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Abstract: A corrosion inhibitor namely N′-(4-hydroxy-3-methoxybenzylidene) nicotinohydrazide
was synthesized and the inhibition efficiency of the investigated inhibitor toward the mild steel
corrosion in 1 M HCl was studied. The anticorrosion effect has been investigated by weight loss
(WL) techniques and electrochemical analysis includes potentiodynamic polarization (PDP) studies
and electrochemical impedance spectroscopy (EIS). The current investigation has demonstrated that
the tested inhibitor is suitable in corrosive environment and the inhibitive efficacy up to 97% in
1 M HCl. PDP measurements showed that the nicotinohydrazide is a mixed type inhibitor. EIS
measurements showed that an increase in the inhibitory concentration leads to an increase in the
charge transfer resistance (Rct) and a decrease in the double-layer capacitance (Cdl). Experimental
results for the inhibitory performance of WL methods and electrochemical techniques (PDP and
EIS) are in good agreement. The tested inhibitor molecules adsorbed on the surface of mild steel
in a hydrochloric acid solution followed Langmuir’s isothermal adsorption. Quantum chemical
parameters based on density function theory (DFT) techniques were conducted on oxygen/nitrogen-
bearing heterocyclic molecule employed as a corrosion inhibitor for mild steel in HCl to evaluate the
correlation between the inhibitor structure and inhibitory performance. The parameters including the
energy gap (∆E), dipole moment (µ), electronegativity (χ), electron affinity (A), global hardness (η),
softness (σ), ionization potential (I), the fraction of electrons transferred (∆N), the highest occupied
molecular orbital energy (EHOMO), and the lowest unoccupied molecular orbital energy (ELUMO)
were also calculated and were in good agreement with the experimental results.

Keywords: nicotinehydrazide; mild steel; corrosion inhibitor; DFT; EIS

1. Introduction

Due to its unique physical properties, mild steel is widely applied in industrial ap-
plications. Unfortunately, due to the harsh conditions they are in, corrosion is sometimes
inevitable. To avoid catastrophes caused by steel corrosion, Li and colleagues [1] previously
called for corrosion data to be shared. Metallic materials are commonly employed in a
variety of applications, such as construction, particularly in the petroleum, oil, and gas
industries [2], but most metals are thermodynamically unstable in their pure form, and
thus are easily corroded. Corrosion is a major source of safety problems, as well as financial
loss, equating to a global loss according to the National Association of Corrosion Engineers
(NACE) of US$2.5 trillion, around 3.5% of global GDP. Corrosion costs can be either direct
or indirect [3–5]. Direct costs comprise the expense of repairing, storing, and replacing
damaged metallic equipment, as well as the cost of converting alloys to metals and vice
versa, for example, the cost of nickel plating and galvanization [6,7]. Moreover, the direct
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cost of corrosion includes economic losses related to the synthesis, characterization, and
application of compounds as corrosion inhibitors. Corrosion has indirect expenses, such
as leakage of liquids (petroleum) and gases from transport pipelines, which negatively
impact machine performance and transportation efficiency. Rust and scale contamina-
tion (corrosion products) can reduce the number of materials that can be conveyed, and
impair transport efficiency and machine performance by clogging valves and couplings.
Furthermore, the leakage of transported petroleum-based liquids and gases is linked to
a variety of environmental issues because of their toxicity, thus corrosion scientists and
engineers have devised several corrosion mitigation techniques. Inorganic compounds,
such as nitrites, chromates, borates, molybdates, silicates, and zinc salts, were first used to
mitigate corrosion (before 1960) [8] by producing a highly effective passive coating over
metal surfaces. Between the 1960s and 1980s, they were largely superseded by more cost-
effective alternatives including phosphonic acid, gluconates, polyacrylates, surface-active
chelates, polyphosphates, polyphosphonates, phosphonates, and carboxylates [8]. Since
these substances precipitate at the metal-environment contact, they are referred to as precip-
itating inhibitors. Subsequently, between 1980 and 1995, harmful chemicals were gradually
replaced with natural alternatives, such as natural biopolymers, biosurfactants, vitamins,
tannins, and natural compounds. More recently, rare earth metals (REM), polyfunctional
compounds, the synergism of organic/inorganic compounds employing REM, and the en-
capsulation of inhibitors have been key areas of research (1995 to present) [9]. These options
have very minimal or no toxicity while providing excellent protection and because of their
efficiency, economy, ecology, and environmental friendliness (E4), organic chemicals have
become one of the most successful and profitable means of corrosion inhibition [10–12]. The
most efficient and cost-effective corrosion protection technique is the use of natural and/or
synthetic organic molecules as corrosion inhibitors [1,13]. These inhibitors typically contain
acetylenic bonds and/or aromatic rings in their molecular structures as well as heterocyclic
atoms such as phosphorous, sulfur, oxygen and nitrogen. According to the majority of
researchers, organic inhibitors protect the metal by adhering to the substrate surface and
creating a protective layer [1,14]. Thus, contemporary corrosion science and engineering
research efforts are focused on developing corrosion inhibitors with hydrophilic polar
functional substituents in their molecular structures.

This study evaluated the effectiveness of a mild steel corrosion inhibitor since mild
steel is the most widely used building material and is also used to build fuel systems that
come into contact with fuels containing various concentrations of corrosive solution. The
nicotinehydrazide derivative “N′-(4-hydroxy-3-methoxybenzylidene) nicotinohydrazide”
was created and tested as a corrosion inhibitor (Figure 1) as it is easy to synthesize and is
of low cost. Scanning electron microscopy and weight loss techniques revealed that the
inhibitor was effective in corrosive media, with an inhibitory efficacy of up to 97%.
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Figure 1. The molecular structure of nicotinehydrazide.

2. Results and Discussion
2.1. Weight Loss Investigations

Figure 2 presents a summary of the weight loss experimental findings for mild steel
specimens in a test corrosive environment with/without the addition of nicotinehydrazide
derivative. The results showed that the nicotinehydrazide derivative protects the surface
from corrosion and that the anticorrosion performance improved with nicotinehydrazide
derivative concentration. The corrosion rate decreased with increasing inhibitor concentra-
tion at 303 K for 5 h immersion. The greatest inhibition efficiency (95.8%) was observed
at 0.5 mM nicotinehydrazide derivative. The strong inhibition performance is attributed
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to the binding of nicotinehydrazide derivative molecules to the surface of the mild steel,
which is supported by the presence of many heterogeneous atoms (three nitrogen atoms
and three oxygen atoms) in the large molecular structure of the nicotinehydrazide deriva-
tive. Moreover, the type of substituent group connected to nicotinehydrazide significantly
affects the corrosion inhibition ability. The addition of a phenyl group improves the electron
density at the active sites, increasing the interaction between the inhibitor and the mild
steel surface [15].
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Figure 2. Effect of various concentrations of nicotinehydrazide derivative on the corrosion rate and
inhibition efficiency for mild steel immersed in 1 M HCl for 5 h at 303 K.

The ability of the tested inhibitor to inhibit corrosion increases with increasing concen-
tration up to 0.5 mM because the inhibitor molecules are adsorbed onto the surface of the
mild steel, creating a protective barrier. The adsorption of the inhibitor molecules from the
surface of the mild steel causes the inhibitory efficiency to remain nearly constant when the
inhibitor concentration exceeds 0.5 mM and reaches 1.0 mM.

2.2. The Effect of Exposure Time

Mild steel was exposed to 1 M hydrochloric acid in the presence of the inhibitor (0.1 to
1.0 mM) for 1 h to 48 h at 303 K to investigate the effect of exposure time on the corrosion
inhibition efficiency of the nicotine hydroxide derivative (Figure 3). With the increase of
exposure up to 10 h, the inhibition efficacy increases rapidly, slowly decreasing thereafter
from 10 to 24 h, then decreases faster from 24 to 48 h. The increase in nicotine hydrazide
derivatives (due to an increase in concentration) adsorbed on the surface of mild steel with
increased exposure time increases the inhibition efficiency. However, as more inhibitor
molecules are adsorbed on the mild steel surface, the adsorption density of the inhibitor
increases dramatically, allowing for bonding between inhibitor molecules and iron atoms on
the mild steel surface via van der Waals force (physical adsorption) and coordination bonds
(chemical adsorption). Some inhibitor molecules may leave the surface, thus reducing the
effective area covered by the inhibitor and reducing the inhibitory efficacy. The stability
of the inhibitor layer adsorbed in the presence of 1 M HCl solution is evidenced by the
relatively high inhibition efficiency observed during the long immersion period.
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2.3. The Effect of Temperature

After 5 h of immersion at different temperatures (303–333 K), the corrosion inhibition
of mild steel in 1 M HCl in the presence of different concentrations of the tested inhibitor
(0.1–1.0 mM) was examined using the mass reduction technique. The rate of corrosion
increased with temperature at the same inhibitor concentration (Figure 4) and anticorrosion
efficacy decreased with increasing temperature from 303 to 333 K. The tested inhibitor
was most effective at normal temperature. Physical adsorption is suggested by a decrease
in inhibitory effectiveness with increased temperature increase at all concentrations. Ad-
ditionally, the surface of mild steel loses inhibitor molecules at high temperatures due
to desorption.
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2.4. Adsorption Isotherm

Understanding the interaction between the inhibitor molecules and the metal sur-
face is made easier by the adsorption isotherm. The surface coverage (θ) values for the
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nicotinehydrazide derivative, which were collected by weight loss methods, were used
to assess which isotherms best suit the data. The inhibitor molecules attach to the surface
of the metal either physically or chemically, so various adsorption isotherms (Temkin,
Freundlich, and Langmuir isotherms) were used to analyze the adsorption process. The
regression coefficient (R2) for the nicotinehydrazide derivative of 0.99713 suggested that
the Langmuir adsorption isotherms fit the data very well, with the calculated slope and
intercept values for the Langmuir isotherm of 1.06301 ± 0.04035 and −0.09668 ± 0.02238
respectively. Figure 5 depicts the Langmuir adsorption isotherm plot between C/θ and C,
and the equation (Equation (1)) is as follows:

C
θ
=

1
Kads

+ C (1)

where C is the inhibitor concentration, θ represents the surface area, and Kads is the constant
of equilibrium.
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In order to determine the free energy ∆Go
ads of adsorption, a linear straight fitted plot

between C/θ and C was used to determine the Kads value.
The following equation (Equation (2)) relates Kads with ∆Go

ads.

∆Go
ads = −RT ln(55.5Kads) (2)

where 55.5 refers to the water concentration (M), R is the constant of gas and T represents
the temperature.

The values for ∆Go
ads were derived by including Kads in the aforementioned calculation.

Chemical adsorption is indicated by values of ∆Go
ads ranging between −40 kJmol−1

and greater negative values, whereas electrostatic interaction, or physical adsorption, is
indicated by values of ∆Go

ads about or less negative than −20 kJmol−1 [16,17]. The ∆Go
ads
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value for the nicotinehydrazide derivative of −35.57 kJmol−1 suggests that there are two
different types of adsorption, chemical and physical.

2.5. Potentiodynamic Polarisation Measurements

The technique is demonstrated in Figure 6 and Equation (3) illustrates how the in-
hibitive efficacy was evaluated:

IE(%) =
icorr − icorr(inh)

icorr
× 100 (3)

where icorr(inh) and icorr represent the current density in the presence/absence of the
nicotinehydrazide derivative respectively.
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Figure 6. The Tafel slopes, corrosion potential, and corrosion current density were calculated via extrapolation.

Figure 7 exhibits the polarization curves for the mild steel samples in 1.0 M HCl
solution in the absence and presence of various concentrations of nicotinehydrazide deriva-
tive at 303 K. Table 1 presents the experimental findings for the corrosion current density
(icorr), corrosion potential (Ecorr), and inhibition efficiencies, with the anodic Tafel slope
(βa) and cathodic Tafel slope (βc). The Gamry − EchemAnalyzer programme presents the
Tafel fit strategy, which uses a nonlinear chi-square minimization to fit the data to the
Stern–Geary equation.

The corrosion inhibitor can be classified as either a cathodic or anodic when the Ecorr
shift reaches 85 mV [18,19]. Since the nicotinehydrazide derivative displaces most Ecorr ,
the molecules can be regarded as mixed-type. The addition of the nicotinehydrazide
derivative to the acidic medium slows down the anodic dissolution of mild steel and
delays the cathodic hydrogen evolution. Table 1 demonstrates that the presence of the
nicotinehydrazide derivative resulted in a decrease in icorr values, therefore the corrosion
rate decreased as the concentration of nicotinehydrazide derivative increased, improving
the inhibitory efficacy. The values of the Tafel constants (βa, βc) barely changed in the
presence of the nicotinehydrazide derivative, demonstrating that the nicotinehydrazide
derivative was in charge of both processes and the adsorbed molecules had no effect on the
hydrogen evolution or dissolution of mild steel [20].
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Table 1. Tafel parameters for mild steel samples in acidic media with and without various concentra-
tions of nicotinehydrazide derivative.

Conc. mM Ecorr (V) βa (mV/dec) βc (mV/dec) icorr (µA·cm−2) IE (%)

0.0 –0.47 240 220 515.3 ± 1.83 0
0.1 –0.51 125.7 188.6 355.7 ± 5.03 73.6
0.2 –0.49 91.8 151.8 199.3 ± 3.70 82.8
0.3 –0.55 83.4 131.2 95.7 ± 2.93 86.4
0.4 –0.53 56.7 126.7 84.8 ± 1.84 92.8
0.5 –0.46 48.9 102.8 58.3 ± 4.77 97.1

2.6. Electrochemical Measurements

Electrochemical impedance spectroscopy (EIS) was used to determine the inhibition
efficiency of the tested inhibitor in inhibiting corrosion. The experimental results for
mild steel corrosion at 303 K, in the absence and presence of an inhibitor, are shown in
Table 2 and Figure 8 shows the Nyquist plots. The addition of nicotinehydrazide derivative
significantly increased the overall resistivity of mild steel in the HCl solution. Two loops
were observed in the Nyquist plots: one loop in the high-frequency band (HF) and one
loop at an intermediate frequency (MF), with less inductive effect at lower frequencies
(LF). The HF and MF loops are attributed to the EIS instrument limits at high frequencies
with low resistance and charge-transfer processes, accordingly. Accordingly, the inductive
behavior observed in the LF region is caused by the relaxing process of the corrosion
product adsorption or the inhibitor molecule adsorption onto the test surface in HCl in the
absence/presence of the inhibitor, respectively [21].
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Table 2. EIS parameters for steel sample in absence and presence of various concentrations of
nicotinehydrazide derivative in 1 M HCl at 303 K.

Conc. (mM) Rs (Ω cm2) Rct (Ω cm2) Cdl (µF) IE %

0.0 2.4 50.64 530 0
0.1 2.1 78.65 310 55.2
0.2 2.3 172.37 311 72.8
0.3 2.2 280.76 244 84.8
0.4 2.4 327.33 180 92.5
0.5 2.3 466.13 130 96.8
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The inhibition efficiency (IE %) was calculated from the charge-transfer impedance
using Equation (4):

IE(%) =
R′ct − Rct

R′ct
× 100 (4)

where R′ct and Rct are the charge-transfer-resistance in the presence and absence of the
nicotinehydrazide derivative.

Table 2 shows that the charge-transfer resistance (Rct) increased as the inhibitor con-
centration increased, gradually corroding the systems due to large charge-transfer resis-
tance [22]. Furthermore, increased inhibitor impedance is associated with decreased mild
steel capacitance. The observed rise in the Cdl , which was related to an increase in the
local dielectric constant and/or the thickness of the electrical double layer, shows that the
nicotinehydrazide derivative adsorbed onto the material interface with the solution [23].
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Nyquist diagrams reveal incomplete capacitive rings, as shown in Figure 8. The higher
the ring radius, the more corrosion resistance is actually revealed. The width expands when
nicotine hydrazide is added, indicating that it has a corrosion inhibitory action on mild
steel in the test solution. This is caused by the inhibitor molecules adsorbing and forming a
protective layer on the surface of the mild steel. The lower estimated capacitance of the
Cdl double layer indicates that the corrosion attack was reduced due to the film’s ability to
cover the surface [24].

The observed rise in the Cdl value in an acidic medium with the addition of nicotine-
hydrazide derivative may be attributed to inhibitor adsorption onto the most active ad-
sorption centers [25]. The corrosion process decreased the homogeneity of the adsorbed
nicotinehydrazide derivative layer.

Furthermore, the results showed that the IE% increased with increasing inhibitor
concentration, following the same pattern as the inhibition efficiency determined by the
potentiodynamic and mass-loss techniques. Figure 9 depicts the equivalent circuit dia-
gram for equating the EIS findings for HCl solution both in the absence and presence of
the inhibitor.
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Rs (solution resistance), a CPEdl (constant − phase element), and Rct (charge-transfer
resistance) are the circuit components and the charge-transfer resistance rating was used to
determine how well the electrons travelled over the contact [26].

In Figure 9, Rs is the resistance of the environment; Rct is the charge-transfer impedance;
CPEdl is the double-layer constant phase.

A CNLS (complex nonlinear least squares) simulation was employed [26–30] since
an equivalent circuit was used to calculate the simulated values and for comparison with
experimental data.

2.7. Surface Morphology

Severe corrosion and damage were observed on the mild steel surface immersed for 5 h
at 303 K in 1 M HCl medium (Figure 10a), whereas the addition of 0.5 mM nicotinehydrazide
derivative protected the mild steel surface as evidenced by the smooth surface with fewer
holes (Figure 10b).
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2.8. Theoretical Calculation

Quantum chemistry investigations are used to effectively match inhibitor molecule
corrosive inhibitive efficacy with predicted molecular orbitals (MOs) energy levels without
the need for laboratory tests, saving time and money [31]. The energies of the frontier MOs
(EHOMO and ELUMO), the separation energy (ELUMO EHOMO), E representing the
function of reactivity, electron affinity, ionization potential, chemical softness (σ), chemical
hardness (η), and electronegativity (χ), the number of transferred electrons (∆N), and
the dipole moment are computed quantum chemical variables to predict the protection
performance of the test inhibitor (Table 3).

Table 3. Quantum chemical parameters for inhibitors at B3LYP/6-311G (d,p).

EHOMO (eV) ELUMO (eV) ∆E (eV) I (eV) A (eV) χ (eV) η (eV) σ (eV−1) µ ∆N

−9.884 −3.922 −5.962 9.884 3.922 6.903 2.981 0.335 −1.455 0.145

HOMO energy (EHOMO) refers to the ability of a molecule to donate a lone pair
of electrons and the higher the EHOMO, the higher the ability to donate electrons to
electrophilic molecules [32], whereas a molecule with a low ELUMO has more ability to
accept electrons from metals. The differences in energy between EHOMO and ELUMO
(that is, ∆E) inform the interaction of specific molecules and the smaller the difference, the
greater the interaction, as shown in Table 3. The DFT findings demonstrated that the test
inhibitor molecules have a small energy gap value compared to other reported inhibitors,
hence, the highest reactivity [33].

The dipole moment gives information on the polarity and the higher the dipole mo-
ment, the higher the polarity [34]. Regarding the HOMO values in Table 3, the test inhibitor
which has the highest inhibitory efficiency also has the highest EHOMO as computed
using the DFT/B3LYP/6-31G basis set, confirming the experimentally determined ranking.
According to the DFT/B3LYP/6-31G computations, the test inhibitor has a low LUMO in
the aqueous phase, thus, it has the potential to interact with the mild steel surface.

The variation in energy between the HOMO and the LUMO (Figure 11) is significant
for determining chemical reactivity, kinetic stability, chemical hardness/softness, and
optical polarizability of organic compounds. Large values of ∆E result in strong electrical
stability and minimal reactivity, whereas high values of ∆E imply high reactivity since
electrons are easily excited and transferred from the HOMO to the LUMO. Lower ∆E
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values indicate a good organic corrosion inhibitor. According to the DFT/B3LYP/6-31G
calculations, the tested inhibitor has the lowest value of ∆E, indicating that it has the
strongest response. Regarding the decreasing values of ∆N, which is an electron transfer
from the tested inhibitor to the mild steel surface, the efficiency of the tested inhibitor
increases. The quantum parameters energy of HOMO (EHOMO) and LUMO (ELUMO),
energy gap (∆EL–H), electronegativity (χ), hardness (η), softness (σ), and the number of
electrons transferred (∆N) are listed in Table 3.
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2.9. Mulliken Atomic Charges

Mulliken charges are frequently applied to measure atomic charges in the molecule
and to identify inhibitor adsorption centers. Moreover, the ability of a heteroatom to adsorb
onto a metallic substrate via a donor-acceptor interaction increases with its negative charge.
Table 4 presents the atomic charges of the inhibitor molecules showing that the two nitro-
gen and oxygen atoms have high atomic charges (O(13) = −0.3420 and N(10) = −0.3113),
suggesting that they are responsible for iron absorption.

Table 4. Mulliken atomic charges for the corrosion inhibitor.

Atom Charge Atom Charge Atom Charge
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2.10. Mechanism of Inhibition

The adsorption of the inhibitor molecules onto the metallic surface is influenced by
the inhibitor’s molecular structure, charge, how the acidic environment behaves, and the
surface properties of the metallic surface. By inhibiting the active sites on the metal that are
sensitive to corrosion, inhibitors allow metal to be absorbed from aqueous solutions. The
inhibitory resistance of organic molecules is caused by the formation of a protective barrier
that is adsorbed onto the metallic substrate. Weight loss measurements and electrochemical
techniques revealed that the inhibitor considerably reduced mild steel corrosion. Addi-
tionally, the adsorption isotherm analyses suggested that the inhibitor molecules adhere to
the mild steel surface in a manner that closely resembles that predicted by the Langmuir
adsorption model. How the protective coating adheres to the mild steel surface is affected
by: (1) electrostatic interactions with protonated heteroatoms, and (2) various links between
inhibitor molecules [35]. The examined inhibitor molecule contains several heteroatoms
and pi-bonds in addition to aromatic rings with lone pairs of electrons, which contribute to
the creation of coordination bonds and significant adsorption onto the mild steel surface.
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The interaction between iron d-orbitals and the tested inhibitor molecules mostly followed
chemical adsorption as indicated by the free energy parameter. The presence of heteroatoms
in the nicotinohydrazide having electron pairs has promoted chemisorption onto the mild
steel surface. Figure 12 presents the proposed mechanism of the corrosion inhibition of
mild steel in a corrosive medium.
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3. Materials and Methods
3.1. Materials

The Company of Metal Samples provided the mild steel and the elemental composition
is listed in Table 5. The mild steel samples were prepared according to ASTM G1-03 [36]
and the surfaces were abraded using silicon carbide paper. All chemicals were obtained
from Sigma-Aldrich (Selangor, Malaysia) and used without further purification. The acidic
solution of 1 M hydrochloric acid was prepared by diluting concentrated HCl (37%) with
distilled water.

Table 5. Mild steel chemical composition (wt%).

C Mn Si Al S P Fe

0.21% 0.05% 0.38% 0.01% 0.05% 0.09% balance

3.2. Weight Loss Techniques

The mild steel samples were immersed in 100 mL of 1 M hydrochloric acid with/without
the inhibitor (0.1, 0.2, 0.3, 0.4, 0.5 and 1.0 mM) as described in NACE TM0169/G31 [37] and
placed in a water bath at 303, 313, 323, or 333 K for 1, 5, 10, 24, and 48 h. The samples were
then removed and treated as specified in ASTM standard G1-03. Following the calculation,
the average weight loss was used to obtain the corrosion rate [36]. The corrosion rate (CR),
IE and surface coverage (θ) were determined according to Equations (5)–(7):

CR

(
mg·cm−2·h−1

)
=

W
at

(5)

IE% =

[
1−

CR(i)

CRo

]
× 100 (6)

θ = 1−
CR(i)

CRo
(7)

where W signifies the weight loss of the mild steel sample (mg), a is the surface area of
the mild steel sample (cm2), t is the exposure time (h), wo is the weight loss of mild steel
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sample in 1 M HCl in the absence of the test inhibitor, and wi is the weight loss of the mild
steel sample in 1 M HCl in the presence of the test inhibitor.

3.3. Computations

The quantum chemical computations were performed using Gaussian 09 [38]. The
inhibitor structure in the gas phase was optimized via the B3LYP approach and the basis
set of 6− 31G++(d, p).

Based on Koopman’s theorem [39], the ionization potential (I) corresponds to EHOMO,
whereas electron affinity (A) corresponds to ELOMO. Both (I) and (A) were calculated as
per Equations (8) and (9):

I = −EHOMO (8)

A = −ELOMO (9)

The electronegativity (χ), hardness (η), and softness (σ) can be calculated according to
Equations (10)–(12):

χ =
I + A

2
(10)

η =
I − A

2
(11)

σ = η−1 (12)

The transferred electrons fractional number, ∆N, can be determined based on Equation (13) [39]

∆N =
χFe − χinh

2(ηFe + ηinh)
(13)

Here, χFe and χinh are the electronegativities of the iron and tested inhibitor, whereas
ηFe and ηinh are the hardness of iron and tested inhibitor, respectively.

For mild steel (Fe), the value of ∆N can be determined according to Equation (14),
were χFe = 7 eV, ηFe = 0 eV:

∆N =
7− χinh
2(ηinh)

(14)

3.4. Electrochemical Data

Mild steel samples were cleaned according to ASTM G1-03 [36] and served as the
working electrode throughout this study. The active mild steel sample area was 4.5 cm2

and the tests were performed at inhibitory doses of 0.1 to 0.5 M in 1.0 M hydrochloric acid
solution that was ventilated but not stirred at 303 K. All measurements were performed in
triplicate to calculate the mean on a Gamry Instrument Potentiostat/Galvanostat/ZRA type
REF 600 using Gamry’s DC105 and EIS300 software. The dynamic current potential was
changed from 0.25 to +0.25 V SCE at a scan rate of 0.5 mVs−1. All impedance values were
matched to the appropriate equivalent circuits using the Gamry Echem Analyst tool (ECs).
The inhibition of corrosion was assessed using a Gamry water-jacketed glass cell with three
electrodes: the working electrode, the counter electrode, and the reference electrode and a
saturated calomel electrode served as the reference electrode (SCE). Electrochemical mea-
surements were initiated approximately 30 min after the working electrode was exposed to
the corrosive environment to maintain the steady-state potential [40,41].

3.5. Surface Scanning Electron Microscope

The corrosive behavior of the acidic solution (1 M HCl) on the mild steel surface after
5 h of treatment without and with the addition of 0.0005 M PMBMH was assessed by
a scanning electron microscope (Zeiss MERLIN Compact FESEM at the UKM Electron
Microscopy Unit).
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4. Conclusions

Nicotinehydrazide shows strong corrosion protection for mild steel in 1 M HCl due
to the presence of highly effective electronic adsorption centers (O, N, and pi-bonds) that
inhibit the active sites of the metal. The primary conclusions are as follows:

• The synthesized nicotinehydrazide derivative shows good inhibition efficiency for the
mild steel corrosion in 1 M HCl environment and the inhibition efficiency increases on
increasing the concentration of nicotinehydrazide and decreases with the increase in
temperature. The highest inhibition efficiency was 97% at 303 K in 1 M HCl solution.

• Nicotinehydrazide participates in chemical adsorption on metallic surfaces and weakly
bonds to the metal surface with the inhibition efficacy decreasing as the temperature increases.

• Nicotinehydrazide prevents mild steel corrosion due to the creation of a protective
layer of inhibitor molecules at the steel–electrolyte interface.

• The Gads suggests a chemisorption and physisorption phenomena, and the adsorption
mechanism is spontaneous.

• The quantum chemical simulations indicate that nicotinehydrazide uses oxygen and
nitrogen to adsorb onto a mild steel surface.

• There was good agreement between the experimental results and the theoretical analysis.
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