/j.cis.2014.10.013
http://doi.org/10.1039/C7SM02163A
http://doi.org/10.1039/C6CP07688B
http://doi.org/10.1007/s11434-007-0398-3
http://doi.org/10.1016/j.molliq.2016.06.075
http://doi.org/10.1039/B400293H


Int. J. Mol. Sci. 2022, 23, 1798 23 of 25

79. Clapés, P.; Infante, R. Amino acid-based surfactants: Enzymatic synthesis, properties and potential applications. Biocatal.
Biotransform. 2002, 20, 215–233. [CrossRef]

80. Colomer, A.; Pinazo, A.; Manresa, M.A.; Vinardell, M.P.; Mitjans, M.; Infante, M.R.; Pérez, L. Cationic Surfactants Derived from
Lysine: Effects of Their Structure and Charge Type on Antimicrobial and Hemolytic Activities. J. Med. Chem. 2011, 54, 989–1002.
[CrossRef] [PubMed]

81. Faustino, C.; Serafim, C.; Ferreira, I.; Pinheiro, L.; Calado, A. Solubilization power of an amino acid-based gemini surfactant
towards the hydrophobic drug amphotericin B. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 480, 426–432. [CrossRef]

82. Wang, R.; WanYan, R.; Yang, S.; Wang, D.; Yin, Z. Synthesis and aggregation of novel sugar-based gemini surfactant with a N,
N’-acetylethylenediamine spacer in aqueous solution. J. Surfactants Deterg. 2020, 23, 697–703. [CrossRef]

83. Hussain, S.M.S.; Kamal, M.S.; Murtaza, M. Synthesis of Novel Ethoxylated Quaternary Ammonium Gemini Surfactants for
Enhanced Oil Recovery Application. Energies 2019, 12, 1731. [CrossRef]

84. Zhou, M.; Zhou, L.; Guo, X. Synthesis of Sulfobetaine-Type Zwitterionic Gemini Surfactants (EAPMAC) and Their Oilfield
Application Properties. J. Surfactants Deterg. 2019, 22, 23–32. [CrossRef]

85. Ren, C.; Wang, F.; Zhang, Z.; Nie, H.; Li, N.; Cui, M. Synthesis, surface activity and aggregation behavior of Gemini imidazolium
surfactants 1,3-bis(3-alkylimidazolium-1-yl) propane bromide. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 467, 1–8. [CrossRef]

86. Hordyjewicz-Baran, Z.; Woch, J.; Kuliszewska, E.; Zimoch, J.; Libera, M.; Dworak, A.; Trzebicka, B. Aggregation behavior of
anionic sulfonate gemini surfactants with dodecylphenyl tails. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 484, 336–344.
[CrossRef]

87. Tehrani-Bagha, A.R.; Holmberg, K.; Ginkel, C.G.; Kean, M. Cationic gemini surfactants with cleavable spacer: Chemical hydrolysis,
biodegradation, and toxicity. J. Colloid Interf. Sci. 2015, 449, 72–79. [CrossRef] [PubMed]

88. Kumar, D.; Abdul, M.R. Catalytic influence of 16-s-16 gemini surfactants on the rate constant of histidine and ninhydrin. Roy. Soc.
Open Sci. 2020, 7, 191648. [CrossRef]

89. Abdul, R.M. Investigation of micellar and interfacial phenomenon of amitriptyline hydrochloride with cationic ester-bonded
gemini surfactant mixture in different solvent media. PLoS ONE 2020, 15, e0241300. [CrossRef]

90. Yang, W.; Cao, Y.; Ju, H.; Wang, Y.; Jiang, Y.; Geng, T. Amide Gemini surfactants linked by rigid spacer group 1,4-dibromo-2-butene:
Surface properties, aggregate and application properties. J. Mol. Liq. 2021, 326, 115339. [CrossRef]

91. Feng, J.; Lin, C.; Wang, H.; Liu, S. Gemini dodecyl O-glucoside-based vesicles as nanocarriers for catechin laurate. J. Funct. Foods
2017, 32, 256–265. [CrossRef]

92. Gan, C.; Li, H.; Cai, K. Novel Sugar-Based Gemini Surfactants and Their Surface Properties. J. Surfactants Deterg. 2018, 21, 859–866.
[CrossRef]

93. Parikh, K.; Singh, S.; Kumar, S. Self assembly in an aqueous gemini surfactant containing sugar based (isosorbide) spacer. Arab. J.
Chem. 2020, 13, 1848–1857. [CrossRef]

94. Asadov, Z.H.; Ahmadova, G.A.; Rahimov, R.A.; Hashimzade, S.-Z.F.; Ismailov, E.H.; Asadova, N.Z.; Suleymanova, S.A.;
Zubkov, F.I.; Mammadov, A.M.; Agamaliyeva, D.B. Micellization and Adsorption Properties of New Cationic Gemini Surfactants
Having Hydroxyisopropyl Group. J. Chem. Eng. Data 2019, 64, 952–962. [CrossRef]

95. Rajput, S.M.; Kumar, S.; Aswal, V.K.; El Seoud, O.A.; Malek, N.I.; Kailasa, S.K. Drug-Induced Micelle-to-Vesicle Transition of a
Cationic Gemini Surfactant: Potential Applications in Drug Delivery. ChemPhysChem 2018, 19, 865–872. [CrossRef] [PubMed]

96. Sakai, K.; Wada, M.; Matsuda, W.; Tsuchiya, K.; Takamatsu, Y.; Tsubone, K.; Endo, T.; Torigoe, K.; Sakai, H.; Abe, M. Polymerizable
anionic gemini surfactants: Physicochemical properties in aqueous solution and polymerization behavior. J. Oleo Sci. 2009,
58, 403–413. [CrossRef]

97. Tiwari, A.K.; Gangopadhyay, S.; Chang, C.-H.; Pande, S.; Saha, S.K. Study on metal nanoparticles synthesis and orientation of
gemini surfactant molecules used as stabilizer. J. Colloid Interface Sci. 2015, 445, 76–83. [CrossRef] [PubMed]

98. Feizi, N.; Yamini, Y.; Moradi, M.; Karimi, M.; Salamat, Q.; Amanzadeh, H. A new generation of nano-structured supramolecular
solvents based on propanol/gemini surfactant for liquid phase microextraction. Anal. Chim. Acta 2017, 953, 1–9. [CrossRef]

99. Fu, C.; He, D.; Yu, Y.; Wu, S.; Dong, C.; Wang, H. Fluorescent sensitization of gemini surfactant micellar-hybridized supramolecular
hydrogels. J. Lumin. 2017, 181, 8–13. [CrossRef]

100. Pal, N.; Hoteit, H.; Mandal, A. Structural aspects, mechanisms and emerging prospects of Gemini surfactant-basedalternative
Enhanced Oil Recovery technology: A review. J. Mol. Liq. 2021, 339, 116811. [CrossRef]

101. Mpelwa, M.; Tang, S.; Jin, L.; Hu, R. New sulfonate Gemini surfactants: Synthesis and evaluation for enhanced oil recovery
applications. J. Dispers. Sci. Technol. 2020, 41, 2091–2099. [CrossRef]

102. Hussain, S.M.S.; Kamal, M.S.; Solling, T.; Murtaza, M.; Fogang, L.T. Surface and thermal properties of synthesized cationic
poly(ethylene oxide) gemini surfactants: The role of the spacer. RSC Adv. 2019, 9, 30154–30163. [CrossRef]

103. Hussain, S.S.; Kamal, M.S. Effect of large spacer on surface activity, thermal, and rheological properties of novel amido-amine
cationic gemini surfactants. J. Mol. Liq. 2017, 242, 1131–1137. [CrossRef]

104. Pal, N.; Kumar, N.; Saw, R.K.; Mandal, A. Gemini surfactant/polymer/silica stabilized oil-in-water nanoemulsions: Design and
physicochemical characterization for enhanced oil recovery. J. Pet. Sci. Eng. 2019, 183, 106464. [CrossRef]

105. Dreja, M.; Thieke, B. Polymerization of styrene in ternary microemulsion using cationic gemini surfactants. Langmuir 1998,
14, 800–807. [CrossRef]

http://doi.org/10.1080/10242420290004947
http://doi.org/10.1021/jm101315k
http://www.ncbi.nlm.nih.gov/pubmed/21229984
http://doi.org/10.1016/j.colsurfa.2014.11.039
http://doi.org/10.1002/jsde.12424
http://doi.org/10.3390/en12091731
http://doi.org/10.1002/jsde.12199
http://doi.org/10.1016/j.colsurfa.2014.11.031
http://doi.org/10.1016/j.colsurfa.2015.08.012
http://doi.org/10.1016/j.jcis.2014.09.072
http://www.ncbi.nlm.nih.gov/pubmed/25446957
http://doi.org/10.1098/rsos.191648
http://doi.org/10.1371/journal.pone.0241300
http://doi.org/10.1016/j.molliq.2021.115339
http://doi.org/10.1016/j.jff.2017.03.005
http://doi.org/10.1002/jsde.12187
http://doi.org/10.1016/j.arabjc.2018.01.020
http://doi.org/10.1021/acs.jced.8b00815
http://doi.org/10.1002/cphc.201701134
http://www.ncbi.nlm.nih.gov/pubmed/29319220
http://doi.org/10.5650/jos.58.403
http://doi.org/10.1016/j.jcis.2014.12.064
http://www.ncbi.nlm.nih.gov/pubmed/25596371
http://doi.org/10.1016/j.aca.2016.11.007
http://doi.org/10.1016/j.jlumin.2016.08.046
http://doi.org/10.1016/j.molliq.2021.116811
http://doi.org/10.1080/01932691.2019.1652189
http://doi.org/10.1039/C9RA06577F
http://doi.org/10.1016/j.molliq.2017.07.128
http://doi.org/10.1016/j.petrol.2019.106464
http://doi.org/10.1021/la9710738


Int. J. Mol. Sci. 2022, 23, 1798 24 of 25

106. Wang, R.; Luo, Y.; Cheng, C.J.; Huang, Q.H.; Huang, H.S.; Qin, S.H.; Tu, Y.M. Syntheses of cardanol-based cationic surfactants
and their use in emulsion polymerisation. Chem. Pap. 2016, 70, 1218–1227. [CrossRef]

107. Cardoso, A.M.; Morais, C.M.; Cruz, A.R.; Cardoso, A.L.; Silva, S.G.; Vale, M.L.; Marques, E.; Pedroso de Lima, M.C.; Jurado, A.
Gemini surfactants mediate efficient mitochondrial gene delivery and expression. Mol. Pharm. 2015, 12, 716–730. [CrossRef]
[PubMed]

108. Serafim, C.; Ferreira, I.; Rijo, P.; Pinheiro, L.; Faustino, C.; Calado, A.; Garcia-Rio, L. Lipoamino acid-based micelles as promising
delivery vehicles for monomeric amphotericin B. Int. J. Pharm. 2016, 497, 23–35. [CrossRef]

109. Cruz, R.A.; Morais, C.M.; Cardoso, A.M.; Silva, S.G.; Luisa do Vale, M.; Marques, E.F.; Pedroso de Lima, M.C.; Jurado, A.S.
Enhancing glioblastoma cell sensitivity to Chemotherapeutics: A strategy involving survin gen silencing mediated gemini
surfactants-based complexes. Eur. J. Pharm. Biopharm. 2016, 104, 7–18. [CrossRef] [PubMed]

110. Michel, D.; Mohammed-Saeid, W.; Getson, H.; Roy, C.; Poorghorban, M.; Chitanda, J.M.; Verrall, R.; Badea, I. Evaluation of
β-cyclodextrin-modified gemini surfactant-based delivery systems in melanoma models. Int. J. Nanomed. 2016, 11, 6703–6712.
[CrossRef]

111. Muzzalupo, R.; Pérez, L.; Pinazo, A.; Tavano, L. Pharmaceutical versatility of cationic niosomes derived from amino acid-based
surfactants: Skin penetration behavior and controlled drug release. Int. J. Pharm. 2017, 529, 245–252. [CrossRef] [PubMed]

112. Srivastava, A.; Liu, C.; Lv, J.; Deb, D.K.; Qiao, W. Enhanced intercellular release of anticancer drug by using nano-sized catanionic
vesicles of doxorubicin hydrochloride and gemini surfactants. J. Mol. Liq. 2018, 259, 398–410. [CrossRef]

113. Choi, Y.I.; Choi, E.-S.; Mun, K.H.; Lee, S.G.; Lee, S.J.; Jeong, S.W.; Lee, S.W.; Kim, H.-C. Dual-responsive Gemini Micelles for
Efficient Delivery of Anticancer Therapeutics. Polymers 2019, 11, 604. [CrossRef] [PubMed]

114. Gawali, I.; Usmani, G. Synthesis, surface active properties and applications of cationic gemini surfactants from triethylenete-
tramine. J. Disper. Sci. Technol. 2020, 41, 450–460. [CrossRef]

115. Singh, R.K.; Kukrety, A.; Saxena, R.C.; Thakre, G.D.; Atray, N.; Ray, S.S. Novel Triazine Schiff Base-Based Cationic Gemini
Surfactants: Synthesis and Their Evaluation as Antiwear, Antifriction, and Anticorrosive Additives in Polyol. Ind. Eng. Chem. Res.
2016, 55, 2520–2526. [CrossRef]

116. Mao, X.; Jiang, R.; Xiao, W.; Yu, J. Use of surfactants for the remediation of contaminated soils: A review. J. Hazard. Mater. 2015,
285, 419–435. [CrossRef]

117. Gospodarczyk, W.; Szutkowski, K.; Kozak, M. Interaction of Bovine Serum Albumin (BSA) with Novel Gemini Surfactants
Studied by Synchrotron Radiation Scattering (SR-SAXS), Circular Dichroism (CD), and Nuclear Magnetic Resonance (NMR). J.
Phys. Chem. B 2014, 118, 8652–8661. [CrossRef] [PubMed]

118. Akram, M.; Bhat, I.A.; Din, K.-U. Binding of a novel 12-E2-12 gemini surfactant to xanthine oxidase: Analysis involving
tensiometric, spectroscopic, microscopic and molecular docking approach. J. Lumin. 2016, 170, 56–63. [CrossRef]

119. Bhat, I.A.; Roy, B. Synthesis and biophysical analysis of a novel gemini surfactant with lysozyme: Industrial perspective. J. Ind.
Eng. Chem. 2018, 63, 348–358. [CrossRef]

120. Akram, M.; Bhat, I.A.; Anwar, S.; Ahmad, A.; Din, K.-U. Biophysical perspective of the binding of ester-functionalized gemini
surfactants with catalase. Int. J. Biol. Macromol. 2016, 88, 614–623. [CrossRef]

121. Andersen, K.K.; Otzen, D.E. Denaturation of alpha-lactalbumin and myoglobin by the anionic biosurfactant rhamnolipid. Biochim.
Biophys. Acta 2014, 1844, 2338–2345. [CrossRef]

122. Mehan, S.; Aswal, V.K.; Kohlbrecher, J. Cationic versus Anionic Surfactant in Tuning the Structure and Interaction of Nanoparticle,
Protein, and Surfactant Complexes. Langmuir 2014, 30, 9941–9950. [CrossRef]

123. Kumar, D.; Rub, M.A.; Akram, M.; Din, K.-U. Effect of gemini (alkanediyl-α,ω-bis(dimethylcetylammonium bromide)) (16-s-16,
s=4, 5, 6) surfactants on the interaction of ninhydrin with chromium-glycylphenylalanine. Spectrochim. Acta Part A Mol. Biomol.
Spectrosc. 2014, 132, 288–294. [CrossRef]

124. Ge, Y.-S.; Tai, S.-X.; Xu, Z.-Q.; Lai, L.; Tian, F.-F.; Li, D.-W.; Jiang, F.-L.; Liu, Y.; Gao, Z.-N. Synthesis of Three Novel Anionic Gemini
Surfactants and Comparative Studies of Their Assemble Behavior in the Presence of Bovine Serum Albumin. Langmuir 2012,
28, 5913–5920. [CrossRef]

125. Mir, M.A.; Khan, J.M.; Khan, R.H.; Rather, G.M.; Dar, A.A. Effect of spacer length of alkanediyl-α,ω-bis(dimethylcetylammonium
bromide) gemini homologues on the interfacial and physicochemical properties of BSA. Colloids Surfaces B Biointerfaces 2010,
77, 54–59. [CrossRef]

126. Wang, Y.; Jiang, X.; Zhou, L.; Yang, L.; Xia, G.; Chen, Z.; Duan, M. Synthesis and binding with BSA of a new gemini surfactant.
Colloids Surfaces A Physicochem. Eng. Asp. 2013, 436, 1159–1169. [CrossRef]

127. Faustino, C.M.C.; Calado, A.; Garcia-Rio, L. Gemini Surfactant−Protein Interactions: Effect of pH, Temperature, and Surfactant
Stereochemistry. Biomacromolecules 2009, 10, 2508–2514. [CrossRef]

128. Zhou, T.; Ao, M.; Xu, G.; Liu, T.; Zhang, J. Interactions of bovine serum albumin with cationic imidazolium and quaternary
ammonium gemini surfactants: Effects of surfactant architecture. J. Colloid Interface Sci. 2013, 389, 175–181. [CrossRef] [PubMed]

129. Branco, M.A.; Pinheiro, L.; Faustino, C. Amino acid-based cationic gemini surfactant–protein interactions. Colloids Surfaces A
Physicochem. Eng. Asp. 2015, 480, 105–112. [CrossRef]

130. Luo, X.; Gao, J.; Cao, M.; Xiang, C.; Zhang, Y.; Sun, T.; Xie, H.; Lei, Q.; Fang, W. Tuning the conformations of hemoglobin via
interactions with single-chain and Gemini quaternary ammonium surfactants. Chem. Phys. Lett. 2019, 728, 115–123. [CrossRef]

http://doi.org/10.1515/chempap-2016-0052
http://doi.org/10.1021/mp5005349
http://www.ncbi.nlm.nih.gov/pubmed/25634573
http://doi.org/10.1016/j.ijpharm.2015.11.034
http://doi.org/10.1016/j.ejpb.2016.04.014
http://www.ncbi.nlm.nih.gov/pubmed/27106606
http://doi.org/10.2147/IJN.S121156
http://doi.org/10.1016/j.ijpharm.2017.06.083
http://www.ncbi.nlm.nih.gov/pubmed/28668583
http://doi.org/10.1016/j.molliq.2018.03.065
http://doi.org/10.3390/polym11040604
http://www.ncbi.nlm.nih.gov/pubmed/30960588
http://doi.org/10.1080/01932691.2019.1584112
http://doi.org/10.1021/acs.iecr.5b04242
http://doi.org/10.1016/j.jhazmat.2014.12.009
http://doi.org/10.1021/jp5047485
http://www.ncbi.nlm.nih.gov/pubmed/25000531
http://doi.org/10.1016/j.jlumin.2015.10.007
http://doi.org/10.1016/j.jiec.2018.02.035
http://doi.org/10.1016/j.ijbiomac.2016.04.011
http://doi.org/10.1016/j.bbapap.2014.10.005
http://doi.org/10.1021/la502410v
http://doi.org/10.1016/j.saa.2014.05.002
http://doi.org/10.1021/la204212s
http://doi.org/10.1016/j.colsurfb.2010.01.005
http://doi.org/10.1016/j.colsurfa.2013.08.045
http://doi.org/10.1021/bm9004723
http://doi.org/10.1016/j.jcis.2012.08.067
http://www.ncbi.nlm.nih.gov/pubmed/23044272
http://doi.org/10.1016/j.colsurfa.2014.12.022
http://doi.org/10.1016/j.cplett.2019.04.086


Int. J. Mol. Sci. 2022, 23, 1798 25 of 25

131. Amiri, R.; Bordbar, A.-K.; Laurents, D.V. Gemini Surfactants Affect the Structure, Stability, and Activity of Ribonuclease Sa. J.
Phys. Chem. B 2014, 118, 10633–10642. [CrossRef]

132. Aslam, J.; Lone, I.H.; Ansari, F.; Aslam, A.; Aslam, R.; Akram, M. Molecular binding interaction of pyridinium based gemini
surfactants with bovine serum albumin: Insights from physicochemical, multispectroscopic, and computational analysis.
Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 250, 119350. [CrossRef] [PubMed]

133. Mohammed, H.; Al-Hazmi, S.M.; Alhagri, I.A.; Alhakimi, A.N.; Dahadha, A.; Al-Dhoun, M.; Batineh, Y. Micellar catalysis of
chemical reactions by mixed surfactant systems and gemini surfactants. Asian J. Chem. 2021, 33, 1471–1480.

134. Balakrishnan, V.K.; Buncel, E.; Vanloon, G.W. Micellar Catalyzed Degradation of Fenitrothion, an Organophosphorus Pesticide,
in Solution and Soils. Environ. Sci. Technol. 2005, 39, 5824–5830. [CrossRef]

135. Xu, D.-Q.; Pan, Z.-W. Phase-transfer catalysis of a new cationic gemini surfactant with ester groups for nucleophilic substitution
reaction. Chin. Chem. Lett. 2014, 25, 1169–1173. [CrossRef]

136. Dileep, K.; Malik, A.R. Study of the interaction between ninhydrin and chromium(III)-amino acid in an aqueous-micellar system:
Influence of gemini surfactant micelles. J. Mol. Liq. 2020, 301, 112373.

137. Xu, D.; Wang, H.; Pan, Z.; Zhang, T. The kinetics and effect of a new gemini surfactant on the efficiency of micellar catalysis for
the hydrolysis reaction of 4-nitrophenyl acetate. J. Mol. Liq. 2018, 250, 223–228. [CrossRef]

138. Bunton, C.A.; Robinson, L.B.; Schaak, J.; Stam, M.F. Catalysis of nucleophilic substitutions by micelles of dicationic detergents. J.
Org. Chem. 1971, 36, 2346–2350. [CrossRef]

139. Mirgorodskaya, A.B.; Yackevich, E.I.; Lukashenko, S.S.; Zakharova, L.Y.; Konovalov, A.I. Solubilization and catalytic behavior of
micellar system based on gemini surfactant with hydroxyalkylated head group. J. Mol. Liq. 2012, 169, 106–109. [CrossRef]

140. Jiang, W.; Xu, B.; Lin, Q.; Li, J.; Fu, H.; Zeng, X.; Chen, H. Cleavage of phosphate diesters mediated by Zn(II) complex in Gemini
surfactant micelles. J. Colloid Interface Sci. 2007, 311, 530–536. [CrossRef]

141. Qiu, L.-G.; Jiang, X.; Gu, L.-N.; Hu, G. Gemini metallomicellar catalysis: Hydrolysis of p-nitrophenyl picolinate catalyzed
by Cu(II) and Ni(II) complexes of macrocyclic ligands in gemini surfactant micelles. J. Mol. Catal. A Chem. 2007, 277, 15–20.
[CrossRef]

142. Qiu, L.-G.; Xie, A.-J.; Shen, Y.-H. Micellar effects of a triazole-based cationic gemini surfactant on the rate of a nucleophilic
aromatic substitution reaction. Colloid Polym. Sci. 2005, 283, 1343–1348. [CrossRef]

143. Qiu, L.-G.; Xie, A.-J.; Shen, Y.-H. Understanding the adsorption of cationic gemini surfactants on steel surface in hydrochloric
acid. Mater. Chem. Phys. 2004, 87, 237–240. [CrossRef]

144. Liu, Q.F.; Lu, M.; Wei, W. Chloromethylation of 2-chloroethylbenzene catalyzed bymicellar catalysis. Acta Chim. Sin. 2009,
39, 440–446.

145. Shen, T.; Zhou, S.; Ruan, J.; Chen, X.; Liu, X.; Ge, X.; Qian, C. Recent advances on micellar catalysis in water. Adv. Colloid Interface
Sci. 2021, 287, 102299. [CrossRef]

146. Kalhapure, R.S.; Akamanchi, K.G. Synthesis, characterization and cytotoxicity evaluation of an oleic acid derived novel bi-
cephalous dianionic surfactant. J. Surfactant Deterg. 2015, 18, 537–545. [CrossRef]

147. Roszak, K.Z.; Torcivia, S.L.; Hamill, K.M.; Hill, A.R.; Radloff, K.R.; Crizer, D.; Middleton, A.M.; Caran, K. Biscationic bicephalic
(double-headed) amphiphiles with an aromatic spacer and a single hydrophobic tail. J. Colloid Interface Sci. 2009, 331, 560–564.
[CrossRef] [PubMed]

148. Kalhapure, R.S.; Akamanchi, K.G. A novel biocompatible bicephalous dianionic surfactant from oleic acid for solid lipid
nanoparticles. Colloids Surf. B 2013, 105, 215–222. [CrossRef] [PubMed]

149. Ojewole, E.; Kalhapure, R.; Akamanchi, K.; Govender, T. Novel oleic acid derivatives enhance buccal permeation of didanosine.
Drug Dev. Ind. Pharm. 2014, 40, 657–668. [CrossRef]

150. Chaudhari, K.S.; Akamanchi, K.G. Novel bicephalous heterolipid based self-microemulsifying drug delivery system for solubility
and bioavailability enhancement of efavirenz. Int. J. Pharm. 2019, 560, 205–218. [CrossRef]

151. Hassan, D.; Omolo, C.A.; Fasiku, V.O.; Elrashedy, A.A.; Mocktar, C.; Nkambule, B.; Soliman, M.E.S.; Govender, T. Formulation of
pH-responsive quatsomes from quaternary bicephalic surfactants and cholesterol for enhanced delivery of vancomycin against
methicillin resistant Staphylococcus aureus. Pharmaceutics 2020, 14, 1093. [CrossRef] [PubMed]
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