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Craniosynostosis is a heterogeneous condition caused by the premature fusion of cranial

sutures, occurring mostly as an isolated anomaly. Pathogenesis of non-syndromic forms

of craniosynostosis is largely unknown. In about 15–30% of cases craniosynostosis

occurs in association with other physical anomalies and it is referred to as syndromic

craniosynostosis. Syndromic forms of craniosynostosis arise from mutations in genes

belonging to the Fibroblast Growth Factor Receptor (FGFR) family and the interconnected

molecular pathways in most cases. However it can occur in association with other gene

variants and with a variety of chromosome abnormalities as well, usually in association

with intellectual disability (ID) and additional physical anomalies. Evaluating the molecular

properties of the genes undergoing intragenic mutations or copy number variations

(CNVs) along with prevalence of craniosynostosis in different conditions and animal

models if available, we made an attempt to define two distinct groups of unusual

syndromic craniosynostosis, which can reflect direct effects of emerging new candidate

genes with roles in suture homeostasis or a non-specific phenotypic manifestation of

pleiotropic genes, respectively. RASopathies and 9p23p22.3 deletions are reviewed as

examples of conditions in the first group. In particular, we found that craniosynostosis is a

relatively common component manifestation of cardio-facio-cutaneous (CFC) syndrome.

Chromatinopathies and neurocristopathies are presented as examples of conditions in

the second group. We observed that craniosynostosis is uncommon on average in

these conditions. It was randomly associated with Kabuki, Koolen-de Vries/KANSL1

haploinsufficiency and Mowat–Wilson syndromes and in KAT6B-related disorders. As

an exception, trigonocephaly in Bohring-Opitz syndrome reflects specific molecular

properties of the chromatin modifier ASXL1 gene. Surveillance for craniosynostosis in
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syndromic forms of intellectual disability, as well as ascertainment of genomic CNVs

by array-CGH in apparently non-syndromic craniosynostosis is recommended, to allow

for improvement of both the clinical outcome of patients and the accurate individual

diagnosis.

Keywords: craniosynostosis, chromatinopathies, neurocristopathies, RASopathies, Kabuki syndrome, Koolen-

De-Vries syndrome, Mowat–Wilson syndrome, Bohring-Opitz syndrome

INTRODUCTION

The premature fusion of cranial sutures affects ∼1 in 2,500
newborns in a condition known as craniosynostosis (Cohen
and MacLean, 2000; Boulet et al., 2008). Craniosynostosis
appears to be a highly heterogeneous condition, that can
be caused by different genetic defects or by environmental
injuries (Lattanzi et al., 2012, 2017). It occurs as an isolated
anomaly in about 70–85% of cases (Wilkie et al., 2010;
Greenwood et al., 2014; Heuzé et al., 2014), which are referred
to as non-syndromic craniosynostosis. Both environmental
factors, such as intrauterine fetal head constraint and prenatal
valproate exposure, and gene variants following an oligogenic or
monogenic pattern of pathogenesis, were shown to predispose
to non-syndromic craniosynostosis (Hunenko et al., 2001; Heuzé
et al., 2014). Of relevance, several of these gene variants involve
transcription factors, growth factor receptors, including the
FGFR family, and cytokines, that play an important role in bone
morphogenesis.

In about 15–30% of cases craniosynostosis occurs in
association with other physical anomalies, as a consequence of
variable gene variants and different chromosome abnormalities
and they are referred to as syndromic craniosynostosis.
More than 180 craniosynostosis syndrome are currently
known (Winter and Baraitser, 2011; McKusick and Hamosh,
2014). The most commonly mutated genes in syndromic
craniosynostosis include FGFR2, FGFR3, and FGFR1,
comprising the FGFR family (Johnson and Wilkie, 2011).
The FGFRs bind to Fibroblast Growth Factor (FGF),
promoting growth and differentiation of mesenchymal and
neuroectodermal cells. At a macroscopic level, FGFRs control
cranial suture fusion. Using animal models, it has been
demonstrated that mutated FGFRs lead to a defective FGF signal
transduction which causes growth arrest of the cranium and
the midface (Passos-Bueno et al., 2008; Holmes and Basilico,
2012).

Other genes with roles in the same morphogenic events
regulated by the FGFR family have been described in
craniosynostosis, including TWIST1 (TWIST family bHLH
transcription factor 1; ∗601622), EFNB1(Ephrin B1; ∗300035),
POR (Cytochrome P450 oxidoreductase; ∗124015), RAB23
(RAS-associated protein RAB23; ∗606144), and EFNA4 (Ephrin
A4; ∗601380) (Merrill et al., 2006; Wilkie et al., 2007; Melville
et al., 2010; Jezela-Stanek and Krajewska-Walasek, 2013).

On the other hand a variety of gene mutations outside
the FGFR family (Twigg and Wilkie, 2015) and different
chromosome abnormalities as well (including submicroscopic
aberrations), such as trisomy 21, del (17q21.31) and dup(22q11)

(Wilkie et al., 2010), have been consistently associated with
syndromic craniosynostosis. A question of debate is whether
craniosynostosis in these heterogeneous conditions can suggest
new candidate genes, or it simply represents a non-specific effect
of pleiotropic genes. Of relevance for possible targeted therapy,
both non-syndromic and syndromic forms of craniosynostosis
most likely share common molecular pathways.

In the present paper we have attempted to define two distinct
groups of unusual syndromic craniosynostosis not related to
mutations in genes coding for FGFRs, according to this different
hypothesis of pathogenesis. Criteria for definition weremolecular
properties of the genes undergoing intragenic mutations or
CNVs; prevalence of craniosynostosis in the reported conditions;
animal models if available. The present review is not exhaustive
for all syndromic forms of craniosynostosis.

GENE-RELATED SYNDROMIC
CRANIOSYNOSTOSIS

RASopathies and 9p23p22.3 deletions are reviewed as examples
of conditions in this group.

RASopathies
RASopathies or RAS/mitogen-activated protein kinase (MAPK)
syndromes are conditions caused by germline mutations in
several genes encoding proteins of the RAS/MAPK signaling
pathway characterized by overlapping phenotypes (Aoki et al.,
2016). These disorders include neurofibromatosis type I,
Legius syndrome, Noonan syndrome, Noonan syndrome with
multiple lentigines (formerly called LEOPARD syndrome),
Costello syndrome, cardiofaciocutaneous (CFC) syndrome,
Noonan-like syndrome, hereditary gingival fibromatosis and
capillary malformation–arteriovenous malformation. Beside
many overlapping features, unique characteristics and specific
genes are usually associated with each disorder.

Noonan syndrome (NS, OMIM 163950) is characterized
by short stature, distinctive craniofacial features including
a webbed or short neck, hypertelorism, downslanting
palpebral fissures, ptosis, and low-set ears, congenital heart
defects including pulmonary valve stenosis and hypertrophic
cardiomyopathy, bleeding and myeloproliferative disorders
and mild neurocognitive delay (Aoki and Matsubara, 2013).
NS is caused by mutations in PTPN11 (Protein Tyrosine
Phosphatase, Non-Receptor Type 11, ∗176876), SOS1 (SOS
Ras/Rac Guanine Nucleotide Exchange Factor 1, ∗182530), RAF1
(Raf-1 Proto-Oncogene, Serine/Threonine Kinase, ∗164760),
KRAS (KRAS Proto-Oncogene, GTPase, ∗190070), BRAF (B-Raf
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Proto-Oncogene, Serine/Threonine Kinase, ∗164757), SHOC2
(SHOC2, Leucine Rich Repeat Scaffold Protein, ∗602775),
RIT1 (Ras Like Without CAAX 1, ∗609591), NRAS (NRAS
Proto-Oncogene, GTPase, ∗164790), RRAS (Related RAS Viral
(R-Ras) Oncogene Homolog, ∗165090), RASA2 (RAS P21
Protein Activator 2, ∗601589), A2ML1 (Alpha-2-Macroglobulin
Like 1, ∗610627), SOS2 (SOS Ras/Rho Guanine Nucleotide
Exchange Factor 2, ∗611247), and LZTR1 (Leucine Zipper Like
Transcription Regulator 1, ∗600574), although it is estimated that
about 20% of the causative genes behind NS are still unidentified.
Cardiofaciocutaneous (CFC, OMIM 115150) is characterized
by failure to thrive, distinctive facial features with high
forehead and bitemporal constriction, ectodermal abnormalities,
including palmoplantar keratosis, congenital heart diseases and
severe psychomotor retardation. CFC syndrome is caused by
mutations in BRAF (B-Raf Proto-Oncogene, Serine/Threonine
Kinase ∗164757) (about 70% of cases), MAP2K1 (Mitogen-
activated protein kinase kinase, ∗176872) and KRAS (KRAS
Proto-Oncogene, GTPase, ∗190070).

Among RASopathies, craniosynostosis appears to be
consistently associated with NS and CFC syndrome only, and
with mutations limited to PTPN11, SHOC2, KRAS, and BRAF
(Takenouchi et al., 2014; Addissie et al., 2015; Ueda et al., 2017).
In the Ueda et al. report (2017), 3 out of 34 NS patients (9%)
and 6 out of 18 CFC patients (33%) had craniosynostosis, and
craniosynostosis affected all patients with mutations in KRAS.
This strong genotype-phenotype association suggests specific
mechanisms of pathology, worthy of investigation.

There is an interaction between FGFR and RAS/MAPK
signaling pathways, as demonstrated by experiments in an
FGFR mouse model where craniosynostosis is rescued using an
inhibitor of RAS/MAPK signaling and by the fact that mutations
in ERF (ETS2 repressor factor, ∗611888, a gene at the end of the
FGFR-RAS/MAPK cascade) also cause craniosynostosis (Shukla
et al., 2007; Takenouchi et al., 2014; Addissie et al., 2015). FGFRs
act upstream of the RAS/MAPK signaling pathway, and some
proteins participating in the RAS/MAPK signaling were observed
to partially mediate dysregulated cranial development caused by
mutations in FGFR genes (Shukla et al., 2007).

9p23p22.3 Deletion and Trigonocephaly
The incidence of trigonocephaly is 1:15,000 live births (Kimonis
et al., 2007). The etiology is still unknown but it is well
established that an association with chromosomal abnormalities
exists, especially with monosomy 9p syndrome (OMIM 158170).
Deletion of the 9p23p22.3 region gives rise to a contiguous gene
syndrome characterized by intellectual disability, distinctive
craniofacial dysmorphism including upslanting palpebral
fissures, hypertelorism, epicanthal folds, small palpebral
fissures, flat nasal bridge, long philtrum, micrognatia and
midface hypoplasia, congenital heart defect, and trigonocephaly.
Trigonocephaly/prominent forehead is described in about 80%
of cases (Huret et al., 1988; Swinkels et al., 2008).

An analysis of the gene content of CNVs affecting the
9p22.3 region, as reported by Vissers et al. (2011), indicated
that FREM1 (FRAS1-related extracellular matrix protein 1;
∗608944) could potentially be a major gene associated with

trigonocephaly, through haploinsufficiency. Of note, micro-
computed tomography based analyses of the human equivalent
mouse suture revealed advanced fusion in mice homozygous
for Frem1 mutant alleles (Vissers et al., 2011). However further
studies are required to verify the association of FREM1mutation
and craniosynostosis.

Furthermore, it was suggested that trigonocephaly
associated with 9p23p22.3 deletions is most likely oligogenic in
pathogenesis. The receptor-type protein tyrosine phosphatase
gene (PTPRD) was defined as another candidate gene for
trigonocephaly by overlapping analysis of different chromosome
deletions (Mitsui et al., 2013). PTPRD belongs to the protein
tyrosine phosphatase family, playing essential roles in the
regulation of receptor tyrosine kinase, growth, cell migration,
and angiogenesis (Ortiz et al., 2014).

SYNDROMIC CRANIOSYNOSTOSIS AS A
NONSPECIFIC FEATURE OF CONDITIONS
CAUSED BY MUTATIONS IN PLEIOTROPIC
GENES

Chromatinopathies and neurocristopathies are discussed
in detail as examples of conditions in this group. Many
chromosomal disorders with low frequency occurrence of
craniosynostosis can be included in this group as well.

Chromatinopathies
Chromatinopathies refer to a highly heterogeneous group of
syndromic conditions also defined as mendelian disorders
of chromatin modification, in which the underlying genetic
anomaly consists of disruption of one of the components of the
epigenetic machinery. Targets of epigenetic modifications can be
the DNA itself, through cytosine methylation; the methylation
status is read by proteins that contain methyl-binding domains;
DNA methylation of cytosines can be removed. Components
of the epigenetic machinery targeting DNA include various
enzymes with roles in each of these steps, thus acting as writers,
readers, and erasers, respectively. Epigenetic modifications can
target the DNA-associated histone proteins as well. Similar to
DNAmodifications, the histonemachinery in this case consists of
writers, readers, and erasers but also of remodelers, which have a
role in balancing the open or compact status of the chromatin
leading to transcription regulation (Fahrner and Bjornsson,
2014).

Chromatinopathies can be caused by mutations in genes in
each category of the epigenetic machinery, including writers
(i.e., Kabuki 1, Sotos, Kleefstra, Koolen-De-Vries/KANSL1
haploinsufficiency, Rubinstein-Taybi, KAT6B-related
syndromes); readers (i.e., Smith-Magenis, Rett syndromes),
erasers (i.e., Kabuki 2, Townes-Brock, Bohring-Opitz syndromes)
and chromatin remodellors (i.e., ATRX, CHARGE, Floating-
Harbor syndromes). About 44 Mendelian disorders of the
epigenetic machinery have been described so far (reviewed by
Bjornsson, 2015).

Chromatinopathies are characterized by distinctive
features, both genetically and clinically. First, mutations
affecting the epigenetic machinery are expected to have
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widespread downstream epigenetic consequences, accounting
for great pleiotropy of the genetic defect. Supporting this
concept, although the most frequent clinical manifestation
is intellectual disability, suggesting that maintenance of the
normal epigenotype is important for neuronal homeostasis, a
wide variety of additional anomalies can occur, including limb
malformations, disorders of the neuronal migration, immune
dysfunction, growth impairment and skeletal anomalies.
Craniosynostosis has been described as a consistent, although
unusual, feature of 4 out of 44 Mendelian disorders of the
epigenetic machinery (reviewed by Bjornsson, 2015). One can
speculate that the final phenotype in individual patients can
reflect not only balance disruption of the different compartments
of the epigenetic machinery (Paro, 1995), but also the molecular
constitution of the target genes (Law et al., 2010).

All these reasons can likely account for the usually low
frequency of craniosynostosis in chromatinopathies and for its
association with specific conditions as well.

To the best of our knowledge, craniosynostosis has been
described in some patients with Kabuki syndrome, Koolen-
De-Vries/KANSL1 haploinsufficiency syndrome, Bohring-Opitz
syndrome and KAT6B-related disorders.

Kabuki Syndrome (KS)
Kabuki syndrome (KS, OMIM 147920) is a rare monogenic
condition characterized clinically by distinctive facial
dysmorphisms featuring the makeup used in traditional
Japanese Kabuki theater, with arched eyebrows, long eyelashes
and everted lower lids (Niikawa et al., 1988). Additional
features include intellectual disability of different degrees, short
stature, persistent fingertip pads and skeletal abnormalities.
Congenital heart defects (CHDs) represent another important
component manifestation. KS can be caused by mutations
in KMT2D (Lysine-specific methyltransferase 2D, previously
MLL2, ∗602113), most frequently (referred to as KS1) (Ng et al.,
2010), or in KDM6A (Lysine-specific demethylase 6A, ∗300128)
(referred to as KS2) (Lederer et al., 2012; Miyake et al., 2013).
KMT2D is a component of the SET-domain-containing family of
histone methyltransferases, enzymes that trimethylates histone
H3 at lysine 4 (H3K4me3), in transcriptionally active genes
(Smith et al., 2011). On the contrary, KDM6A is involved in gene
silencing by removal of H3K27me3 mark (Hübner and Spector,
2011). Thus, both proteins act in promoting transcription of
downstream genes through epigenetic modifications.

Several literature reports support the evidence that
craniosynostosis is a component manifestation of the KS
phenotype, emphasizing the importance of the accurate clinical
assessment of children with craniosynostosis. In the literature,
the prevalence of craniosynostosis in KS is about 6% (Armstrong
et al., 2005; Topa et al., 2017). KMT2D was tested in one patient
only, with positive results (Topa et al., 2017).

Koolen-De Vries/KANSL1
Haploinsufficiency Syndrome
KANSL1 (KAT8 regulatory NSL complex, subunit 1)
haploinsufficiency syndrome, also referred to as Koolen–De
Vries syndrome (OMIM 610443), is characterized by highly

typical facial features, including long and prominent philtrum,
pear-shaped nose, everted lower lip and sparse eyebrows,
mild-to-moderate intellectual disability, hypotonia and friendly
behavior. Epilepsy, kidney anomalies and heart defects are
also detected in about half of the patients. This condition is
quite prevalent among ID patients, and it affects about 1:16,000
subjects among general population (Koolen et al., 2008). It was
first described as a genomic disorder caused by a recurrent
0.450–0.600Mb deletion on chromosome 17q21.31. However
loss-of-function mutations in the KANSL1 gene, residing in the
deletion interval, were demonstrated to be sufficient in causing a
full clinical phenotype (Koolen et al., 2012; Zollino et al., 2012).

KANSL1 is a member of a histone acetyltransferase complex
that plays important roles in transcription regulation of
many genes by acetylating histone H4 on lysine 16 (H4K16).
Acetylation of H4K16 is known to play a pivotal role in
transcription stimulation by inhibiting the compaction of 30 nm
chromatin fibers. KANSL1 is also capable of acetylating non-
histone substrates, namely p53 protein on lysine 120, and
KANSL1 is essential for the transcription of p53 target genes
(Huang et al., 2012).

We recently characterized both clinically and genetically a
cohort of 32 patients with KANSL1 haploinsufficiency syndrome,
of whom 27 had a 17q21.31 deletion, and 5 an intragenic
KANSL1 mutation (Zollino et al., 2015). One of these cases
had scaphocephaly, which required surgical correction at age 3
months.

We further analyzed 10 novel patients with KANSL1
haploinsufficiency syndrome, of whom 9 had a 17q21.31 deletion
and one a de novo intragenic mutation in KANSL1 (c.1652+2
T>C; p.L552FfsX14). Notably, one patient with a chromosome
deletion had sagittal craniosynostosis, which was surgically
corrected at 4 months. Detailed information are part of a
forthcoming clinically oriented paper.

Overall, craniosynostosis affected 2 out of 42 patients in our
cohort (5%), who both underwent direct sequencing of FGFR2,
FGFR3, FGFR1 and TWIST1, with normal results. It occurred in
association with 17q21.31 deletion in both patients.

Craniosynostosis has been described also in other patients
carrying a 17q21.31 microdeletion. Specifically, clinical signs
reported in these patients consist of sagittal synostosis (Koolen
et al., 2008; Sharkey et al., 2009), scaphocephaly (Dubourg et al.,
2011; Koolen et al., 2016) and in general an abnormally shaped
skull (dolichocephaly, metopic ridge, bitemporal narrowing,
trigonocephaly, brachycephaly, frontal bossing) (Koolen et al.,
2016). It was demonstrated that loss-of-function mutations
in KANSL1 are sufficient to cause the full clinical phenotype
associated with 17q21.31 deletions. Accordingly, whether
craniosynostosis can reflect haploinsufficiency of contiguous
genes in this region is questionable.

KAT6B-Related Disorders
The gene KAT6B (Lysine acetyltransferase 6B, ∗605880) encodes
a histone acetyltransferase. This protein, which is part of
the MOZ/MORF complex, also plays a role in transcriptional
activation and repression and could be involved in brain
development. KAT6B-related disorders include a great spectrum
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of conditions caused by heterozygous mutations in KAT6B
(Clayton-Smith et al., 2011). These conditions were first
described as separate entities, including Say-Barber-Biesecker-
Young-Simpson syndrome (SBBYSS, OMIM 603736) and its
variant Ohdo syndrome (OMIM 249620), and genitopatellar
syndrome (GTPTS, OMIM 606170). KAT6B-related disorders
are characterized by intellectual disability and by a variable
association of additional features, including a distinctive facial
dysmorphism with mask-like face, blepharophimosis, ptosis,
broad nasal tip, dislocated or hypoplastic patellae and skeletal
anomalies. Recently, 2 patients with sagittal craniosynostosis and
clinical manifestations consistent with the Lin-Gettig syndrome
phenotype have been described as carriers of de novo frameshift
mutations in KAT6B. Interestingly, both patients had features
overlapping those of SBBYSS and GTPTS (Bashir et al., 2017),
suggesting that Lin-Gettig syndrome is in the spectrum of
KAT6B-related disorders as well.

Bohring-Opitz Syndrome
As exception among chromatinopathies, in Bohring-Opitz
syndrome (BOPS; OMIM 605039) craniosynostosis rather
reflects specific molecular properties of the causative gene.

BOPS is a malformation syndrome characterized by severe
intrauterine growth retardation, intellectual disability, and a
constellation of highly distinctive additional anomalies, including
exophthalmos, nevus flammeus of the face and joints deviation of
upper limbs. A key diagnostic feature in BOPS is trigonocephaly,
described in 90% of patients (Hoischen et al., 2011; Magini et al.,
2012; Dangiolo et al., 2015). In 2011, ASXL1 was identified as
the causative gene of this condition (Hoischen et al., 2011).
De novo heterozygous mutations, which are mostly non-sense
or truncating in nature, are detected in most patients. The gene
ASXL1 (Additional sex combs-like 1, ∗612990) is involved in the
activation and silencing of the HOX genes and in chromatin
remodeling (Hoischen et al., 2011). Trigonocephaly was detected
in 9/10 BOPS patients with a proven mutation in ASXL1
(Hoischen et al., 2011; Magini et al., 2012; Dangiolo et al., 2015)
and in 28/30 patients not tested for this gene (Hastings et al.,
2011).

NEUROCRISTOPATHIES

Mowat–Wilson Syndrome
Mowat–Wilson syndrome (MWS; OMIM 235730) is a
haploinsufficiency syndrome caused by heterozygous deletions
or mutations in the ZEB2 gene. In addition to moderate to
severe ID, typical clinical features are craniofacial anomalies with
hypertelorism, deep-set eyes, broad andmedially flared eyebrows,
wide nasal bridge, prominent nasal tip and columella, M-shaped
upper lip, pointed triangular chin, linearized mandibular
bones, cupped ears with upturned lobules and microcephaly. In
addition, MWS patients have moderate-to-severe intellectual
disability, epilepsy, Hirschsprung disease andmultiple congenital
anomalies, covering genital anomalies, congenital heart disease
and agenesis of the corpus callosum. Over 200 patients have
been described so far with a proven loss-of-function variant in
ZEB2 (Dastot-Le Moal et al., 2007; Garavelli and Mainardi, 2007;

Garavelli et al., 2009; Zollino et al., 2011). The heterogeneous
basic genomic defect consists in chromosome 2q21-q23 deletions
in a few patients, and in variable loss-of-function intragenic

TABLE 1 | Examples of unusual syndromic forms of craniosynostosis reflecting

the pathogenic role of new candidate genes (Group 1) or nonspecific effects of

pleiotropic genes (Group 2).

Patients References

n %

GROUP 1

Gene-related syndromic craniosynostosis

RASopathies

PTPN11 Noonan syndrome 3/34 9% Ueda et al., 2017

KRAS Cardiofaciocutaneous

syndrome or Noonan

syndrome

12/80 15% Addissie et al., 2015;

Ueda et al., 2017

BRAF Cardiofaciocutaneous

syndrome

4/10 40% Ueda et al., 2017

9p23p22.3

deletions

FREM1 3/104* 2.9% Vissers et al., 2011

PTPRD 1 Choucair et al., 2015

GROUP 2

Craniosynostosis as non-specific sign of pleiotropic genes

Chromatinopathies

del 17q21.31

(KANSL1

haploinsufficiency)

Koolen-de Vries

syndrome

14/116 12% Koolen et al., 2008;

Sharkey et al., 2009;

Dubourg et al., 2011

Zollino et al., 2015 and

personal data;

Koolen et al., 2016

KMT2D** Kabuki syndrome 3/486 *** 6% Gillis et al., 1990;

Ewart-Toland et al.,

1998

David et al., 2004;

Geneviève et al., 2004

Armstrong et al., 2005

Martínez-Lage et al.,

2010

Topa et al., 2017

KAT6B KAT6B-related

disorders

2/36 5.5% Gannon et al., 2015;

Bashir et al., 2017

ASXL1 Bohring-Opitz

syndrome

9/10**** 90% Hoischen et al., 2011;

Magini et al., 2012;

Dangiolo et al., 2015

Neurocristopathies

ZEB2 Mowat–Wilson

syndrome

4/214 1.9% Adam et al., 2008;

Hartill et al., 2014;

Wenger et al., 2015

*These variants have been identified also in control individuals and they have been

reported in different databases (ExAC; gnomAD) so their pathogenic relevance remains

uncertain.

**KMT2D tested in only one out of 9 Kabuki syndrome patients with craniosynostosis, with

positive results (Topa et al., 2017).

***Single case reports. In only one paper (Geneviève et al., 2004), craniosynostosis is

described to affect 1/20 KS patients (5% of cases).

****Trigonocephaly has been described also in an additional 28/30 Bohring-Opitz

syndrome patients who received a clinically based diagnosis of this condition (Hastings

et al., 2011). As an exception, this disorder of the epigenetic machinery reflects specific

gene properties (see text).
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mutations in most. The ZEB2 gene (Zinc finger E box-binding
homeobox 2, ∗605802) is a member of the ZFH1 (ZEB) family
of two-handed zinc finger/homeodomain proteins, which are
transcription factors playing an important role during embryonic
development (Verschueren et al., 1999). In particular, they are
involved in the “epithelial to mesenchymal transition” (EMT)
process, permitting epithelial cells to undergo mesenchymal
differentiation, which is essential for many morphogenetic
events. The role of ZEB2 in cranial suture development is
not clear and needs to be addressed at a molecular level.
However, it may be related to any of the following aspects:
(a) ZEB2 interaction with Smad transcription factors implies
an involvement in the TGFβ signaling pathway, which plays
an important role in modulating suture fusion and includes
some proteins already known to be disrupted in some forms
of craniosynostosis; (b) ZEB2 acts to repress mesoendodermal
genes to induce neuroectoderm formation, and dysregulation
of this process might affect the suture mesoderm and result in
bad fusion timing; (c) ZEB2 is also a regulator of neural crest
cell epithelial-mesenchymal transition, a role that it shares with
TWIST, an important regulator of cranial suture development
during embryogenesis and haploinsufficiency of which causes
Saethre-Chotzen syndrome (Hegarty et al., 2015). The use of
animal models, such as Xenopus (van Grunsven et al., 2007),
mice (Van de Putte et al., 2003), and studies on human cells as
well (Espinosa-Parrilla et al., 2002), demonstrated that ZEB2 is
implicated in neuroectoderm development. In human embryos,
ZEB2 is widely expressed in all the central nervous system, in
facial neuroctoderm, in craniofacial bones and in the middle
ear region. Defective expression in these areas corresponds
to specific clinical signs, such as agenesis of corpus callosum
(diencephalon), epilepsy (mesencephalon), intellectual disability
(rhombencephalon), facial dysmorphisms (facial neuroctoderm),
abnormal mandibular bones (craniofacial bones), typical
ear conformation (ear region surrounding the developing
ossicles).

It is worth stating that the ablation of the neural crest
precursor-specific gene Zfhx1b (Zinc finger homeobox 1B,
alternative name for ZEB2) in mice leads to many malformations
reflecting the MWS phenotype (Van de Putte et al., 2003). Based
on this evidence, MWS can be considered a syndromic form of
neurocristopathy.

In the literature, craniosynostosis has been described in 4
out of 214 MWS cases (1.9%; Adam et al., 2008; Hartill et al.,
2014; Wenger et al., 2015). Thus, craniosynostosis appears to be
unusual in MWS patients, raising the question as to whether it
represents only a coincidental finding. However, craniosynostosis
in MWS is linked to ZEB2 haploinsufficiency, most likely, as we
previously suggested (Wenger et al., 2015).

Syndromic conditions with gene-related craniosynostosis, or
with craniosynostosis as a non-specific effect of pleiotropic genes,
are summarized in Table 1.

CONCLUDING REMARKS

Syndromic forms of craniosynostosis are clinically and
genetically heterogeneous, with genomic defects including
both quantitative chromosome abnormalities and intragenic
mutations. Most cases arise from disruption of the morphogenic
events regulated by the FGFR family proteins and their
interconnected signaling pathways.

However, mutations in other genes not involved in these
pathways and several chromosome abnormalities have been
consistently associated with craniosynostosis, reflecting either
a gene-related mechanism or pleiotropy of the mutated genes.
Among the first group, RASopathies, Bohring-Opitz syndrome,
and selected chromosome alterations, such as 9p23p22.3
deletions, can allow for definition of new candidate genes and
for likely targeted therapy. On the other hand, craniosynostosis
in chromatinopathies and neurocristopathies, and in many
chromosome alterations as well, rather reflects pleiotropy of
the associated genes, leading to widespread impairment of gene
transcription.

Although, most non-FGFR-related syndromic conditions
with craniosynostosis are associated with intellectual disability
and physical dysmorphisms, both cognitive impairment and
dysmorphisms can be very mild. Furthermore, cognitive
impairment, usually of very mild degree, can affect a subset
of individuals with non-syndromic craniosynostosis. On this
evidence, ascertainment of additional signs by extensive clinical
evaluation of all patients with craniosynostosis is recommended,
and a wider application of whole genome investigations, namely
array-CGH, is recommended as well.

Finally, surveillance for craniosynostosis could be planned in
many syndromic forms of intellectual disability, for the benefit of
early diagnosis and early therapy.
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