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Abstract

With the development of social media, the information about vector-borne disease incidence

over broad spatial scales can cause demand for local vector control before local risk exists.

Anticipatory intervention may still benefit local disease control efforts; however, infection

risks are not the only focal concerns governing public demand for vector control. Concern

for environmental contamination from pesticides and economic limitations on the frequency

and magnitude of control measures also play key roles. Further, public concern may be

focused more on ecological factors (i.e., controlling mosquito populations) or on epidemio-

logical factors (i.e., controlling infection-carrying mosquitoes), which may lead to very differ-

ent control outcomes. Here we introduced a generic Ross-MacDonald model, incorporating

these factors under three spatial scales of disease information: local, regional, and global.

We tailored and parameterized the model for Zika virus transmitted by Aedes aegypti mos-

quito. We found that sensitive reactivity caused by larger-scale incidence information could

decrease average human infections per patch breeding capacity, however, the associated

increase in total control effort plays a larger role, which leads to an overall decrease in con-

trol efficacy. The shift of focal concerns from epidemiological to ecological risk could relax

the negative effect of the sensitive reactivity on control efficacy when mosquito breeding

capacity populations are expected to be large. This work demonstrates that, depending on

expected total mosquito breeding capacity population size, and weights of different focal

concerns, large-scale disease information can reduce disease infections without lowering

control efficacy. Our findings provide guidance for vector-control strategies by considering

public reaction through social media.
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Author summary

With the development of modern technologies (e.g., social/mass media platforms), people

can access disease information across counties, states, or entire nations. This wider access

to information about (potentially remote) disease risks can motivate local citizenry to

demand rapid action to prevent/control exposure. In some cases, this demand may be

mismatched with actual risk (e.g., to enact control before disease is present locally, or dis-

proportionately to current prevalence). This paper first provides a systematic study about

the influences of larger-scale disease information on local-scale infection dynamics and

control effort and efficacy through a case study of Zika virus. We find that larger-scale

information often decreases local outbreak size. We find that the impact of information

on control efficacy depends on available vector breeding habitat. This study demonstrates

the importance of including likely public reaction to information about disease across spa-

tial and temporal scales into the design and implementation of disease control strategies.

Introduction

For many vector-borne diseases, such as dengue, Zika virus, and West Nile Virus, vector-con-

trol is a common and effective way to reduce disease spreading in human populations [1–4].

For example, control of Zika virus disease frequently relies on controlling primary mosquito

vectors: Aedes aegypti [5]. Many mosquito-control practices or strategies are the responsibility

of local or regional governments (e.g., strategies incorporating host dynamics and economic

constraints; [6–8]. However, beyond governmental response, individual members of the public

can also voluntarily practice mosquito control by themselves [9,10].

Individual, voluntary mosquito controls largely depend on public perceptions of risk,

which in turn relies on the disease information available. With the development of modern

technologies, more and more individuals can easily get disease information through newspa-

pers, television, or other social media platforms [11–15]. These modern technologies can pro-

vide real-time information (whether accurate or not) across diverse spatial scales, ranging

from the area of residence (local) to a regional scale (local area and also neighboring areas), or

an even larger scale involving multiple areas where pathogen can possibly spread (formed as a

human metapopulation structure; hereafter referred to as global scale). This public perception

of disease information through social media can influence individual decisions and local pres-

sure to agencies about control actions. Often, members of the public demand control of mos-

quitoes in their own areas based on risk perception derived from disease information that

relies on larger spatial scales, even if this leads to inaccurate estimation of immediate local risk

[11,16]. For instance, they may start their individual mosquito control early if other places

have active Zika infections, even if their own areas do not report any Zika cases (i.e., before the

disease spreads to their areas). This could lead to anticipatory local mosquito control (hereafter

referred to as “early intervention”;[17–19]. The larger numbers of human infections from

larger scales could also lead to tolerance of, or even demand for, the overuse of pesticides,

which increases the overall control strength in their local areas (hereafter referred to as

“strength reinforcement”). Because available breeding capacity in the environment can largely

affect mosquito population and potential disease prevalence [20,21], here we studied the

impact of public reaction to the above three scales of disease information under three levels of

environmental breeding capacity of mosquito.

Due to the economic and manpower costs associated with pesticide usage [22–24], another

associated public reaction would be the balance between larval control vs. adult control. Many
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vectors such as mosquito have two life stages, which requires different control treatments. For

example, mosquito larvae often live in standing water (e.g., ponds, birdbaths, rain puddles in

standing garbage etc.), which involves water-based control [25–27]. Adult mosquitoes (the

stage that interacts with humans by taking blood meals) are instead more sensitive to air-based

control (e.g., pesticide spraying or fogging [28–30]). Although individuals and municipalities

may have different functional limitations, they can be expected to consider trade-offs of mos-

quito control versus environmental contamination specific to the type of control involved (i.e.,

water vs air contamination). For example, with limited expense on pesticide purchase, if the

public is more concerned about water contamination caused through larval control, they may

be more willing to permit air contamination caused by air-based control, and vice versa to

achieve mosquito control in keeping with their perception of relative risks to their own health

and the health of their environment. This tradeoff can largely influence human infections

from two aspects: vector population size and transmission rate. Larval control has been proved

to be very effective to control mosquito population through regulating oviposition[6]. By low-

ering mosquito population size, larval control can reduce human infection by downsizing the

disease reservoir (i.e., ecological control). Air-based control instead works directly on mos-

quito-human contact rate, so the control of the adult mosquito would directly decrease disease

transmission rate (i.e., epidemiological control). Those two controls, combined with the scale

of disease information, would affect mosquito life-history dynamics and human infections.

We therefore also explored how the combinations of environmental concerns on both larvae

and adult mosquito influence system equilibria given scales of disease information.

To understand all the above factors on disease control and prevalence, here we developed a

simple vector-borne disease model under a human metapopulation framework, in which

human can migrate among multiple patches, perceive disease information across scales (i.e.,

local, regional, and global scales), and then take control actions within each patch accordingly.

For this study, we make the simplifying assumption that the vector—the mosquito—can only

stay in their natal patch without migration (representing an inter-patch spatial scale beyond

their natural range). In this system, we first studied the dynamics of average human infections,

total control effort, and control efficacy per patch. We then included the tradeoff of environ-

mental concerns relevant to larval versus adult controls to further explore the above results at

equilibria.

Methods

As an initial case, we assumed a human metapopulation (e.g., human urban system) with 9

patches (i.e., N = 9), which are occupied by both human and mosquito populations. The

virus was initially introduced via one infected human in one focal patch, and then allowed to

spread to other patches (this focal patch is randomly selected). We assume that local mosqui-

toes can only move within their natal patch, but humans can move between connected

patches (see Fig 1). This assumption is consistent with the fact that mosquitoes Aedes seldom

travel long distance [31–33] while human can easily travel among suburbs, cities, or regions.

The human movement from patch i to j is defined as mij, so the total probability of moving

from patch i to all other patches would be p ¼
PN

j¼1
mij (if there is no direct connection

between the two patches, mij = 0). Initially, patch j has S0
j susceptible human population, so

the total human population in the system is S0 ¼
PN

j¼1
S0
j . For simplicity but without loss of

generality, we assume all patches are randomly connected (here we used scale-free algorithm

[34,35]: the patch structure was generated by initial patches as 5 and number of new added

patches as 4).
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Within one patch at any time step, human can be in any of the three states: susceptible to

infection (SH), infected (IH) or recovered (RH). Some of the infected humans may develop seri-

ous symptoms (at a rate δ), leading to the number of disease-attributable deaths (DH). The

total human population in this patch at that time would be H = SH+IH+RH. We also considered

the natural birth rate (bH) and death rate (μH) for human populations. The mosquito popula-

tion has three states: larvae which cannot harbor the virus (i.e., we assume no vertical transmis-

sion) (LM), uninfected adult mosquitoes (SM) that are susceptible to pick up the virus through

biting an infected human, and infected adult mosquitoes (IM), which can transmit virus to sus-

ceptible human. The maturation rate from larvae to susceptible adult mosquitoes is v. The

compound rate of biting and successful infection from susceptible mosquitoes and human are

βM and βH, respectively. The natural death rate of adult mosquitoes is μM. The birth of larvae

mosquitoes is limited by the patch breeding capacity (indicating the available breeding habi-

tat), having the form f M;Kj

� �
¼ M 1 � M=Kj

� �
where Kj is the breeding capacity of mosquito

at patch j and M = SM+IM, the total number of adult mosquitoes that lay eggs (Note, our model

includes only on female mosquitos as they are both the individuals who take blood meals and

generate eggs).

In each patch j, human and mosquitos’ dynamics also drive the control actions for both lar-

val (CL
j ) and adult mosquitoes (CM

j ) through usage of larvicides and adulticides. The public fear

of disease, which drives control actions, increases with serious infected cases (DH) and the

number of infected people (IH) but decreases with environmental concerns (�M and �L: repre-

sent concerns for epidemiological risks and ecological risks, as controlled via focus on adult

and larval mosquitoes, respectively). This concern provides a mechanism for negative feedback

as control strength gets larger.

Fig 1. The structure of human metapopulation with mosquito controls where control strength in each patch (e.g.,

focal patch 1) is based on human infections at a local scale (focal patch only in dark blue), regional scale (focal and

neighbor patches: in blue) and global scale (all patches). The dots between Patch 3 and 4 represent the potential

patches in the system.

https://doi.org/10.1371/journal.pcbi.1008762.g001
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Here we propose a modified Ross-Macdonald equation [36,37] to capture the above

dynamics in human, mosquitoes, and control actions in the system under Zika virus:

dSHj
dt
¼ bHHj � b

HIMj S
H
j � m

HSH
j þ

P
imijS

H
i � SH

j

P
imji ð1Þ

dIHj
dt
¼ b

HIMj S
H
j � rIHj � m

HIHj � o
HIHj þ

P
imijI

H
i � IHj

P
imji ð2Þ

dRH
j

dt
¼ rIHj � m

HRH
j þ

P
imijR

H
i � RH

j

P
imji ð3Þ

dDH
j

dt
¼ dIHj ð4Þ

dLM
j

dt
¼ f ZðSM

j þ IMj Þ;Kj

� �
� vLM

i � CL
j L

M
j ð5Þ

dSMj
dt
¼ vLM

i � b
MIHj S

M
j � m

MSM
j � CM

j S
M
j ð6Þ

dI;Mj
dt
¼ b

MIHj S
M
j � m

MIMj � CM
j I

M
j ð7Þ

dC;M
j

dt
¼ aMDH

j þ g
MInH

scal � �
MCM

j ð8Þ

dC;L
j

dt
¼ ðaLDH

j þ g
LInH

scal � �
LCL

j Þ 1 �
C;M

j

qþ C;M
j þ C;L

j

 !

ð9Þ

where Eqs 1–4 describe the dynamics of human population, Eqs 5–7 are for mosquito

dynamics, while Eqs 8 and 9 indicate the dynamics of control actions on adult and larvae mos-

quitoes due to public reactions. We assumed a constant economic/manpower cost limit for

total pesticide application (whether from larvicides or adulticides), and therefore assumed

that the control change in larvae (
dC;Lj
dt ) is proportional to the percentage of the total control

used for larval mosquitoes (i.e., 1 � CM�

qþðC
M þ CLÞ in Eq 9, where q = 0.00001 is used to pre-

vent the denominator from getting to 0). At local scale, InH
scal ¼ InH

local ¼ IHj ; at regional scale,

InH
scal ¼ InH

neigh ¼ IHj þ
Pn

k I
H
k , in which patch k indicates the adjacent patch to j and n is the

number of all adjacent patches; for global scale, InH
scal ¼ InH

global ¼
PN

i IHi , which is the sum of all

infected humans across all patches N. In the absence of control (setting Eqs 8 and 9 = 0), the

average human infections per patch is defined as InH
Cont� . For simplicity, here we also assumed

that each serious case produces 100 times the demand for control as that from one infected

case (i.e., αM = αL = 100γ) and γM = γL = γ [38]. The details of all the variables in the model are

described in Table 1. The parameters and their values are in Table 2. The time t is scaled to rep-

resent a single day. In the following, we use 300 timesteps (days) for all simulations, by which

point the system would reach equilibrium (no change in each variable).
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Through this SIR model under human meta-population structure, we first analytically studied

the general relationship between total control effort (CM
t þ CL

t ) and disease information across

scales, including the potential effects from early intervention and strength reinforcement. Specifi-

cally, we simulated the dynamics of total control effort as well as the average human infections per

patch under three information scales: local, regional, and global, and further calculated the corre-

sponding control efficacy (i.e., the reduction of infection achieved per unit of control;
InHCont� � In

H
scal

CM
t þC

L
t

).

Table 1. All variables and the corresponding initial values in patch j.

Variables Description Initial values/units

SH Susceptible humans 700; unit: no.

IH Infected humans 1 in a randomly chosen patch; 0 in other patches; unit: no.

RH Recovered humans 0; unit: no.

DH Severe cases in humans 0; unit: no.

LM Mosquito larvae 0; unit: no.

SM Susceptible mosquitoes 1000; unit: no.

IM Infected mosquitoes 0; unit: no.

CM Control on mosquito adult 0; unit: 1/time

CL Control on mosquito larvae 0; unit: 1/time

https://doi.org/10.1371/journal.pcbi.1008762.t001

Table 2. All parameters and their corresponding values in the model. Some parameter values were chosen from the incidence and mortality in early Zika outbreaks in

South America (see Reference).

Parameters Description Value/units Reference

βH Transmission rate in humans 1.5×10−4; unit: 1/time

βM Transmission rate in mosquitoes 3.0×10−4; unit: 1/time

μH Natural mortality in humans (8.6/1000)/365; unit: 1/time Central, 2017

μM Natural mortality in mosquitoes 1/13; unit: 1/time Stone et al., 2017

bH Birth rate in humans (9/1000)/365; unit: 1/time Ellington et al.,

2015

r Recovery rate in humans 0.037; unit: 1/time Gao et al., 2016

ωH Disease-induced mortality in humans 0; unit: 1/time

δ Composite rate: the rate at which infection producing severe outcomes of the

type that leads to increased public fear

190/3, 474, 182; unit: 1/time Ellington et al.,

2016

v Maturation rate 1/7; unit: 1/time Stone et al., 2017

η Egg laying rate for mosquitoes 10 Stone et al., 2017

p Fraction of people traveling among patches 0.01

q a value to avoid mathematical insignificance 0.00001

αM Control strength per severe case on adult mosquitoes 100 times of γM; unit as 1/ (no. �time�time)

αL Control strength per severe case on larval mosquitoes 100 times of γL; unit as 1/ (no. �time�time)

γM Control strength per infected case on adult mosquitoes e� �M=80; unit as 1/ (no. �time�time)

γL Control strength per infected case on larval mosquitoes e� �L=80; unit as 1/ (no. �time�time)

�M Demotivation strength for adult mosquito control given per unit control 100 or change as a variable with �M+�L = 200; unit: 1/

time

�L Demotivation strength for larval mosquito control given per unit control 100 or change as a variable with �M+�L = 200; unit: 1/

time

Kj Breeding capacity for mosquito larvae in patch j 2000 ± d where d = unif{1,10}; or change as other

levels at 500, 800; unit: no.

mij Human movement rate from patch i to j 1/n (n is the number of all connected patches to focal

patch i); unit: 1/time

InH
scal Infected human across scales Change with IHj ; unit: no.

InH
Cont� Average human infection per patch in the absence of control Change with IHj ; unit: no.

https://doi.org/10.1371/journal.pcbi.1008762.t002
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We also simulated the above results under three levels of mosquito breeding capacity (e.g., 500,

800 and 2000, representing small, medium, and large caps on mosquito populations) and the sys-

tem equilibria under the tradeoff between environmental concerns on controlling mosquito larvae

(or ecological control; �L) or adult (or epidemiological control; �M). To get stable results from the

simulations, we excluded the patch where disease starts.

Results

From Eqs 8 and 9, we can calculate the equilibrium control effort on both mosquito larvae and

adult:

CM
j � ¼

1

�M
aMDH

j þ g
MInH

scal

� �
ð10Þ

CL
j � ¼

1

�L
aLDH

j þ g
LInH

scal

� �
ð11Þ

Thus, the total control effort at equilibrium is:

CM
t � þ CL

t � ¼
1

�M
aMDH

j þ g
MInH

scal

� �
þ

1

�L
aLDH

j þ g
LInH

scal

� �
ð12Þ

Because the disease information across scales depends on the infected human population at

these scales (e.g., local information is determined by infected human in local patch, regional

information depends on total infecteds in focal and neighboring patches; global information

comes from the total infected ones at all patches), the small-scale disease information would be

nested into larger-scale information at any time-step, i.e.,

0 � InH
local
� InH

neigh
� InH

global
; ð13Þ

and

dðCM
t � þ CL

t �Þ

dInH
scal

¼
gM

�M
þ
gL

�L
> 0; ð14Þ

so we would have total control effort (CM
t � þ CL

t �) positively correlated with the informa-

tion of human infection across scales. The existence of control actions (Eqs 8 and 9), no matter

under which scale of disease information InH
scal, can largely reduce human infections.

Scaled information with equal concerns in mosquitoes

When the public has a fixed and equal level of ecological as epidemiological concern (i.e., �M =

�L = �, here we assume � = 100 for simulation), Eq 14 turns to:

dðCM
t � þ CL

t �Þ

dInH
scal

¼
gM þ gL

�
ð15Þ

Therefore, the change of total control effort has a fixed and constant relationship with the

change in infected human cases across scales.

Including early intervention

In the presence of early intervention, control action in a patch could start earlier than the time of

the first local infected case (i.e., CM
t � þ CL

t � under the condition of 0 ¼ InH
local � InH

neigh � InH
global).

The verifies that control effort increases with the increase of information scale (see the increase

PLOS COMPUTATIONAL BIOLOGY Information influences disease dynamics
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pattern of the red lines in Fig 2 from left to right). This pattern of the control effort exists across all

three levels of mosquito breeding capacity (compare the red lines across rows in Fig 2).

No matter what scale of disease information, the introduction of control effort significantly

decreases the average human infections per patch (compare the solid black line without con-

trol and the other lines with control in Fig 3). Under larger mosquito breeding capacity, stron-

ger control effort from larger-scale information leads to larger reduction of average human

infections in each patch (see the red-line trend across scales with K = 2000 in Fig 3G–3I). How-

ever, when mosquito breeding capacity is relatively low, there is no obvious relationship

between information scale and average infected cases per patch (compare the red-line patterns

across scales under K = 500 or 800 in Fig 3).

The control efficacy (i.e., the decrease in human infection caused per unit of pesticide

usage;
InHCont� � In

H
Scal

CM
t þC

L
t

), in general, decreases as the information scale increases (compare the red

lines among the three columns at different mosquito carrying capacities in Fig 4A–4C, 4D–4F

and 4G–4I). Although larger-scale information can largely reduce human infection under

larger mosquito breeding capacity, the increase in total control effect still plays a larger role on

shaping the control efficacy.

Excluding early intervention

In the absence of early intervention (i.e., the control effort in each patch would not start until

the disease arrives in that patch), control effort is defined to be 0 so long as infection remains

Fig 2. The dynamics of total control effort (unit: 1/time) per patch under three levels of mosquito breeding

capacity (e.g., K = 500, 800 and 2000) and three scales of disease information (i.e., local, regional, and global

scale). Here we exclude the patch where disease starts to get the average total control effort in one patch. The blue lines

indicate the dynamic in the absence of early intervention, while the red lines are the dynamics in the presence of early

intervention (the dashed red lines are the 95% confidence interval (CI)).

https://doi.org/10.1371/journal.pcbi.1008762.g002
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at 0 (i.e., if InH
local ¼ 0; InH

neigh ¼ InH
global ¼ 0). This assumption largely increases the total control

effort at larger-scale disease information compared to the scenario in the presence of early

intervention (e.g., compare the red and blue lines at global scale under K = 500 or 800 in Fig

2C and 2F). However, the increased total control does not lead to the improved reduction in

average human infections (compare the blue and red lines in Fig 3C and 3F). Compared to the

control with early intervention, the average infected cases even show an overall increase in the

absence of early intervention (compare the relative locations of the blue and red lines in Fig 3).

Therefore, without early intervention, the increased control effort but lower infection reduc-

tion further leads to a lower control efficacy in general (compare the relative locations of the

blue and red lines in Fig 4). The above inefficacy of control without early intervention is very

strong when mosquitoes have lower breeding capacity (see the obvious decrease in efficacy

under K = 500 and 800 in Fig 4). This means, under smaller mosquito breeding capacity, early

intervention plays a large role in reducing the average human infections. This role of early

intervention is specifically large when disease information is from a larger spatial scale (see the

bigger difference of the red and blue lines in Fig 4C and 4F).

Scaled information with trade-off concerns in mosquitoes

Because the above results showed that early intervention from larger-scale information can

increase the control efficacy, in the following, we only analyze different concern combinations

in the presence of early intervention.

Fig 3. The dynamics of human infections (unit: no.) per patch under three levels of mosquito breeding capacity

(e.g., K = 500, 800 and 2000) and three scales of disease information (i.e., local, regional, and global scale). Here

we exclude the patch where disease starts to get the average infected human number in one patch. The blue lines

indicate the dynamic in the absence of early intervention, while the red lines are the dynamics in the presence of early

intervention (the dashed red lines are the 95% confidence interval (CI)).

https://doi.org/10.1371/journal.pcbi.1008762.g003
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When mosquito breeding capacity is small (e.g., K = 500), a relatively large environmental

concern, limiting air-based control (i.e., epidemiological control), would significantly decrease

infected cases in the human population (see the line trend in Fig 5A). Under an extremely

small air-based environmental concern (i.e., larger usage of adulticide; epidemiological con-

trol), infected cases dramatically increase, especially under higher-scale disease information

(compare the three lines around �M = 0 in Fig 5A). This indicates that under a relatively small

mosquito reservoir (i.e., smaller breeding capacity), a slight preference for larval control (i.e.,

usage of larvicide; or ecological control) would largely reduce disease prevalence. With the

increase of mosquito breeding capacity (e.g., K = 800 and 2000), a unimodal pattern occurs:

full environmental concern in either larvae (�L = 200, �M = 0) or adult mosquito (�L = 0, �M =

200) would lead to a dramatic decrease in human infections (see the hump curves in d and g in

Fig 5). This demonstrates that under the larger mosquito population (i.e., larger breeding

capacity), the mechanisms of infected reduction shift from shrinking vector population size

(ecological control) to reducing the transmission rate (epidemiological control). This pattern

holds true for all three scales of disease information, although the larger-scale information usu-

ally leads to a larger decrease in infected cases, which is consistent with the previous finding of

fixed equal concerns (see Fig 3).

The total control effort (CM
t � þ CL

t �) in general shows a unimodal pattern along the adult

concern (see the larger values at both �M = 0 and �M = 200) across all information scales (see

the U-shaped curves in Fig 5B, 5E and 5H). The larger information scale corresponds to bigger

control efforts (compare the three lines in Fig 5B, 5E and 5H). This demonstrates that the

Fig 4. The dynamics of control efficacy (i.e., the reduction in human infections per unit of total control effort;

unit: no. � time) per patch under three levels of mosquito breeding capacity (e.g., K = 500, 800 and 2000) and

three scales of disease information (i.e., local, regional, and global scale). Here we exclude the patch where disease

starts to get the average control efficacy in one patch. The blue lines indicate the dynamic in the absence of early

intervention, while the red lines are the dynamics in the presence of early intervention.

https://doi.org/10.1371/journal.pcbi.1008762.g004
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higher infection reduction is usually coupled with larger control effort in general (as expected).

This pattern is extremely strong when environmental concern is fully shifted to either water-

based or air-based control.

The extreme large control effort at either full concern in larvae or adult mosquito further

leads to a much lower control efficacy (see Fig 5C, 5F and 5I). In other words, if the public con-

cern about pesticide usage only focuses on mosquito larvae or only on adult mosquitoes, the

disease control would have very low efficacy (i.e., large pesticide usage without achieving con-

comitantly large disease reduction). When mosquito breeding capacity is relatively low (e.g., at

K = 500 and 800), the control efficacy also shows a sharp drop near the middle level of adult

concern (see �M = 100 in Fig 5C and 5F), which corresponds the increase in total control effort

at that concern level (see the embedded light graphs in Fig 5B and 5E). This is because, under

lower breeding capacity, equal concerns (i.e., �L = �M = 100) could achieve a potentially higher

mosquito population due to mosquito life-stage dynamics [4], thus, at equilibrium, larger con-

trol effort is needed to keep the vector size low (see the vector size at middle concern level

when �M = 100 in S2A and S2B Fig). In general, local-scale disease information achieves higher

efficacy than both regional and global information (consistent with the fixed concern result;

see the red lines in different columns of Fig 4). However, when mosquito breeding capacity is

large (e.g., K = 2000), control efficacies across information scales do not show much difference,

Fig 5. The average values of human infections (unit: no.), total control effort (unit: 1/time) and control efficacy (unit:

no. � time) at equilibrium per patch (at time step = 300) along the environmental concern on adult mosquito (�M)

under three levels of mosquito breeding capacity (e.g., K = 500, 800 and 2000) and three scales of disease information

(i.e., local, regional, and global scale, corresponding to the red, blue, and green lines). Here we exclude the patch where

disease starts to get those average values. The embedded light plots in b and e show the enlarged graphs of the total

control effort between 25 and 180 adult concern, in which all three lines (corresponding to three information scales)

overlap.

https://doi.org/10.1371/journal.pcbi.1008762.g005
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especially when adult/ or epidemiological concern is relatively small (see the overlaps of the

three lines in Fig 5I).

Discussion

To design a more comprehensive and applicable control strategy for vector-borne disease,

more and more studies have started to take human behavior into consideration [4,6,7,38–40].

In a modern media era, human behaviors are largely influenced by social media: e.g., the

reports of infectious diseases via twitter or facebook, etc., which can affect the attitudes of the

society towards disease control [14,41]. These impacts from social media have been gradually

paid more and more attention as COVID-19 spreads [15,42]. Here we first studied how one

important voluntary human reaction–public sensitive reactivity towards larger-scale disease

information–can influence disease dynamics and control efficacy in a human metapopulation

system.

Compared to local-scale infection information, larger-scale disease information would trig-

ger the public to impose stronger and earlier mosquito control in local areas. Under smaller

mosquito breeding capacity (e.g., K = 500 or 800), mosquito population size (e.g., the similar

maximum values across S1A–S1F Fig), mainly determines the human infections per patch (see

the similar infected cases across Fig 3A–3F). This is due to large larval competition and mos-

quito population restriction under small breeding capacity [43,44]. When there is a larger vec-

tor breeding capacity, the environment does not meaningfully constrain the mosquito

population (i.e., less larval competition under larger breeding capacity, thus, less restriction on

the vector population size; [43,45]. In this case, the increase in information scale would

decrease average infections via decreasing the number of adult mosquitoes as well as human-

mosquito contact rate. The increased control effort with information scale mainly comes from

strength reinforcement (i.e., the overall control strength in local patches; see the almost over-

lapped blue and red lines in Fig 2). However, at the scale of global information, with relatively

lower mosquito breeding capacity, early intervention can shrink the size of the mosquito

reservoir (compare the red and blue lines in S1C and S1F Fig; see also Schwab et al. 2018),

leading to a significant decrease in total control effort (compare the blue and red lines in Fig

2C and 2F).

By impacting both the size of vector population and direct transmission rate, the concern

preference between larval/ or ecological and adult/ or epidemiological control can further reg-

ulate human infections through mosquito life-stage dynamics. In general, smaller mosquito

breeding capacity would affect infection through limiting the vector population size, while

adult numbers and the transmission rate would play a major role in shaping human infections

under a larger mosquito breeding capacity. Therefore, small concern about adult / or epidemi-

ological control would decrease infections by lowering adult numbers and transmission rate

(see the lower values at small x-axis values in Fig 5G), while small concern about larval / or eco-

logical control (i.e., �L = 0, �M = 200) would decrease infections via shrinking the mosquito

population size (see the lower size at higher x-axis values in S2 Fig). Similar to the fixed con-

cern situation (e.g., �M+�L = 200), in general, larger-scale disease information (i.e., regional

and global scale) and public sensitive reactivity leads to higher control effort but lower infec-

tions and control efficacy than local-scale information (compare the three scales in Fig 5B,

5E and 5H).

Under lower mosquito breeding capacity, however, the average human infections are

higher at lower levels of air-based concern (see the higher values of infections at low air-based

concern in Fig 5A and 5D). This is because under small mosquito breeding capacity, mosquito

larvae would have stronger density-dependent mortality (see Eq 5); thus, killing more adults
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(i.e., less air-based concern) can release more space for mosquito larvae, which boosts mos-

quito growth (i.e., the compensation from density-dependent mortality; see [46–50]). With

this compensated mosquito growth, average infections also increase (see the higher values at

lower adult concern in Fig 5A and 5D). The large-scale disease information, which drives a

higher control effort, would lead to stronger mosquito compensatory growth, as well as higher

human infections (compare the three-scale lines at low mosquito concern in Fig 5A and 5D).

Under the lower breeding capacity, equal concerns for both air- and water-based control

would potentially lead to a higher vector population (through life-history dynamics; see Eqs 5

and 6); thus, at equilibrium, stronger control effort would be needed to reduce vector size (see

the sharp increase in total control effort near the intermediate adult concern in Fig 5B and 5E).

This large control effort at middle-level of adult concern further drives a sharp drop in control

efficacy (see the drop in the middle of x-axis in Fig 5C and 5F). The density-dependent mortal-

ity, combined with control efforts to different life stages, can largely influence system dynamics

and disease prevalence. Future disease control strategies targeting each life stage need to con-

sider the above effects.

Different network structures as well as human migration (e.g., commute movement or

directed migration to some “hub” areas; [51] can still influence this dynamics. In this paper,

we assumed both an independent probability of connection among all patches and the random

movement of a certain proportion of human among connected patches. Therefore, future

studies can further explore those potential changes by relaxing those assumptions. We also

assume that environmental concern does not change with control effort (see Eqs 5 and 6).

However, in real systems, environmental concern might increase with the increase of control

effort. For instance, the accumulated control effort (e.g., the usage of pesticide) may cause

more serious environment degradation, leading to a larger negative feedback from the public.

This would directly influence the dynamics of total control effort, as well as the evaluation of

control efficacy. Further studies should be done to explore the sensitivity of information scale

to this non-linear concern-control correlation. Here we also assume all local patches perform

similar control activities given the same disease information. However, public reaction in dif-

ferent areas may show heterogeneous variation. For example, some hub areas may be more

likely take actions based on global-scale disease information, while some rural areas might

tend to take actions based on local-scale disease information.

In addition, the control efficacy in this study can also be easily modified to fit different

applications. For example, the impact of the local economy could be included in the control

effort to evaluate the infection reduction per unit of pesticide expense: e.g., higher cost of pesti-

cide would lower the efficacy given certain economic expense. In that case, for areas with

access to cheaper pesticide, control efficacy would tend to be larger, so the increase of control

effort in certain range may not be the main consideration for implementing disease control. In

areas with more expensive pesticides, we would expect relatively lower efficacy. Furthermore,

local government may incorporate public sensitive reactivity into their control strategies

[41,52], which may lead to a different format for control efficacy. Insecticide resistance [53]

could also largely influence the control efficacy, which may also affects larval and adult mos-

quito differently. Further studies can be done to consider these types of factors.

In summary, our study demonstrates that, although the public reaction due to the disease

information from larger-scale disease information may decrease the overall control efficacy,

the amount of this decrease depends on mosquito breeding capacity and the combinations of

environmental concern about air-versus water-based pesticide use. Our findings can be

broadly applied into real system, and further guide local government to anticipate and leverage

the potential negative influences from public sensitive reactivity and further achieve integrated

vector management [54–56]. For example, at the locations where mosquitoes have large
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suitable habitats (e.g., ponds, unremoved trash piles, small vessels for standing water, etc.; see

[21,26]; where mosquito has larger breeding capacity), control agencies could guide local

members of the public to slightly shift their control effort towards air-based control of adult

mosquitoes (e.g., through social media; [57–59]. For the areas where mosquitoes have only

limited suitable habitat (i.e., lower mosquito breeding capacity), encouraging local members of

the public to adopt early intervention would largely decrease the disease reservoir and achieve

a higher control efficacy (see the red lines in Fig 4A–4F).
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