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Ðurd̄a Krstić 1, Petar Ristivojević 1, Filip Andrić 1 , Dušanka Milojković-Opsenica 1 and Gertrud E. Morlock 2,*

1 University of Belgrade—Faculty of Chemistry, Chair of Analytical Chemistry, Center for Excellence for
Molecular Food Sciences, Studentski Trg 12-16, 11158 Belgrade, Serbia; djurdjakrstic@chem.bg.ac.rs (Ð.K.);
ristivojevic@chem.bg.ac.rs (P.R.); andric@chem.bg.ac.rs (F.A.); dusankam@chem.bg.ac.rs (D.M.-O.)

2 Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, and Interdisciplinary
Research Center, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany

* Correspondence: gertrud.morlock@uni-giessen.de

Abstract: The high consumption of plant-based foods on a global scale has increased the number
of adulterations in the food industry. Along with this, analytical approaches to fraud detection
need to be further developed. A nontargeted effect-directed profiling by high-performance thin-
layer chromatography hyphenated with five effect-directed assays (free radical scavenging assay,
Aliivibrio fischeri bioassay, and acetylcholinesterase, butyrylcholinesterase, and tyrosinase inhibition
assays) and multi-imaging provided additional information on the antioxidative, antimicrobial, and
enzyme inhibition activities for 18 apple and 18 grape juices from markets in Serbia and Germany.
Bioactive zones of interest were eluted using an elution head-based interface and further characterized
by electrospray ionization high-resolution mass spectrometry. The different profiles were evaluated
chemometrically, and several compounds, which were characteristic of samples from different
markets located in Serbia and Germany, were identified in apple juice (such as chlorogenic acid,
phloridzin, epicatechin, and caffeic acid) and grape juice (such as chlorogenic acid, epicatechin, and
quercetin). The developed rapid and simple method for the quality assessment of fruit juices coming
from different (geographic) markets showed clear quality differences. Thus, it could be used to learn
more about quality differences, to detect fraud in fruit juice production, and to verify the authenticity
of the origin.

Keywords: high-performance thin-layer chromatography; HPTLC fingerprint; effect-directed analysis;
authenticity; adulteration; falsification

1. Introduction

Due to the high nutritional value and bioactive potential of constituents, the fruit juice
market has grown in recent years. According to the Global Food Safety Initiative, fruit
products sold on the market should be authentic, which means that the declaration on
the label should be consistent with the composition and origin of the food ingredients [1].
Commercial fruit juices are obtained by the industrial processing of fruits, and their quality
depends on the fruit species, geographical origin, growing conditions, stage of ripeness,
and technology used [2]. Fruit juices are often adulterated by misrepresenting the proper
species or geographical origin of the fruit or by adding cheaper and inferior ingredients,
which leads to a reduction in product quality.

The consumption of apple and grape juices is associated with various health-promoting
effects (such as anticancer, antimutagenic, antiproliferative, anti-inflammatory, antimi-
crobial, and free radical scavenging activities) due to the high content of phenolic com-
pounds [3–5]. The most common phenolic constituents in apples are chlorogenic acid,
caffeic acid, catechin, epicatechin and their oligomers (proanthocyanidins), quercetin and
its glycosides, and dihydrochalcones (such as phloridzin and phloretin xyloglucoside) [6].
On the one hand, phloridzin as a characteristic flavanoid for apples can be used to detect
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the adulteration of fruit juices [7]. On the other hand, anthocyanins (such as cyanidin,
peonidin, delphinidin, petunidin, and malvidin glucosides), resveratrol, flavonols, phenolic
acids, and tannins (such as catechins, epicatechins, and proanthocyanidins) can be the main
phenolic compounds present in red grapes and juices [8–10].

Serbia and Germany are countries with a long tradition of fruit cultivation due to
favorable climate conditions. Apple juice is one of the most consumed fruit juices in Serbia
and Germany. According to the research on orchards conducted in Serbia and Germany
in 2017, apples are in the first place in terms of production and average yield per hectare
(https://www.stat.gov.rs; https://apps.fas.usda.gov, accessed on 1 June 2022). Red grape
juices have a proven high phenolic content and strong antioxidant activity that make them
a preferable option among other widely consumed juices [2].

Due to increasing consumption, the quality assessment of fruit juices has recently
become an important issue in the food industry. The quality of fruit juices has a significant
influence in terms of consumer protection and food safety. Apple and grape juices have
been recognized as functional superfoods in numerous studies. Apple juice had a positive
effect on plasmatic antioxidant capacity [11], the prevention of Alzheimer’s disease, and
the reduction in the risk of cancer and stroke [12]. It has also been reported that the
consumption of grape juice alters oxidative status and may prevent cardiovascular diseases,
atherosclerosis, Parkinson’s disease, and cataracts [13–15]. Neurocognitive functions can
also be improved by consuming grape juice [16]. In addition to biological activity, phenolic
compounds also influence the sensory properties of fruit juices, such as color, stability,
bitterness, and astringency [9,17]. Evaluation of the unique phenolic profile of fruit juices
could be used as a tool for authenticity and the identification of fruit beverages [17].
Investigating the complex phytochemical profile of fruit juices requires the development
of new reliable, efficient, and sensitive analytical methods or the improvement of existing
ones. The phytochemical profile of geographically different juice samples could be used
to build fruit juice databases, which in turn can be used to establish the authenticity and
geographical origin of food products by comparing the compositions of unknown samples
with reference or control samples.

The most frequently used analytical methods are targeted and focus on the detection
and identification of particular compounds or class of compounds as chemical markers for
authenticity assessment (such as amino acids, organic acids, saccharides). Target analyses
by high-performance liquid chromatography [9] and gas chromatography-quadrupole mass
spectrometry [18] are most commonly used to ensure the authenticity of fruit juices, with
emphasis on the identification and quantification of specific compounds. High-performance
thin-layer chromatography (HPTLC) is becoming more popular in food analysis due to the
straightforward hyphenation with planar-effect-directed assays, multi-detection of the same
chromatogram, highly targeted substance identification, parallel analyses under the same
experimental conditions, low running costs, low solvent consumption [19–21], and method
greenness compared to HPLC [22]. The obtained HPTLC chromatogram can be statistically
analyzed by sophisticated chemometric tools to gain maximum information, such as the
identification of chemical markers of geographical origin and similarity/dissimilarity
between samples [22–24].

The aim of this study was to develop a fast and simple analytical approach for the
quality assessment of commercially available apple and grape juices purchased on different
markets. The juices were purchased from the local stores in Serbia and Germany and were
considered as samples originating from two different market groups. It was of interest
to find out if there are differences between the selected markets from Serbia (SMS) versus
Germany (SMG) with regard to the juice quality. Not only the physicochemical composition,
but also the biofunctional composition (bioactivity) of the fruit juices was taken into account.
The developed HPTLC method was hyphenated with five different effect-directed assays,
having no target analytes in mind. In this effect-directed nontarget analysis, interesting
bioactive compounds were observed and further characterized by electrospray ionization–
high-resolution mass spectrometry (ESI–HRMS). Sophisticated chemometric techniques
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were used to learn more about quality differences between two market groups and to
identify compounds that are potential markers for the geographic discrimination of apple
and grape fruit juices on the markets.

2. Results
2.1. HPTLC−FLD Profiling of Fruit Juice Extracts

An HPTLC−UV/Vis/FLD method was developed to investigate the profiles of
18 apple and 18 grape juice extracts, whereby 9 samples were collected from markets,
each in Serbia and Germany (Table S1). The juice samples were extracted with ethyl acetate–
dichloromethane 3:1, concentrated to dryness, and redissolved in methanol. For the first
time, a chemical profiling of phenols in apple and grape juices was developed using ethyl
acetate–toluene–formic acid–water 16:4:3:2, V/V/V/V, as mobile phase. For detection of
phenolics, the derivatization with the natural product A reagent (2-aminoethyldiphenylbori
nate/polyethylene glycol 400) followed. Already this simple physicochemical profiling (pro-
viding UV/Vis/FLD chromatograms) showed interesting differences. The chromatogram
at fluorescence detection (FLD) 366 nm especially highlighted that the phenolics after
derivatization are suited for the differentiation of samples from both markets. A character-
istic blue, fluorescent band at hRF 98 was present only in the SMS samples in both apple
and grape juice extracts (Figure 1). The investigated apple juice extract numbers (nos.)
1−18 (Figure 1a) contained characteristic blue fluorescent bands at hRF 37 and 87, as well
as orange fluorescent bands at hRF 43, 48, 66, and 70. Almost all SMG apple juice samples
(nos. 10−18) contained another blue fluorescent band at hRF 80, although with different
signal intensities, in contrast to the SMS apple juice extracts. The latter showed a lower
intensity for the blue fluorescent band at hRF 37 in general and at hRF 87 in sample nos. 2,
5, 6, and 9. The highest number of well-separated high intense bands at hRF 36, 43, 47, 60,
64, 70, and 86 was noticed in SMS sample nos. 7 and 8 and SMG sample nos. 11, 12, and 15.
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Figure 1. HPTLC−FLD profiles at 366 nm after derivatization with natural product A reagent of
extracts of (a) apple and (b) grape juices from selected markets in Serbia (1−9) and Germany (10−18).

In the case of the 18 grape juice extract nos. 1−18 (Figure 1b), two blue fluorescent
bands at hRF 43 and 55 as well as one turquoise fluorescent band at hRF 85 were present in
almost all analyzed extracts, but with different signal intensities. In addition, an intense
orange fluorescent band at hRF 48 and further ones were detected in grape juice extract nos.
8−13 and 16−18. The highest number of well-separated high-intensity bands was noticed
in sample nos. 8 and 9 from the SMS and 10, 11, and 13 from the SMG.
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2.2. HPTLC−EDA Profiling of Fruit Juice Extracts
2.2.1. Planar Free Radical Scavenging Assay

HPTLC chromatograms were dipped in the DPPH• assay solution to detect compounds
with free radical scavenging activity as yellow bands on a purple plate background. Both apple
and grape juice extracts possessed DPPH• scavenging activity (Figures 2a and 3a), whereby
nos. 12 and 16 were the most active ones, respectively.

Figure 2. HPTLC profiles of extracts of apple juices from selected markets in Serbia and Germany
after the (a) DPPH• assay, (b) acetylcholinesterase (AChE), (c) butyrylcholinesterase (BChE), and
(d) tyrosinase inhibition assays, all detected under white light illumination, and (e) after the Aliivibrio
fischeri bioassay with the recorded bioluminescence depicted as greyscale image.
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Figure 3. HPTLC profiles of extracts of grape juices from selected markets in Serbia and Germany
after the (a) DPPH• assay, (b) acetylcholinesterase (AChE), (c) butyrylcholinesterase (BChE), and
(d) tyrosinase inhibition assays, all detected under white light illumination, and (e) after the Aliivibrio
fischeri bioassay with the recorded bioluminescence depicted as greyscale image.

Fruit juice extracts from the SMG (nos. 10−18) showed more active bands than from
the SMS (nos. 1−9). The main DPPH•-active bands of apple juice extracts were observed
at hRF 37, 48, 64, 80, and 86 (Figure 2a), while for grape juice extracts, these were evident at
hRF 37, 48, 54, 65, 82, and 90 (Figure 3a).

2.2.2. Planar Enzyme Inhibition Assays

The AChE is the main catalytic enzyme found in synaptic clefts of the central nervous
system, erythrocytes, and brain, while the BChE is a nonspecific enzyme, mainly present in
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the plasma, liver, and muscle tissue [25]. Both are involved in the termination of impulse
transmission at cholinergic synapses and related to different neurological disorders, such
as Alzheimer disease, ataxia, senile dementia, and myasthenia gravis [26]. Thus, the role of
AChE inhibitors is to enhance muscle contraction and strengthen cholinergic neurotrans-
mission. In the HPTLC−AChE/BChE inhibition autograms, AChE (Figures 2b and 3b)
and BChE inhibiting compounds (Figures 2c and 3c) were evident as colorless or bright
bands against a purple plate background in all analyzed apple and grape juice samples, but
their signal intensities were different. Apple samples (Figure 2b) showed a high inhibiting
potential with strong AChE inhibiting bands at hRF 35, 46 (in no. 5), and 87 (in nos. 17
and 18). In contrast, grape juices had less intensive active bands at hRF 39, 52, 84, and 90
(Figure 3b). The characteristic AChE inhibiting band at hRF 39 was noticed in almost all
juice extracts.

Characteristic BChE inhibiting bands were observed in all investigated juice extracts.
The most active bands among the apple juice extracts were found at hRF 35, 80, and 87
(Figure 2c), while the overall highest inhibiting potential was noticed for sample nos. 11,
12, 17, and 18, followed by sample nos. 5, 7–9, 11, and 13. All grape juice extracts contained
BChE inhibiting bands at hRF 42 and 85, but their intensity varied. The most active band
was noticed at hRF 96 in juice sample nos. 1–9 from the SMS (Figure 3c).

Tyrosinase is a polyphenol oxidase enzyme, involved in the synthesis of melanin of
humans and responsible for the enzymatic browning of fruits and vegetables. Its inhibition
is of interest to the food industry to prevent the undesirable browning of foods, and to
medicine and cosmetics for the treatment of dermatological problems [27]. In the HPTLC–
tyrosinase autograms, tyrosinase inhibitors were evident as colorless or bright bands
against a gray background. Among the apple juice extracts (Figure 2d), a similar tyrosinase
inhibiting potential was observed at hRF 38, 52, 62, 79, and 86. However, nos. 5, 11, 12,
17, and 18 were highlighted due to their overall higher tyrosinase response. In the case of
the grape juice extracts (Figure 3d), the already noticed inhibiting band originating from a
compound at hRF 82 was found in sample nos. 8−18, while samples from the SMS (nos.
1−6) revealed a very strong inhibiting effect for the compound band at hRF 95.

2.2.3. Planar Antimicrobial Bioassay

The marine A. fischeri bacteria are nonpathogenic and manageable microorganisms for
testing the bioactivity of samples [28]. Bioactive compounds with a negative impact on the
A. fischeri metabolism were detected as dark zones against a bioluminescent background
(Figures 2e and 3e, depicted as greyscale image). In all investigated apple juice extracts,
compounds at hRF 95 and 88 showed the most intense, darkest bands. Apple juice extract
no. 18 showed the highest response against A. fischeri bacteria, followed by sample nos.
1, 3, 12, 15, 16, and 17. In the analyzed grape juice extracts, sample nos. 8−18 showed a
moderate to strong antibacterial activity for bands at hRF 90 and 58. The grape juice extracts
had stronger antimicrobial activities compared to the apple juice extracts.

2.3. Tentative Assignment of Bioactive Compounds in Juice Extracts by HPTLC–ESI–HRMS

As an example for further characterization of bioactive bands in the juice extracts,
HPTLC–ESI–HRMS was employed, eluting the bioactive bands via an elution head-based
interface into the HRMS. Apple juice sample no. 12 and grape sample no. 14 were selected
based on the HPTLC–EDA results. The structural assignment was performed based on
the obtained exact masses, isotopes, mass error, and molecular fragments. The strongly
blue fluorescent bioactive band at hRF 40 (Figure 1a) was tentatively assigned as chloro-
genic acid (5-O-caffeoylquinic acid), which revealed the deprotonated molecule at m/z
353.0880 [M−H]− and its characteristic fragment ion at m/z 191.0562 [M−H−caffeoyl]−

(Figure S1a) [29]. Chlorogenic acid was found especially in all apple juice extracts and most
grape juice extracts.

The orange fluorescent (after derivatization) bioactive band at hRF 50 (Figure 1a)
was tentatively assigned to the most prominent apple polyphenol phloridzin (phloretin
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2′-O-glucoside) [30] based on the HPTLC–ESI–HRMS spectrum (Figure S1b). Its principal
biological functions are the regulation of glucose absorption and excretion, inhibition of
lipid peroxidation, as well as inhibition of cancer cell growth [31]. Europeans consume an
average of 0.7–7.5 mg/day of phloridzin, whose main source are apples and apple juice [32].
The deprotonated molecule at m/z 435.1299 [M−H]− led to the characteristic phloretin
aglycon fragment ion at m/z 273.0856 (Figure S1b) [33,34].

The blue fluorescent (after derivatization) bioactive band at hRF 80 both in the apple
and grape juices extracts (Figure 1) showed the deprotonated molecule at m/z 289.0721
[M−H]− (Figure S1c) and was tentatively assigned as epicatechin. This flavan-3-ol is com-
monly present in tea plant leaves, but also in fruits, especially grapes and apples. Flavan-3-
ols provide a wide range of health beneficial effects by acting as antioxidant, anticarcinogen,
cardiopreventive, antimicrobial, anti-viral, and neuro-protective agents [5,35,36].

The blue fluorescent bioactive band at hRF 90 (Figure 1a) showed the deprotonated
molecule at m/z 179.0349 [M−H]− (Figure S1d) that corresponds to the caffeic acid and
was found in apple juice extract. The caffeic acid fragmentation pathway is based on the
loss of the CO2 group (–44 Da), resulting in the detected fragment [M–H–CO2]. In the
analyzed grape juice extract, another deprotonated molecule was evident at m/z 301.0355
[M−H]− (Figure S1e), which was tentatively assigned to be quercetin.

2.4. Multivariate Analysis of HPTLC–FLD and HPTLC–EDA Fingerprints

Principal component analysis (PCA) is the most used pattern recognition technique
that allows visualization of the data structure and identification of variables with the
highest influence on the classification and differentiation of objects. It was applied on
datasets obtained by image analysis of the HPTLC chromatograms to obtain basic insight
into the specific grouping patterns and to distinguish apple and grape juice samples from
the SMG versus SMS. The obtained PCA models are presented in Table S2.

2.4.1. Apple Juices

For the apple juice extracts, the PCA model applied on the HPTLC−FLD chro-
matograms at 366 nm after derivatization with the natural product A reagent (highlighting
phenolic compounds) displayed a good discrimination between samples collected in Serbia
and Germany according to the PC1 axis. Samples from the SMG were positioned at the
lower right side of the PCA score plot, while the SMS samples were scattered at the left
side of the plot (Figure 4). Within the SMS group two subgroups can be noted along the
PC2 direction. The obtained loading plot showed the influence of phenolic compounds
with characteristic hRF values on the classification of samples according to the geographical
market. The compounds at hRF 39, 72, and 87 affected PC1 in a positive manner, indicating
a higher content of these phenolic compounds in apple juices collected from the SMG, while
the compound at hRF 36 significantly affected PC1 in a negative manner and is responsible
for the differentiation of SMS apple juices. Variables that had the highest positive impact
on the differentiation of samples along the PC2 axis were compounds at hRF 35, 66, and 88,
while compounds at hRF 30 and 38 had a negative impact.

In the case of the HPTLC−DPPH• autograms (Figure S2a), two groups of objects
could be noticed (SMG and SMS samples). Variables at hRF 48 and 75 (along PC1) as well
as at hRF 45 and 50 (along PC2) had the highest impact on sample grouping.

The PCA model obtained for the HPTLC−AChE autograms (Figure S2b) confirmed
the differentiation of the samples according to their geographical market. Two samples
from the SMS formed a subgroup between clusters belonging to the SMS and SMG apple
juices. The loading plots revealed that the compounds at hRF 27, 82, and 93 had the most
positive impact on the PC1 direction and were responsible for the separation of German
apple juices, while the compound at hRF 44 mainly affected the differentiation of apple
juices from SMS along the PC1 axis. The compounds at hRF 25, 53, and 96 had the highest
negative impact on separation along PC2, while the compounds at hRF 42 and 90 had a
strong positive impact.
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In the case of the HPTLC−BChE autograms (Figure S2c), the score plot showed that
juice extracts from SMS formed a cluster at the upper side of the plot, while those from
SMG were scattered at the lower side of the plot. The highest positive contribution to
separation along the PC1 axis had the compound at hRF 85, while the compounds at hRF
42, 73, and 95 had the highest negative impact. The differentiation of samples along the
PC2 axis was influenced by variables at hRF 73, 78, and 96 (in positive manner) and at hRF
38 and 92 (in negative manner).

The score plot for the HPTLC−tyrosinase autograms (Figure S2d) revealed a difference
in the inhibition potential of SMS and SMG apple juice extracts. SMS samples were grouped
at the lower side of the plot, while SMG samples formed the second cluster at the upper
side of the plot, along the PC2 axis (except for the two samples that showed a different
tyrosinase inhibiting potential from all other samples). Variables at hRF 42, 52, and 84
positively affected the separation of SMG samples along the PC2 axis, while compounds at
hRF 34, 60, and 92 had the highest negative impact on the differentiation of samples from
SMS. Additionally, phenolic compounds at hRF 45 and 90 significantly affected the PC1 in a
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positive manner and were responsible for the separation of two German apple juices from
all the other analyzed samples.

The PCA model obtained for the HPTLC−A. fischeri bioautograms (Figure S2e) indi-
cated a partial overlapping of SMS and SMG samples, according to the antimicrobial activity.
The most influential variables on the separation along the PC1 axis were compounds at
hRF 84 and 97.

2.4.2. Grape Juices

For the grape juice extracts, the PCA model applied on the HPTLC–FLD chromatogram
at 366 nm after derivatization with the natural product A reagent displayed a good dis-
crimination between samples from the SMS versus SMG along the PC1 axis (Figure 4).
Two samples from SMS formed a subgroup between these separated clusters. Variables at
hRF 42 and 90 affected PC1 in a positive manner and were responsible for the grouping of
the SMG samples at the right side of the plot. The compounds at hRF 36 and 85 had the
highest negative contribution to the positioning of the objects at the left side of the plot
(SMS juices).

The score plot for the HPTLC−DPPH• autograms (Figure S3a) suggested the existence
of two distinctive clusters along PC1, belonging to grape juice samples from SMG (at the
right side of the plot) and SMS (left side of the plot), while two grape juices from SMS
overlapped with the samples from SMG because of their similar DPPH• response. The
loading plot showed that the highest positive contribution to the positioning of the objects
on the score plot for PC1 had compounds at hRF 30, 76, and 80, while the compounds at hRF
47, 90, and 96 had negative contributions. Compounds at hRF 26 and 67 had the highest
positive impact on separation along PC2, while the compounds at hRF 33, 78, and 85 had a
strong negative impact.

The PCA model for the HPTLC−AChE autograms (Figure S3b) suggested along the
PC2 direction the existence of two distinctive groups belonging to SMG and SMS samples.
Two samples from SMG showed a more similar AChE inhibiting potential as well as DPPH•

response to juice samples from SMG. The most influential compound for discriminating
juice extracts from SMS was at hRF 73, while the compound at hRF 90 mostly affected the
separation of juices from SMG.

In the case of the HPTLC−BChE autograms (Figure S3c), samples from SMS were
scattered, while juice samples from SMG formed a compact cluster at the right side of the
plot, along the PC1 direction. The loading plot revealed that compounds at hRF 85 and 95
had the highest positive effect on the PC1 component, indicating a high content in SMG
samples. Additionally, compounds at hRF 31 and 84 significantly affected the PC2 in a
positive manner, while the compounds at hRF 43, 90, and 97 had a strong negative impact
on separating SMG samples.

The score plot for the HPTLC−tyrosinase autograms (Figure S3d) suggested the
existence of two distinctive clusters, along the PC1 axis. Three samples from SMS showed
different inhibition properties from all the other samples. The compound at hRF 87 had the
most influence on the differentiation of SMG juices along the PC1 axis, while the compound
at hRF 97 was discriminating the Serbian extracts. The compound at hRF 92 had the highest
positive impact on separation along the PC2 axis.

The PCA model for the HPTLC−A. fischeri bioautograms (Figure S3e) confirmed a
different antimicrobial potential of SMG and SMS grape samples, except for two SMS
samples, which showed more similar characteristics to SMG samples. The compounds at
hRF 32, 50, 60, and 90 were the most important for the differentiation of grape juices along
the PC1 axis.

3. Discussion

Fingerprinting methods highlight a number of unique chromatographic signals to
enable sample recognition. The visual examination of the chromatograms revealed differ-
ences in the profiles among the apple juice extracts originating from SMS and SMG. All
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analyzed extracts were characterized via a vast number of blue and orange fluorescent
bands at hRF 36, 44, 47, 65, 77, and 86. The recording of HPTLC−ESI−HRMS spectra
allowed the further characterization of interesting zones. In the case of the apple juices,
compounds at hRF 40, 50, 80, and 90 were assigned as chlorogenic acid (5-caffeoylquinic
acid), phloridzin, epicatechin, and caffeic acid, respectively. This is in accordance with
published data for German juice made of dessert and cider apples, where chlorogenic acid,
quercetin glycosides, procyanidins, and dihydrochalcones, such as phloridzin (phloretin-O-
glucoside) and phloretin-O-xyloglucoside, were found as dominant constituents [6]. In the
case of the grape juices, blue fluorescent bands at hRF 43, 55, 85, and 90, as well as an orange
fluorescent band at hRF 48, were present in all analyzed extracts. The bands at hRF 43, 85,
and 90 were identified as chlorogenic acid, epicatechin, and quercetin, respectively. The
characterization of grape juices produced in Brazil showed that anthocyanins and tannins
were predominant phenolic compounds [9].

The effect-directed analysis of the investigated fruit juices showed a moderate to
strong antioxidant potential as well as AChE, BChE, and tyrosinase inhibitory activities.
In the literature [37], similar results were obtained for apple juice from a Chinese market,
which confirmed the strong antioxidant activity of 5-O-caffeoylquinic acid, quercetin, and
phloretin that significantly increased after juice fermentation with Lactobacillus plantarum.
The analysis of the antioxidant and antimicrobial melatonin in 18 apple cultivars and
juices [38] indicated that the highest melatonin level was detected in the peel, while the
melatonin content in the juice was comparable to that of its flesh. Examination of the
antioxidant effects of grape skin anthocyanins using various in vitro and in vivo methods
confirmed a strong antioxidant and AChE inhibition potential [39]. Antimicrobials against
Gram-negative A. fischeri were detected in all analyzed juices, but grape juice extracts
showed stronger antimicrobial activities compared to apple juices. This is contrary to
results obtained by the evaluation of the antibacterial activity of apple, pomegranate, and
grape juices on clinical endodontic bacterial strains, where the highest antibacterial activity
was observed in apple fruit juice [40]. However, this contradiction may be explained by
varying antimicrobial pesticide residues. Evaluation of the antimicrobial effect of white
grape juice extract (Trapani, Italy) against a range of Gram-positive and Gram-negative
bacteria confirmed that Staphylococcus aureus was the most sensitive strain among the tested
Gram-positive bacteria, while Escherichia coli was the only susceptible strain in the case of
Gram-negative bacteria [41].

The proposed untargeted effect-directed profiling of phenolic compounds in fruit juice
extracts could be considered as a promising analytical tool in the quality control of fruit
juices, but it must be taken into account that fruit variety, ripening stage, environmental
conditions, and processing technology also affect the phenolic content of fruit juices [42].
The PCA score plots reveal that the best separation between apple juices of SMG and SMS
was achieved by using the HPTLC−FLD chromatogram at 366 nm after derivatization,
which was the simplest protocol among the tested detection options. The effect-directed
profiles (DPPH•, AChE, BChE, and tyrosinase inhibition) lead to a comparatively lower
degree of separation between the samples of different geographic markets, whereby the
BChE inhibition assay was the worst. However, it was still possible to separate the samples
sufficiently. A similar degree of separation of apples from five geographic areas (Alpine,
Dinaric, Mediterranina, Panonian, and Submetiranian) was achieved using linear discrimi-
nant analysis as the classification method and the content of primary metabolites, as well
as polyphenols as input [43]. Our excellent separation of samples from two market groups
(SMG and SMS) obtained by physicochemical HPTLC profiling can also be compared with
the results obtained for five apple cultivars collected from five regions in China (Liquan,
Xunyi, Yongshou, Sanyuan, and Luochua) using linear discriminant analysis as the classifi-
cation method and the content of polyphenols as the input [44]. All this might suggest that
the chemical fingerprint related to the polyphenolic content plays a significant role in the
discrimination of apple juices according to geographic markets.
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In the case of the grape juice samples, the PCA score plots revealed that the HPTLC
fingerprints and HPTLC−DPPH• profiles provided enough information to completely
distinguish samples of German and Serbian markets. The separation of different geographic
samples based on the HPTLC−tyrosinase inhibition profiles was satisfactory. However,
HPTLC−AChE and BChE inhibition profiles did not provide a sufficient separation. The
information obtained from the physicochemical composition had a clear advantage over
the effect-directed data, regarding the discrimination of apple and grape juice extracts
from two selected market groups. Effect-directed data reveal the presence of important
bioactive compounds, which may vary more strongly, but provide strong arguments for the
valorization of food. Hence, further in-depth effect-directed studies are needed especially
for plant-based food.

4. Materials and Methods
4.1. Reagents and Chemicals

Polyethylene glycol 400, 2-aminoethyldiphenylborinate (97%), Fast Blue Salt B, 2,2-
diphenyl-1-picrylhydrazyl radical (DPPH, 97%), butyrylcholinesterase (BChE, from equine
serum, ≥140 U/mg) and acetylcholinesterase (AChE, from Electrophorus electricus Linnæus,
≥245 U/mg, 10 kU/vial), tyrosinase (from mushroom, ≥1000 U/mg, 25 kU/vial), and
solvents/reagents of analytical grade were purchased from Fluka Sigma-Aldrich, Schnell-
dorf, Germany. Luminescent marine A. fischeri bacteria (NRRL-B11177, DSM no. 5171)
were obtained from the German Collection of Microorganisms and Cell Cultures. (2S)-
2-Amino-3-(3,4-dihydroxyphenyl) propionic acid (levodopa) was obtained from Santa
Cruz Biotechnology, Dallas, TX, United States. Ethanol, and methanol and its MS-grade
were provided from Fisher Scientific, Schwerte, Germany. Formic acid (96%), toluene,
dichloromethane, ethyl acetate, and HPTLC plates silica gel 60 F254 were obtained by
Merck, Darmstadt, Germany. Bidistilled water was prepared with a Destamat Bi 18E,
Heraeus, Hanau, Germany.

4.2. Sample Preparation

Fruit juice samples (18 apple and 18 grape juices) were collected from local markets
in Belgrade, Serbia (Table S1, nos. 1−9) and Giessen, Germany (nos. 10−18). Therefore,
the total number of analyzed samples was 36 (9 samples × 2 market groups × 2 juice
types). Each of the 9 samples was considered as belonging to the same population. The
fruit juices (100 mL each) were concentrated to 20 mL (basic rotary evaporator RV 05,
IKA-Werke, Staufen, Germany) under reduced pressure at 35 ◦C. Extraction was performed
with 20 mL of ethyl acetate–dichloromethane 3:1, V/V, under agitation for 3 min (Basic
Vortex Mixer, Thermo Fisher Scientific, Dreieich, Germany) and repeated once. Both pooled
organic phases were evaporated to dryness and each residue was dissolved in 2 mL of
methanol prior to storage at −20 ◦C. In the final experiments, no replicate measurements
were performed.

4.3. HPTLC–UV/Vis/FLD and HPTLC–EDA–UV/Vis/FLD Analysis

On the HPTLC plate silica gel 60 F254 (20 cm × 10 cm, Art. 105641, Merck), aliquots
of each fruit juice extract (3 µL for FLD 366 nm, 1 µL for DPPH• assay, 5 µL for A. fischeri
bioassay and AChE inhibition assay, and 10 µL for BChE and tyrosinase inhibition assays)
were applied as an 8 mm band (Automatic TLC sampler 4). No replicates were performed
in the final experiments. HPTLC instruments were from CAMAG, Muttenz, Switzerland
and controlled by winCATS software. Development was performed with ethyl acetate–
toluene−formic acid−water 16:4:3:2, V/V/V/V [45], up to a migration distance of 70 mm
in a 10 min saturated twin trough chamber (with filter paper) followed by drying under a
cold flow of air (hair dryer) and heating at 100 ◦C for 3 min (TLC Plate Heater III). Images
of the chromatograms were captured at UV/Vis/FLD (DigiStore 2). Respective positive
controls were applied as described [36].
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For derivatization with the natural product A reagent detecting phenolics as fluores-
cent bands, HPTLC chromatograms were immediately (still hot) immersed (immersion
time 2 s, immersion speed 3.5 cm/s, Chromatogram Immersion Device III, if not stated
otherwise) in a 0.5% solution of 2-aminoethyldiphenylborinate in ethyl acetate and then a
5% solution of polyethylene glycol 400 in dichloromethane. The images captured at FLD
366 nm were saved as TIF files.

For the DPPH• assay detecting radical scavengers as a yellow band against a violet
background, HPTLC chromatograms were dipped into a 0.05% methanolic DPPH• solu-
tion [46], dried (60 ◦C, 1 min), and recorded under white light illumination in the reflectance
mode. The images were captured again on the next day, as the signal intensity increased
over time.

For the A. fischeri bioassay detecting antimicrobials as dark zones against a light
grey background (bioluminescence depicted as greyscale image, BioLuminizer), HPTLC
chromatograms were immersed into the luminescent Gram-negative A. fischeri bacteria
suspension, prepared according to [28] and ready for use when a brilliant green-blue
bioluminescent light has been emitted when the flask is shaken in the dark. Images were
instantly captured with an exposure time of 30 s over a period of 20 min, which allowed
time-dependent changes to be monitored.

For the AChE and BChE inhibition assays detecting enzyme inhibitors as colorless or
bright bands against a purple background [47], the HPTLC chromatograms were prewetted
with 1 mL of Tris-HCl buffer solution (pH 7.8, 0.05 M), immersed in the buffered enzyme
solutions (AChE 666 units or BChE 334 units, plus 100 mg of BSA and 100 mL of 0.05
M TRIS buffer, pH 7.8), placed in a moistened plastic box covered with wet filter papers,
and incubated at 37 ◦C for 30 min. Then, plates were immersed into the 1:1 solution of
substrate (2.5 mg/mL of ethanolic α-naphthyl acetate solution) and chromogenic reagent
(2.5 mg/mL of aqueous Fast Blue Salt B solution), dried, and recorded under white light
illumination in the reflectance mode.

For the tyrosinase inhibition assay detecting enzyme inhibitors as colorless or bright
bands against a purple background [48], the neutralized HPTLC chromatograms were
first sprayed (Derivatizer) with 1 mL of substrate solution (45 mg of levodopa, 25 mg of
CHAPS, and 75 mg of PEG 8000 were dissolved in 10 mL of phosphate buffer, consisting of
1.4 mg/mL of dipotassium hydrogen phosphate trihydrate and 1.68 mg/mL of disodium
hydrogen phosphate, pH 6.8), then after drying, sprayed with 1 mL of enzyme solution
(400 U/mL in phosphate buffer) and incubated in a humid box for 20 min. Images were
recorded under white light illumination in reflectance mode.

4.4. Characterization of Bioactive Compounds by HPTLC–ESI–HRMS

The bioactive compounds were marked with a soft pencil on the HPTLC plate il-
luminated at 366 nm and transferred with an elution head-based interface (oval elution
head of 4 mm × 2 mm, TLC-MS Interface, CAMAG) with 100% methanol at a flow rate of
0.1 mL/min to the heated ESI source. Full-scan mass spectra (m/z 50–750) were recorded
at a resolution of 280,000 (FWHM at m/z 200), AGC target of 1e6, and maximum inject
time of 200 ms with lock masses of 301.14103 (dibutyl phthalate, [M+H]+) and 413.26623
(diisoctyl phthalate, [M+H]+) in the positive and 112.98563 (formic acid, [2M+Na–2H]–)
in the negative ionization mode via the Q Exactive Plus Hybrid Quadrupole-Orbitrap
Mass Spectrometer (Thermo Fischer Scientific, Germany) with a spray voltage of ±3.5 kV,
capillary temperature of 270 ◦C, sheath gas of 20 (arbitrary units), aux gas of 10 (arbitrary
units), probe heater temperature of 200 ◦C, and S-lens RF level of 50 (arbitrary units). A
representative plate background at a migration position comparable to the analyte zone
was subtracted from the analyte spectrum. Instrument control and data processing were
performed using Xcalibur 4.2.47 SP software with Foundation 3.1.261.0 SP6 and SII for
Xcalibur 1.5.0.10747 (Thermo Fisher Scientific, Waltham, MA, USA).
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4.5. Data Acquisition and Statistical Analysis

The open-source software rTLC v1.0 (http://shinyapps.ernaehrung.uni-giessen.de/
rtlc/ accessed on 1 June 2022) was used for image processing and multivariate analysis
of HPTLC chromatograms. The median filter function with a two-pixel width filter was
used for denoising of the images. Normalization of the images was performed by Standard
Normal Variate (SNV) transformation, which removes scatter effects by centering each indi-
vidual variable. The correlation-optimized warping (COW) algorithm was applied in order
to remove the negative impact of the band shifts caused by fluctuations in experimental
conditions, analyst errors, and instrumental variations. All data were mean-centered to
transform variables in the same unit, prior to multivariate analysis.

5. Conclusions

The combination of nontarget chemical/biological/biochemical profiling with ad-
vanced chemometrics has proven to be an effective tool to learn more about fruit juice
quality differences. It is also useful in detecting fraud in fruit juice production (due to
the multi-imaging/detection feature and parallel analysis) and in authenticating the ge-
ographical origin of apple and grape juices. The bioactivity assessment revealed several
characteristic bioactive compounds of apple and grape juices, of which some were ten-
tatively assigned. The examined samples showed moderate antioxidant activity, strong
AChE, BChE, and tyrosinase inhibiting potential and good response against A. fischeri
bacteria. Multivariate data analysis applied on physicochemical and effect-directed profiles
clearly showed that there are fruit juice quality differences between countries. Information
on the bioactivity of fruit juices obtained through effect-directed profiling expands and
improves knowledge about the juice product quality. Hence, this fast and cost-effective
analytical approach could find application in the quality assessment of other fruit juices
and further fruit products, such as jam and marmalade.

Supplementary Materials: The following supporting information can be downloaded on https:
//www.mdpi.com/article/10.3390/molecules27123933/s1, Table S1: List of the analyzed apple and
grape juices; Table S2: Statistical performance of the PCA models; Figure S1: HPTLC–ESI–HRMS
spectra of the deprotonated molecules of (a) 5-O-caffeoylquinic acid at m/z 353.0880 [M−H]− and (b)
phloridzin at m/z 435.1299 [M−H]−; Figure S2: PCA score and loading plots of apple juice extracts
performed on profile data obtained from the (a) DPPH• assay, (b) AChE, (c) BChE, and (d) tyrosinase
inhibition assay as well as (e) A. fischeri bioassay autograms; Figure S3: PCA score and loading plots
of grape juice extracts performed on profile data obtained from the (a) DPPH• assay, (b) AChE, (c)
BChE, and (d) tyrosinase inhibition assay as well as (e) A. fischeri bioassay autograms.
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