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Abstract

Utilizing ENU mutagenesis, we identified a mutant mouse with elevated platelets. Genetic mapping localized the
mutation to an interval on chromosome 19 that encodes the Jak2 tyrosine kinase. We identified a A3056T mutation
resulting in a premature stop codon within exon 19 of Jak2 (Jak2K915X), resulting in a protein truncation and
functionally inactive enzyme. This novel platelet phenotype was also observed in mice bearing a hemizygous
targeted disruption of the Jak2 locus (Jak2+/-). Timed pregnancy experiments revealed that Jak2K915X/K915X and Jak2-/-

displayed embryonic lethality; however, Jak2K915X/K915X embryos were viable an additional two days compared to
Jak2-/- embryos. Our data suggest that perturbing JAK2 activation may have unexpected consequences in elevation
of platelet number and correspondingly, important implications for treatment of hematological disorders with
constitutive Jak2 activity.
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Introduction

Cytokines play an integral role in hematopoiesis by providing
growth signals to progenitor and committed cells that promote
mitogenesis, survival and in some cases differentiation. Once
bound to their cognate receptors, cytokines mediate
downstream signaling through activation of components of the
Jak-Stat signaling pathway. Thrombopoietin (Tpo) is the
principal cytokine regulator of megakaryopoiesis, through
binding to its cognate receptor Mpl. Tpo activates the Jak2 and
Tyk2 tyrosine kinases [1] as well as the Stat3 and Stat5

transcription factors [2,3,4]. The importance of Tpo, its receptor
and proximal signaling pathways in platelet function is
illustrated by the discovery of gain-of-function mutations in Tpo
[5], Mpl [6,7] and Jak2 [8,9,10,11] that all result in Essential
Thrombocythemia (ET). Similarly, loss-of-function mutations in
Mpl have been documented in Congenital Amegakaryocytic
Thrombocytopenia [12,13]. Jak2 is critical for murine
embryogenesis as mice lacking Jak2 expression die of anemia
at E12.5 [14,15].

While screening ENU mutagenized mice for dominant
hematopoietic defects, we identified a mouse with
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thrombocythemia and determined that the mutation resulted in
a truncated allele of Jak2 that lacked catalytic activity. Analysis
of this mutation has uncovered a novel function of Jak2 in the
megakaryocyte/platelet lineage.

Materials and Methods

Mice and ENU mutagenesis
C57Bl6/J (B6) and 129S1/SvImJ (129) mice were purchased

from The Jackson Laboratory. Jak2+/- mice (on the B6 genetic
background) were provided by Dr. James Ihle, Memphis, TN.
All mice were maintained in specific-pathogen free facilities at
the Toronto Centre for Phenogenomics or Ontario Cancer
Institute. Animal protocols were approved by the OCI Animal
Care Committee (Permit Number 1517). All efforts were made
to reduce animal suffering.

To induce random mutations, one intraperitoneal injection of
150mg/kg ENU was administered to male 129 mice
(mutagenized strain) [16]. The F1 generation (129;B6) was
produced by out-crossing ENU-mutagenized males to B6
(mapping strain) females – pups from this breeding were
designated generation 1 (G1). G1 mice were screened to
detect dominant traits deviating from normal homeostatic
venous blood parameters by at least two standard deviations
from ‘normal’ G1 parameters. Affected mice with elevated
platelets were sequentially back-crossed to B6 mice for genetic
mapping. The Jak2K915X allele was maintained on a B6
background by intercrossing heterozygous or wild type (WT)
mice. Timed matings were performed on G9 animals and
peripheral blood analysis was completed on G10 mice.

Hematologic analysis, genetic mapping and
sequencing

Peripheral blood from 6-8 week old mice was collected by
saphenous venipuncture. Complete blood counts (CBC) were
performed using a Coulter Ac-T Differential Hematology
Analyzer. Jak2+/+ mice were littermate controls of Jak2+/-

animals. Jak2Control mice are littermate controls of Jak2K915X G10
breedings. Bone marrow sections were prepared from femurs
of 12-week old mice. Femurs were fixed in 10% formaldehyde
and then sectioned (4 µm) and stained with Hematoxylin and
Eosin (H&E) at the CMHD pathology core (http://www.cmhd.ca/
enu_mutagenesis/pathology.html). Affected mice were
sequentially bred to B6 to confirm heritability and to genetically
map the mutation using microsatellite base genome scan and
single-nucleotide polymorphism markers differentiating 129 and
B6 alleles [16]. Once the mutation was mapped to a 6.7Mb
region of chromosome 19, candidate gene analysis was used
to select genes for exon sequencing [14,15].

Genotyping
Multiplex PCR was used to genotype Jak2K915X and Jak2+/-

mice using genomic DNA prepared from tail or biopsy tissue
[14]. All Jak2K915X genotyping was performed at The Centre
for Applied Genomics using a custom TaqMan SNP genotyping
assay. The custom assay was used to discriminate between

the wild type allele (A 3056nt) and the Jak2K915X allele (T
3056nt).

Clonogenic assays
CFU-C, CFU-E and CFU-Mk assays were performed as

previously described [17,18].

5-fluorouracil and Phenylhydrazine Priming
Six to eight-week old mice were injected with 5-fluorouracil

(5FU) or Phenylhydrazine (PHZ), as previously described
[18,19]. Briefly, 5FU was administered at 120 µg/kg and blood
was collected at Days 0, 6, 8 and 13. PHZ was delivered by
intraperitoneal injection at 100 µg/kg and peripheral blood was
harvested at Days 0, 1, 7 and 9. Complete blood counts were
performed with a HEMAVET 950 (Drew Scientific Inc.).

Transfection and Cell Culture
293T cells (ATCC) were transfected with HA-tagged Jak2 or

HA-Jak2 K915X. Alternatively, Jak2 constructs were generated
that expressed the 3’ UTR or had the 3’ UTR removed. Thirty-
six hr after transfection, cells were washed, lysed as described
[20]. Lysate fractions were resolved via SDS-PAGE and
transferred to PVDF membranes for Western blotting
experiments.

Western blotting
Membranes were blocked in optimal blocking agent (either

2.5% bovine serum albumin or 5% skim milk powder in 50 mM
TrisHCl (pH 8.0), 150 mM NaCl, 0.1% Tween 20 (TBST)) for 1
hr. Primary antibody incubations were performed for 1 hr,
followed by 30 min washing in TBST. Secondary incubations
were performed with HRP-Sheep anti-mouse IgG (GE
Healthcare Life Sciences, Mississauga, ON) or HRP-Protein A
(GE Healthcare Life Sciences, Mississauga, ON) for 30 min.
After washing, membranes were developed by ECL.

Antibodies
Anti-Jak2 and β-tubulin antibodies were purchased from Cell

Signaling Technology (Beverley, MA) and Millipore (Billerica,
MA). The HA antibody was from Covance (Laval, QC).
Phosphorylation-specific pSer-523 [21] and pTyr-570 [22] Jak2
antibodies have been previously characterized.

Microscopy
Megakaryopoiesis was assessed by microscopic

examination of bone marrow of femurs on histology sections.
Megakaryocytes are identified by their characteristic
morphology of large size, lobulated nuclei and abundant
cytoplasm and quantified by counting the number of
megakaryocytes per microscopic field under a 40x objective.

Results

We identified a G1 mouse, strain 7254, with elevated
platelets. Back-crossing on to the B6 strain and SNP-based
mapping resulted in the identification of a 6.7 Mb heritable
region on chromosome 19 as the interval encoding the
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responsible mutation. We noted that Jak2 was within this
interval and hypothesized that the mutation underlying the
7254 phenotype may be in Jak2. We performed genomic DNA
sequencing which identified an A3056T mutation in exon 19 of
the Jak2 locus. This mutation leads to a K915X premature stop
codon in the functional JH1 kinase domain of Jak2 (Figure 1A).

Western blotting of splenocytes isolated from Jak2K915X,
Jak2+/- and Jak2+/+ mice revealed a novel, truncated 95 kDa
protein in Jak2K915X mice (Figure 1B, lanes 4 and 5), that co-
migrated with the expressed Jak2K915X protein in 293T cells
(lanes 8 and 9).

Recent evidence has suggested that the Jak2 JH2 domain
possesses weak intrinsic kinase activity [23,24]. Considering
that the JAK2 K915X mutation resides in the Jak2 JH1 domain,
we tested whether JAK2 K915X protein product is catalytically
active. Both wild type Jak2 and Jak2 K915X are
phosphorylated at Ser-523 [21] (Figure 1C, lanes 2 and 3).
However, only wild type Jak2 is phosphorylated at Tyr-570 [22]
(lane 6) and Tyr-1007/1008 (lane 9).

The possibility of nonsense-mediated decay occurring was
eliminated by expression of Jak2 cDNAs that lacked or
contained the Jak2 3’ untranslated region. The presence of the
Jak2 3’ UTR resulted in comparable protein expression (Figure
1D, lanes 4 and 5). While Jak2 and Jak2K915X protein was
reduced compared to the cDNA lacking the 3’ UTR (lanes 2
and 3), both forms of Jak2 were readily detected when the 3’
UTR was present.

To determine whether the Jak2K915X allele phenocopied a
Jak2 null allele or represented a neomorphic allele, we
compared mice bearing homo- and heterozygous mutations in
these loci. Increased megakaryocytes were observed upon
enumeration of bone marrow sections isolated from Jak2K915X/+

mice (Jak2+/+ = 7.5 ± 1.8; Jak2K915X/+ = 9.3 ± 2.4; p = 0.016).
Representative sections from wild type and Jak2K915X/+ mice
illustrate increased megakaryocytes in mutant mice (Figure
2A). Elevated platelets were found in male and female mice in
Jak2K915X/+ mice at 8 weeks of age (Figure 2B). Interestingly,
although this has not previously been reported, Jak2+/- mice
showed an identical phenotype. In contrast to the platelet
phenotype, red blood cell numbers (Figure 2C) and other
hematological parameters (data not shown) were comparable
in both Jak2K915X/+ and Jak2+/- mice, with the exception of
decreased RBC in Jak2+/- male and Jak2K915X/+ female mice at 8
weeks, compared to Jak2+/+ and Jak2Control littermates.

Clonogenic assays were performed on bone marrow and
spleen cells from Jak2K915X/+ and Jak2+/- mice. Interestingly, no
statistically significant differences were observed in CFU-
Megakaryocyte assays from bone marrow isolated from both
strains of mice (Figure S1). There were no significant
differences in hematopoietic progenitor number or morphology
between the genotypes (Figures S1 and S2).

Jak2K915X/+ and Jak2+/- mice were challenged with 120 µg/g 5-
fluorouracil or 100 µg/g phenylhydrazine. Recovery curves
were similar for all genotypes in response to hematopoietic
stress induced by 5-fluorouracil (Figure S3) or phenylhydrazine
(Figure S4).

Jak2-/- embryos die at E12.5 due to a block in fetal
erythropoiesis. Timed matings were conducted to generate

Jak2K915X/K915X, Jak2K915/- and Jak2-/- embryos and determine
whether embryonic lethality is similar between the Jak2 alleles
(Figure 3). Embryos were dissected at E12.5 and E14.5 and
embryos were segregated into healthy red, anemic white or
terminal re-absorbing categories. Reabsorbing and white
embryos were assumed to be incapable of producing viable
pups. No viable Jak2-/- embryos were observed at E14.5 from
three dissections comprising 26 implantations. However, viable
Jak2K915X/- or Jak2K915X/K915X embryos were present at E14.5. No
viable Jak2K915X/K915X embryos were identified later than E14.5.

Discussion

The initial characterization of the Jak2 knockout mouse
revealed that Jak2 played a critical role in erythropoiesis and
thrombopoiesis, with embryonic lethality observed at E12.5
[14,15]. Since the EPO and EPO-R null mice die at E13.5, the
slightly earlier death observed in Jak2-/- embryos was attributed
to the recruitment of Jak2 to other cytokine receptors including
the TPO-R. Beyond this initial evaluation of the homozygote
mice, little characterization of Jak2+/- mice has been performed.

Utilizing random mutagenesis, we have demonstrated a
critical, yet subtle, role for Jak2 in the regulation of
megakaryopoiesis. Loss of one functional allele of Jak2, either
through truncation in Jak2K915X/+ or deletion in Jak2+/-, leads to
elevated platelet production. Mutation of JAK2 is observed in
several hematological disorders including ET [8,9,10,11],
Polycythemia Vera [8,9,10,11], Primary Myelofibrosis
[8,9,10,11] and Acute Lymphoid Leukemia (ALL) [25,26] as
well as chromosomal translocations involving the fusion
partners TEL [27,28,29], BCR [30], PCM1 [31,32,33], PAX5
[34], SEC 31A [35] and SSBP2 [36]. The JAK2 signaling
network also participates in disease mediated by MPL
mutations in ET and CRLF2 mutations in T cell ALL
[37,38,39,40].

The JAK2 K915X protein product does not appear to
possess catalytic activity when phosphorylation of Y570 in the
JH2 domain is used to monitor activity. In contrast,
phosphorylation of S523 is observed in JAK2 K915X. Mutation
of S523 increased catalytic activity of wild type Jak2,
suggesting that S523 is a negative regulator of kinase activity
[21,41]. Earlier studies suggested that phosphorylation of this
residue is mediated by a proline-directed and Mek1-dependent
kinase, potentially Erk [21]. Regarding the phenotype observed
in Jak2K915X/+ mice, both EPO [42] and TPO [43] activate Erk
kinase activity and phosphorylation of Jak2 K915X could
potentiate increased survival observed in timed pregnancy
experiments.

Genomic resequencing efforts have identified sporadic
nonsense mutations in JAK2. For example, W777X [44] and
Q1112X mutations were identified in lung cancer, E890X [45]
was observed in colon cancer and E1097X mutation was
uncovered in a case of kidney cancer. None of these mutations
were recurrent and all but the W777X mutation was confirmed.
However, no further characterization of the protein products
has been performed and it is unclear how these loss-of-
function JAK2 mutations interact with the other genetic
abnormalities observed in these patients.
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Figure 1.  Strain 7254 is defined by a K915X mutation and generates a non-functional truncated Jak2 protein.  (A) The Jak2
domain structure is indicated. The DNA sequence from 7254 splenocytes and corresponding protein sequence are also shown. (B)
Splenocytes were harvested from phenylhydrazine primed Jak2K915X and Jak2+/- mice and their wild type littermates. HA-tagged Jak2
and Jak2K915X were also expressed in 293T cells. A Western blot was performed with a peptide-specific JAK2 antibody. (C) 293T
cells were transfected with cDNAs encoding HA-Jak2 or HA-Jak2 K915X. Western blotting was performed with phosphorylation-
specific antibodies that recognize pSer-523, pTyr-570 and pTyr-1007/1008 in Jak2. The membranes were stripped and reprobed
with an anti-HA antibody. (D) HA-tagged versions of Jak2 and Jak2K915X with or without the JAK2 3’ UTR were expressed in 293T
cells. Western blots were performed with 4G10 anti-phosphotyrosine and HA antibodies. Immunoblotting with anti β-tubulin was
performed to demonstrate equal loading.
doi: 10.1371/journal.pone.0075472.g001
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Figure 2.  Jak2K915X/+ mice have elevated megakaryocytes and platelets.  (A) Bone marrow sections were prepared from 12
week Jak2+/+ and Jak2K915X/+ mice and stained with H and E. Representative sections are illustrated at 20x magnification.
Megakaryocytes are indicated by an asterisk. (B) Platelets from male and female wild type, Jak2+/- and Jak2K915X mice at 8 wk of age
were monitored. (C) Red blood cells were evaluated from male and female mice at 8 wk of age from WT, Jak2+/- and Jak2K915X/+

mice. Jak2+/+ or JAK2Control mice were littermate controls of Jak2+/- or Jak2K915X/+ breedings, respectively. Statistically significant
differences between groups are denoted as *, p< 0.05 and **, p<0.0001. Each group has n=20-30.
doi: 10.1371/journal.pone.0075472.g002
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Clinical trials using Jak2 inhibitors including INCB018424
[46,47], CYT387 [48] and SAR302503 (TG101380) [49] have
been completed or are underway to treat primary myelofibrosis.
Some patients initially responsive to JAK2 inhibition have
become insensitive to JAK2 inhibitors. Whether this is due to
intrinsic resistance, mutation of JAK2 [50,51,52] and its

effectors, persistence due to heterodimerization with other JAK
kinases [53] or other mechanisms remains to be investigated.
While patients report higher quality-of-life scores, JAK2
inhibitors have not reduced allele burden, potentially due to
their ability to target a spectrum of tyrosine kinases [47,54]. No
studies have reported a paradoxical thrombocytosis in

Figure 3.  The K915X mutation in Jak2 enhances viability of mouse embryos.  Embryos from timed matings were sacrificed at
E12.5-E14.5. Representative embryos from E12.5 are shown. A summary of the results is provided in tabular format.
doi: 10.1371/journal.pone.0075472.g003
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response to JAK2 inhibition to date. Our research suggests that
altering JAK2 activation may lead to unexpected clinical
outcomes.

Supporting Information

Figure S1.  Erythroid and Megakaryocyte progenitors are
unaltered in Jak2K915X/-and Jak2+/- adult mice and do not
show cytokine independent growth. (A) CFU-MK frequency
in the bone marrow grown in the presence or absence of TPO.
(B) Bone marrow CFU-E frequency grown with or without EPO.
(C) Splenic CFU-E frequency grown in the presence or
absence of EPO. All CFU-E and CFU-Mk were derived from
Jak2K915X/-and Jak2+/- and littermate controls at 12-14 wks of
age. Data are presented as ± SEM; n=5-8.
(TIF)

Figure S2.  Functional loss of Jak2 in Jak2K915X/-and Jak2+/-

does not disrupt CFU-C frequency in the bone barrow or
spleen. (A) Total CFU-C frequency in the bone marrow. (B)
The frequency of CFU-C in the spleen. (C) CFU-C differential
count of bone marrow derived colonies included: CFU-G
(granulocyte), CFU-M (monocyte), CFU-GEMM (granulocyte,
erythrocyte, monocyte and megakaryocyte), CFU-GM
(granulocyte and monocyte) and BFU-E (erythroid). (D) Splenic
CFU-C differential. All CFU-C were derived from Jak2K915X/-and
Jak2+/- and littermate controls at 12-14wks of age. Data are
presented as ± SEM; n=5-8.
(TIF)

Figure S3.  5FU hematopoietic challenge of Jak2K915X/- and
Jak2+/- results in similar recovery. The recovery curves for

5FU induced hematopoietic stress in Jak2K915X/- (A, C, E) and
Jak2+/- (B, D, F). The recovery curves for red blood cells (A and
B), platelets (C and D) and white blood cells (E and F). Data
are presented as ± S.D. and n=9-11.
(TIF)

Figure S4.  PHZ challenge of erythropoiesis in Jak2K915X/-
and Jak2+/-. Red blood cell recovery curves of PHZ challenged
of Jak2+/- (A) and Jak2K915X/- (B). The data are presented as ±
S.D.; n=8-9.
(TIF)
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