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Ensemble Modeling Approach 
Targeting Heterogeneous RNA-
Seq data: Application to Melanoma 
Pseudogenes
Enrico Capobianco1, Camilo Valdes1, Samanta Sarti2, Zhijie Jiang1, Laura Poliseno3 &  
Nicolas F. Tsinoremas1,4

We studied the transcriptome landscape of skin cutaneous melanoma (SKCM) using 103 primary tumor 
samples from TCGA, and measured the expression levels of both protein coding genes and non-coding 
RNAs (ncRNAs). In particular, we emphasized pseudogenes potentially relevant to this cancer. While 
cataloguing the profiles based on the known biotypes, all the employed RNA-Seq methods generated 
just a small consensus of significant biotypes. We thus designed an approach to reconcile the profiles 
from all methods following a simple strategy: we selected genes that were confirmed as differentially 
expressed by the ensemble predictions obtained in a regression model. The main advantages of this 
approach are: 1) Selection of a high-confidence gene set identifying relevant pathways; 2) Use of a 
regression model whose covariates embed all method-driven outcomes to predict an averaged profile; 
3) Method-specific assessment of prediction power and significance. Furthermore, the approach can be 
generalized to any biological system for which noisy RNA-Seq profiles are computed. As our analyses 
concerned bio-annotations of both high-quality protein coding genes and ncRNAs, we considered the 
associations between pseudogenes and parental genes (targets). Among the candidate targets that 
were validated, we identified PINK1, which is studied in patients with Parkinson and cancer (especially 
melanoma).

Melanoma, the deadliest of skin cancers, is a malignant and highly metastatic tumor with growing incidence 
of about 20 per 100,000 individuals in Western countries1. In 10% of melanoma cases, there is a positive family 
history, i.e. a risk factor significantly contributing to disease occurrence2. At a genetic level, multiple genes are 
naturally expected to interactively exert direct and/or indirect influences on many biological processes and path-
ways, suggesting possible signatures of the disease. One of the first discovery efforts in melanoma transcriptome 
studies revealed the emergence of genomic rearrangements behind novel gene fusions and identified somatic 
mutations responsible for disease progression3. Further RNA-Seq analyses have provided in-depth screening 
for a variety of transcript structures, by studying human samples4 or cell lines5. RNA-Seq is the standard tech-
nique that is used to characterize cancer transcriptomes while measuring known transcripts and predicting novel 
transcripts6–11. Additionally, RNA-Seq expands the detection power of transcriptome profiles by identifying and 
elucidating a variety of non-coding RNAs (ncRNAs)12,13. Following the seminal findings of two large-scale pro-
jects, ENCODE14 (https://www.encodeproject.org/) and GENCODE15 (http://www.gencodegenes.org/), the gen-
eral attention has been gradually diverted away from genes and concentrated over other biotypes, such as long 
intergenic ncRNAs (lincRNAs), antisense RNAs, pseudogenes etc. In most cases the identification of potentially 
transcribed bio-entitities was inferred from locus-specific (EST) and wide-spectrum experiments, then referring 
transcriptional activity to tissue specificity and establishing association with active chromatin state and promoter 
regions.

We performed a systematic exploration of the skin cutaneous melanoma (SKCM) transcriptome landscape by 
accessing the TCGA repository (http://cancergenome.nih.gov/) and its entire collection of 103 primary SKCM 
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samples. As TCGA contained only one control sample for SKCM, we retrieved other reference melanocyte sam-
ples in the GEO repository (http://www.ncbi.nlm.nih.gov/geo/). In order to identify both gene and ncRNA sig-
natures, we built an ad hoc methodological pipeline to deal with the observed biotype variety and expression 
heterogeneity. Pervasive transcription has been widely documented, involving multi-exonic transcripts that map 
to intergenic regions with specific interactions and functions16–22. The ability to detect ncRNAs suffers from low 
read density coverage, thereby resulting in non-uniform coverage of transcript abundance. This latter is gener-
ally >100-fold higher in exons than in introns or intergenic regions. However, despite the limitation of more/
less abundant transcripts represented by many/few reads, respectively, lowly expressed transcripts can be widely 
detected by RNA-Seq across many cancers.

The pseudogene participation to the transcriptional activity deserves a special attention. Thousands of pseu-
dogenes have been identified in the human genome, many with critical regulatory functions23. For instance, an 
estimate indicates 12683 human pseudogenes, with 11216 surveyed as consensus pseudogenes and 9% actively 
transcribed. Since pseudogenes lack protein coding potential, they can manifest functional or non-functional 
RNA products, and appear specific with respect to both tissues and cells. ENCODE has identified about 15000 
pseudogenes, a great majority of which are transcriptionally active. A recent large-scale analysis of pseudogene 
transcription in 13 cancer types (248 cancer samples, and 45 normal samples) showed the signature of 2082 dis-
tinct pseudogenes4. Several aspects of pseudogenes involve uncertainty with regard to identification, function, 
annotation, role in cancer24–26. We believe that knowledge gains can be derived from the use of computational 
approaches27–29. For example, the associations between pseudogenes and so-called parental genes, i.e. the func-
tional genes with the highest sequence similarity, can be usefully investigated. One reason is that the complexity 
of such relationships goes far beyond the possible presence of correlation between expression levels. The latter is 
quite controversial because inconsistently supported by evidence. Based on the analyzed samples, we have pro-
vided an empirical assessment of such patterns both at systemic scale and at local level of specific associations30,31. 
Our integrative computational approach involves three main steps, which we applied sequentially to the SKCM 
transcriptome data.

	 i)	 RNA-Seq analysis, performed by multiple methods. The results were then integrated to achieve a large 
consensus of differentially expressed (DE) bioentities, either differentially expressed genes (DEGs) or DE 
ncRNAs;

	 ii)	 Ensemble statistical modeling. This step aimed to recover salient features that remain hidden in the consen-
sus data. It reconcileed the profiles obtained from the different methods into a high-confidence inferable 
coreset of model-classified bioentities;

	iii)	 Bio-annotations (pathways and gene families), organized into curated lists of pathway and GO categories. 
These were supported by other classifications addressing the potential of genes to play a role in cancer 
(oncogenes, tumor suppressors, etc.).

We performed two complementary methodological steps: a) The identification of pseudogenes and corre-
sponding parental genes, followed by their profiling and by an assessment of their relationships; and b) The 
functional validation of selected DEG candidates to verify both reliability and effectiveness of our ensemble 
approach to generate testable hypotheses. The rationale for enabling an ensemble inference approach is that mul-
tiple RNA-Seq methods can be used to both quantify and profile the expression levels of transcriptome biotypes, 
but limitations are present with each method. Clearly enough, studies centered on specific methods are subject 
to risk of bias. Among the alternative strategies that can be used to overcome the limitations, some establish an 
efficient practice by combining results from more than one method. It is also possible that contradictory results 
may emerge from using methods operating different quantifications and normalizations. Our evidences demon-
strate exactly this aspect. In particular, a method-driven selection of different and separated DE-space regions is 
obtained, and the significance is assigned to detections that are in large part not shared. To increase the consist-
ency of the results, evidences should therefore be consolidated without aiming necessarily at a consensus. This 
goal can be achieved without over-penalizing disparate evidences through the ensemble modeling approach that 
we introduce here and demonstrate to be reasonably efficient and accurate.

Results
Figure 1 concisely illustrates the overall findings of our work through a Sankey flow diagram. The information 
flow shows the results of applying our methodological pipeline to the TCGA SKCM data. The included steps 
reflect the numeric evidences found by the application of RNA-Seq methods and model reduction approaches, 
and the qualitative refinements obtained from biotype catalogues and bioannotations. We can state that modeling 
through an ensemble approach represents a viable solution to the problem of reconcile multi-evidence RNA-Seq 
results.

At a biological level our primary interest is to detect the DE profiles of biotypes forming the SKCM tran-
scriptome landscape (Fig. 1, left). Such profiles may be provided by different methods, and we chose five of 
them to build a consensus. To increase detection accuracy and exclude redundancy, the ensemble modeling was 
designed to take place after the consensus. The ensemble strategy produces better DE profiling and better biotype 
decomposition (Fig. 1, right). We look especially at the ncRNAs and focus on pseudogenes and parental genes 
associations. Statistical models supporting the ensemble are Principal Component Analysis (PCA) and Linear 
Regression Model (LRM). Their specific structures explain the differential performance. The use of RNA-Seq 
expression profiles as predictors cast within the LRM framework is central to our inference approach. This way, 
the profiles generated by the methods are used predictively and their performance assessed synergistically. At a 
numerical level, an order of magnitude change occurred by shifting from consensus (about 10000, Supplementary 
Tables 5.1) to model-driven significant detections, including DEGs and DE ncRNAs (about 1000, Supplementary 
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Tables 8.1.1-5 and 8.2.1-8; Supplementary Fig. 8.1.1-2, 8.2.9-10 and 8.3.1). Data reduction also induced qualitative 
advantages with better biotype annotations (Supplementary Fig. 6.1.1.1-5, 8.4.1; Supplementary Tables 8.4.2-4), 
including pseudogenes (129) and related parental genes (145) (Supplementary Tables 5.3.1-2 and Supplementary 
Fig. 5.3.3-4).

A summary of outcomes is presented in Fig. 2 with the flowchart of our RNA-Seq analyses: data generation, 
assemblies, mutational grouping and validations for subsets of outcomes from different data sources. Two stand-
ard quantifications were considered: read counts and FPKM (Fragments Per Kilobase Million) (Supplementary 
Tables S2_1-2). Other recent proposals32 aimed to yield transcript lists have not been used in this work, which is 
focused on gene-centric analysis. Thus, isoform detection and alternative splicing are not considered in this work.

Differential Expression Profiling.  The first set of significant detections, concerning both DEGs and 
DE-ncRNAs, were identified by the consensus between profiles using (see Fig. 1 and Fig. 2) DESeq33., NOISeq34., 
LIMMA35, CuffDiff36, and the licensed GeneSpring (V 13.0) (Supplementary Tables 3.1-5). These methods were 
selected to provide different types of quantifications, normalizations and statistical distributions.

Due to small overlapping regions between the five methods (Fig. 3A), the inferable “DE-space” of significant 
DE biotype values appears questionable. The overlap degree from the employed methods might depend on the 
influences from non-controllable factors, for example samples, experiments, algorithms. Ambiguities appear, for 
instance with variable (high/low) log(FC) for identical calls obtained by different methods, indicating variation of 
signal intensity. This can be handled simply by averaging. When multiple methods detect with sign discordancy 
(overexpression vs underexpression), the uncertainty increases. Vice versa, detections identified by any particular 
method would need confirmation by other methods to be called significant.

The presence of well-separated DE-space regions representing the inferable DE-space, indicates sensitivity to 
the employed method. When assembling these outcomes, there is uncertainty about the confidence levels that 
may be assigned to such specific results. In principle, each method has localization power enabled by significance 
criteria (either conservative or liberal). These criteria depend on specific factors, such as distributional hypotheses, 

Figure 1.  Sankey flow diagram. The outcomes generated by our approach are visualized step-by-step. The first 
stage indicated at the left side lists the various methods applied to the RNA-Seq data with the corresponding 
profile, namely the number of DE biotypes (both genes and ncRNAs) detected in each individual application. 
A total profile of 9,729 DE biotypes is obtained from the sum of all such detections, and in particular Limma 
(5290) and DESeq (4326) which provided the largest amounts, CuffDiff (3568) and GeneSpring (2758) with 
smaller amounts, and finally NOISeq as the most conservative methods (511) (Supplementary Tables 5.1.1-5).  
Two models are then reported, LRM and PCA which deliver respectively 896 and 752 DE biotypes, thus 
reducing dramatically (more than one order of magnitude) the overall profile. The rest of the diagram accounts 
for specific biotypes, relatively more represented by protein coding genes (906), antisense (216), lincRNA (84), 
pseudogenes (136), and with the latter presenting in 129 cases association with related parental genes (145) 
(Supplementary Fig. 5.2.1). Bioannotations (pathways, gene families) are indicated downstream as the endpoint 
of the diagram.
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built-in normalization procedures, parametric settings, multiple corrections, etc., all exerting influence over the 
final detections. Generally speaking, local rather than global data features can bring good approximation power 
for inherently heterogeneous data, but likely poor generalization power. Note also that complex experimental 
data may lack robustness against possible under-sampling effects, which means that the spectrum of data fea-
tures may be inadequately represented. Lastly, among the factors that exert negative impacts on inference, there 
are noise, algorithmic errors, and uncertain annotation of the bioentities (nomenclature from ENSEMBL as in 
Supplementary Tables 6.2.1-4) in addition to knowledge gaps and term redundancies typically present in GO and 
pathway tools. In general, a lack of substantial harmonization currently exists and leads to inconsistent results, 
even in presence of solid evidences. Of relevance the fact that our data-driven inference approach is both general-
izable and scalable with dimensions and complexities, and tuned to increased accuracy in annotation tasks.

Figure 2.  RNA-Seq flowchart. The samples were processed according to the five different methods that were 
selected, and whose quantifications included both read counts (simply the number of reads overlapping a 
given feature such as a gene) and fpkm (Fragments Per Kilobase of exon per Million reads). With the latter it 
is possible to compare genes of different lengths, and ‘per million reads’ means that a value normalized against 
the library size is obtained. The consensus occurred between significant detections in both read counts and 
fpkm scenarios, before reaching a global result (overall consensus). The mutational profile at the right side was 
implemented under simplified algorithmic conditions (CuffDiff), and for two major mutations (BRAF, NRAS) 
(Supplementary Tables 10.1-5). The validations refer to candidates coming from all the considered scenarios.
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Building the Ensemble from the Consensus.  Figure 3 presents a sequence of Venn diagrams describ-
ing a map of detections, which indirectly tells how the methods saturate the DE-space with their derived pro-
files. First, a total of 9729 profiled bioentities is found from the overall consensus (Fig. 3A), with the innermost 
core sharing 115 bioentities. The core is surrounded by sets partially contributed by the five methods. Note that 
the most peripheral regions indicate the method-specific findings, which present the largest numbers, i.e. more 
than 1000 unique detections in each case (apart from NOISeq). Part of Fig. 3A detections, i.e. the ones relevant 
for pseudogenes and the associated protein coding genes classified as parental genes, are shown in Fig. 3B (see 
Supplementary Tables 8.5.3.1-2 and Figs 5.3.3–4 for the sequence analysis results testing the similarity between 
the two biotypes). Figure 3C shows another Venn diagram, identifying distinct and shared areas of detections 
(overall, 896 DE bioentities) that are specifically or jointly contributed by the RNA-Seq profiling methods, and 
cast within the LRM framework. The shared central core is halved compared to consensus (68 vs 115), and the 
peripheral regions with distinct detections are sparsified. Therefore, significantly estimated LRM coefficients 
select subsets of the detections, and reduce the impact of each method alone over the results. Figure 3D reports 
PCA detections (overall 752), then Fig. 3E compares LRM with PCA and identifies approximately one third of 
common detections. Figure 3F is for biotype cross-classifications. The observed limited overlap is relevant, in our 
view: substantial separation between the final selections from the model scenarios indicates that highly inform-
ative DE values are not necessarily brought by the component explaining much of the data variability, but rather 
depend on biotype associations that LRM establishes as significant. Figure 4 is centered on LRM, our chosen 
framework for ensemble modeling. The rationale is that regression offers an efficient setting for computation 
with large data sets, and an immediate interpretation of both the role of the parameters and the significance of the 
results (more in Discussion section).

Figure 4A describes a tree map view of the relative occupancy of the DE-space by LRM compared to consen-
sus findings. By preserving proportions between LRM-selected regions and consensus ones, it clearly shows that 
LRM reduces enormously data redundancies, and likely also data complexities related to the algorithmic errors, 
noise effects, spurious detections etc. The ensemble strategy is clearly not panacea, as some of the lost DE-space 
may still be informative. However, the detected regions which appear shared between LRM and consensus are 
more consistently and robustly identified due to the possibility of merging synergistically method-specific profiles 

Figure 3.  Venn diagrams: multiple detection scenarios. Detections refer to all DE biotypes. (A) Overall 
consensus. (B) Pseudogene-parental genes detections. (C) LRM-driven detections. (D) PCA-driven detections. 
(E) LRM vs PCA comparison. (F) Biotype classifications in each model. Thresholded coefficients are obtained 
by boxplot-derived criteria: from 1.5 x IQR for LRM (Supplementary Tables 8.2.5-8), and from most outlying 
values for PCA (Supplementary Fig. 8.1.1-2).
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while quantitatively assessing the significance of contributions to calls obtained in model-driven way. Figure 4B 
presents for reproducibility purposes a screenshot of how LRM runs within R (more details are provided in 
Supplementary Tables 8.2.1-4). Here, a chosen profile is used as the response variable (Cuffdiff, in this case) and 
by the residual method-specific profiles (explanatory variables or regressors). All combinations are of course 
possible, and the algorithm indeed ensures their inclusion. Figure 4.C indicates the statistics used to evaluate the 
LRM performance, including both means and medians. Note that Limma turns out to generate the most outlying 
profile of the pool. This is relevant, as the ensemble modeling strategy primarily aims at reducing data redun-
dancies and complexities, while improving the potential inferability and generalizability of the approach (even 
beyond the melanoma context).

Following the ensemble modeling strategy, it is important to understand how the LRM regions affect the 
system’s predictive performance. In particular, what method should be used for response and what for predic-
tive purposes in the regression setting? To answer this question, we chose to run regression model multiple 
times according to the rotation of variables serving each role, response vs regressors. This scheme is known as 
Alternating Regression Model37 and measures how each variable contributes to the predicted response values 
according to a cross-validation scheme. Since each variable alternates its role at both sides of the equation, the 
final step involves computing statistics like mean and median values across both the replicated model runs and 
the predicted profiles. Intuitively, the LRM stability improves by rotating the variables, and we noted that an 
outlying role is played by Limma. We averaged the final profiles with and without it, but found the best results 
when Limma is excluded from the final averaging step. Its outlying values are not matched by other methods, 
meaning that no method contributes to its profile when Limma is used as the response. Instead, its predictive 
effects are retained (i.e. Limma as regressor) because the ensemble LRM models neutralizes them by assigning 
non-significance to the corresponding regression coefficients. Finally, gene and ncRNA signatures derived from 
each of the DE profiles required some control of variability, and we applied thresholding through the boxplots and 
the IQR measures applied to the estimated LRM coefficients. The stringency of the assigned thresholds affects the 
size of our final selections.

Figure 4.  LRM output. Three panels are reported with reference to the performance of LRM: (A) shows a 
tree-map view of LRM vs consensus DE-space. The comparisons are localized in all regions in which both 
individual methods and combinations of methods (from 2 to 5) have performed and delivered their detections. 
LRM is visible always in just a small fraction of space. (B) presents the results screenshot of the LRM script in 
R. (C) shows comparisons between multiple LRM statistics used to establish the predicted profile, and given the 
adopted IQR levels (top right inset).
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Pseudogene-Parental Genes: relationships.  Figure 5 focuses on associations between DE pseudogenes 
and parental genes, whose patterns are determined by our computational pipeline. Such patterns have led to 
controversial conclusions in literature, due to correlative behavior between the two profiles that is inconsistently 
noticed. Figure 5A shows profiles measured within confidence bands for their expression levels. The central insets 
represent examples retrieved from a variety of target types. Figure 5B is about patterns from scatter plots meas-
ured at various log2(FC) expression levels. The slopes appear weak, but recurring across such levels. Despite a 
relatively low correlation, we note pattern persistency, which appears as a symptom of dynamics that are robust 
to random and outlying erratic effects. Figure 5C shows IQR-driven selections, depending on the statistics. We 
picked the simple average at the leftmost boxplot; each threshold choice brings a different number of significant 
detections (Supplementary Tables 8.2.5-8).

Interesting evidences appear from the network in Fig. 5C (similar methodology was recently proposed in a dif-
ferent disease context38). Formed from the DE parental genes associated with expressed pseudogenes (including 

Figure 5.  Pseudogene-parental gene analyses. (A) Joint profiles of pseudogenes and parental genes from 
consensus (with significance bars). Insets are biotype associations examples. (B) Scatters at various expression 
levels, and empirical correlation patterns. (C) Protein network of DE target parental genes with associated at 
least expressed pseudogenes (Supplementary Fig. 8.6.3 and Supplementary Table 8.6.5). Enlarged networks in 
Supplementary Fig. 8.6.4.
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DE), the network consists of interacting proteins retrieved from STRING V10.039 (www.string-db.org), also 
annotated with GeneCards: the Human Gene Database40 (www.genecards.org). Given an intermediate level of 
confidence (0.4), from both experimental and database knowledge, these interactions occur between proteins 
relevant for cell proliferation, adhesion, motility, morphogenesis, together with cell cycle and oxidative stress.

The parental protein coding gene symbols determining the interactions are here reported with the sym-
bol–indicating interaction: ATP1B1-ESAM-VWF-TF-PROS1-GJA1-TUBA4A-CDC20-PLK1-RRM2-NCAPG; 
PINK1-PRDX3-PGAM1-ENO3; CTU1-PPA1, HLA-B-GBP1; PLIN2-CDC42EP3-RHOQ-EXOC5-OPH
N1-GNB4-HTR7. To some extent, these are all processes relevant to cancer, implying potential regulation under-
lying the target parental genes represented in the network and exerted by the either expressed or associated DE 
pseudogenes. When only DE pseudogenes are considered, we could observe a correlative scatter (Fig. 5C, bottom 
right inset). The few associations we found revealed concordance in both log(FC) size and sign (over/under 
expression). Note that some parental genes present multiple associated pseudogenes, but in general we found only 
one expressed example among multiple candidates (more details are provided in Supplementary Tables 8.6.1-5).

Interestingly, the PTEN- induced putative kinase 1 or PINK1, interacting with PRDX3, appears annotated 
with oxidative stress41, and is relevant because associated to both Parkinson disease and cancers42,43. In particu-
lar, melanoma is more frequently associated to Parkinson patients than other cancers44. PINK1 overexpression/
underexpression respectively protects/sensitizes cells against/to stress. Also, PINK1 has a crucial role in mito-
chondrial homeostasis. Mitochondria are the major cellular sources of reactive oxygen species (ROS), being 
critically involved in many cellular processes, including energy production, metabolism, redox control, and pro-
grammed cell death. Their dysfunction is identifiable in numerous human diseases, including cancer45,46. Thus, 
PINK1 is essential for survival and a potential drug target due to its mediating role towards PTEN47. Despite the 
expression of PINK1 is up-regulated in melanoma with high metastatic potential, the molecular mechanisms by 
which PINK1 protects cells against apoptosis are unclear Notably, PINK1 is among the target parental genes that 
we have validated (see below).

Bioannotations.  Mutations.  Among the mutations involved in melanoma pathogenesis, those repeatedly 
identified from BRAF and NRAS oncogenes have been investigated48,49. Two groups were obtained from both 
mutations, and are reported in Supplementary Tables 10. The mutated BRAF is V600E in 70–80% of all BRAF 
mutations in all cancers. Their relevance depends on the fact that targeted molecular therapies have been cen-
tered on BRAF, through BRAF inhibitors, and have included also combinations of oncogenic signaling cascade/
pathway targets to improve long-term patient response and overall survival50. Mutations in NRAS, occurring at 
limited frequency compared to BRAF, were considered too. These two mutation types are almost always mutually 
exclusive. We accounted for the fact that approximately 50% of melanomas of all clinical types present an activat-
ing mutation in the BRAF oncogene, while about 20% of the cases show an activating mutation in NRAS, leading 
to the activation of the MAPK signaling pathway (cellular proliferation and survival depend on such pathway).

Previously, whole-genome sequencing of 25 metastatic melanomas and matched germline DNA revealed 11 
genes significantly mutated, for BRAF in 16 samples and for NRAS in 9 samples3. The raw reads of SKCM sam-
ples were downloaded from TCGA site and were mapped on human genome using TopHat v2.0.11. SNPs were 
called by GATK 2.5-2-gf57256b. Non-synonymous mutations on V600 of BRAF were detected on 57 cases, but 
19 were then discarded due to the low sequencing depth (<5x) on the mutation site, thus remaining with 38 
cases. Non-synonymous mutations on Q61 of NRAS were detected on 17 cases, but 2 were then discarded due to 
the low sequencing depth (<5x) on the mutation site, thus remaining with 15 cases. Also, 33 cases have revealed 
no mutation on either V600 of BRAF or Q61 of NRAS, thus making the mutation-free group. The DEGs were 
detected by CuffDiff v2.2.1, with cutoff q-value < = 5% and log(FC) >1.2 between the BRAF-mutation group and 
the mutation-free group, and between the NRAS-mutation group and the mutation-free group. Overall, 1254 
DEGs were detected in the former comparison, while 716 DEGs were detected in the latter one.

Pathways.  We considered annotations from GO (Supplementary Fig. 6.1.2.1-5) and pathway terms (Table 1), 
and the lists generated by each individual profiling method (Supplementary Fig. 6.1.1.1-5) that formed the union 
of the consensus, together with the model-driven lists. ClueGo offers a selection of enriched terms. Note that each 
method-derived profile generated a list of terms enriched by gene sets whose biological significance is naturally 
affected by the DE space volume. Among the top-entries (sorted by enrichment) that were listed for each indi-
vidual method (Table 1, left), we found some interesting terms (note that colored entries identify cancer-relevant 
terms). The ECM Receptor Interaction appears in four over six lists (including PCA) followed by the CAM (cell 
adhesion) term in three over six lists. PI3K-Akt, Rap1, PD-1 appear in three separate lists.

By looking at the LRM terms (Table 1, right), note that a change of significance can occur in both terms and 
gene sets enriching for them, due to different criteria of selection. Some terms are known to be strong players in 
melanoma, and we reported then at the top. CAM, ECM and PI3K-Akt appear specifically as before, together 
with Focal Adhesion and p53. The top-score list includes a variety of terms. More in detail, PD-1 is an inhibitory 
receptor found in T-cells, B-cells and myeloid cells, highly expressed under certain conditions in which important 
immune system modulators (T/B cells etc.) are activated. Of interest the involvement of kinases that are inhibited 
by PD-1 after binding to ligands, and thus preventing overstimulation of the immune response51–53. Its ligands 
have different expression patterns, and interactions with them attenuate the immune response and protect tumor 
cells from cytotoxic T-cells. PD-1 is also expressed in patients with metastatic melanoma particularly within 
the tumor microenvironment, suggesting that the immune response to melanoma is inhibited. PD-1 (likewise 
PD-L1) is therefore currently considered a primary therapeutic target. The PI3K (phosphinositide 3-kinase)–
Akt pathway is studied to decipher molecular pathogenesis, heterogeneity and resistance mechanisms, offering 
emerging leading targets for compounds54,55

. Melanomagenesis involves ECM signaling, p53, RAS/RAF/MEK/
ERK, among others. It is also interesting the presence of the Complement system (LRM, but also Limma), an 
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essential element of the innate immune response that reacts as a first line of defense against pathogens and in 
response to molecular patterns associated with abnormalities in host cells and extracellular environment56.

Biotypes & Gene families.  We expanded the annotations to include gene families and biotype decompositions 
(and more details in Supplementary Tables 7.1 and 8.5.1). Here we include further characteristics. In biotypes 
(Table 2) we list ENSEMBL classes, and we may note the prevalence of antisense, lincRNA and pseudogenes over 
the other classes, with exclusion of protein coding genes (parental genes are a subset of them, reported apart 
to emphasize their target role). Together these three classes of ncRNAs cover in some cases about one fourth 
(DESeq, LRM) or even one third (Limma) of the total number of listed DE bioentities. Gene families (Table 3) 
instead enriched qualitatively the descriptions of many of the protein coding genes that were classified in the pre-
vious lists. It is interesting to verify the sensitivity of such classifications by the employed methods, observing that 
DESeq and Limma rank first in four classes each, and again Limma and CuffDiff rank second in four and three 
classes, respectively. The two models, PCA and LRM, are of course subject to more restrictions compared to the 
consensus, and delivered overall just a fraction of entries in each class here considered (the only exception being 
NOISeq, which appears very conservative).

Validations.  We first considered consensus data (Fig. 6A), and made a few selections. Then, we considered 
LRM-derived selections (Fig. 6B). Candidate selections were organized in a list including measurements and 
bioannotations for protein coding genes (details in Supplementary Fig. 9.1 and Supplementary Text 9.2). Focus 
went on the list of DE pseudogenes and DE parental genes, together with other DEGs. As consensus involved the 
application of five different RNA-Seq methods, the selection considered up- or down-regulated DEGs and deliv-
ered three pseudogenes and 111 DEGs, including eight parental ones. All genes were ranked on the basis of the 
corrected p-value attributed by each individual algorithm. As an example, we ranked 115 DEGs on the basis of the 
corrected p-value attributed by Exonic DESeq, and then assigned score 1 to the lowest one, 2 to the second lowest 
one, and so on. This procedure was repeated using the corrected p-values attributed by the other four algorithms. 
Finally, we summed up all scores together and calculated a final score. The list was scanned top-down in search 
for candidates for which the design of specific primers was possible. The chosen candidates were at the end three 
DEGs: ARHGDIB, DCN, SSH1, and two parental genes: NQO1 and NREP. These genes were DE in melanoma 
samples compared to melanocytes. Therefore, in order to confirm these results, we measured their expression lev-
els in melanocytes and melanoma cell lines using rtPCR. Both the down-regulation of ARHGDIB and DCN, and 
the up-regulation of SSH1 were confirmed. However, we did not confirm the up- and down-regulation of NQO1 
and NREP, respectively. We then considered the LRM outcomes. For the selection of the genes to be validated 
by rtPCR, we prioritized parental genes as the reference biotype, then we selected genes that encode for proteins 
belonging to cancer-related pathways such as the PI3K-AKT pathway (SGK1 and PIK3CD) or the cell adhesion 
pathway (MPZ), for kinases (e.g. PINK1, TGFBR1 and TWF1) or for tumor suppressors (FH). The chosen candi-
dates are nine protein coding genes, six of which are parental genes. Using rtPCR we confirmed down-regulation 
for SGK1, NQO1, PIK3CD, FH, TGFBR1, TWF1, PINK1 and up-regulation for MGP and MPZ. Note in particular 
the case of NQO1, initially not validated according to the consensus, but then validated according to LRM, this of 
course depending on the different selection operated in the two cases.

DESeq LRM

*ECM-Receptor InteractionCollagen Formation, Assembly of Collagen Fibrils, Collagen Biosynthesis 
Cytokine-Cytokine Receptor Interaction*Cell Adhesion Molecules (CAMs)*PI3K-Akt Signaling 
PathwayProtein Digestion and Absorption

*Cancer Specific Terms (FDR-corrected P-value)

Cell Adhesion Molecules (6.53E-10)ECM-Receptor Interaction 
(5.68E-06)Focal Adhesion (1.54E-05)PI3K-Akt Signaling Pathway 
(2.52E-03)p53 Signaling Pathway (9.31E-03)ECM Organization 
(3.41E-02)

NOISeq Top Scored Terms (FDR-corrected P-value)

*ECM-Receptor InteractionCollagen formation, Assembly of Collagen Fibrils, Collagen Biosynthesis, 
Protein Digestion and Absorption*Cell adhesion molecules (CAMs)Leishmaniasis, Interferon Gamma 
Signaling

Phagosome (7.42E-12)Complement System (8.09E-11)Protein 
Digestion and Absorption (6.53E-10)Leishmaniasis (3.59-08)
Collagen Formation (1.26E-08)Allograft Rejection (1.24E-07)
Viral myocarditis (1.55E-07)Graft-versus-host disease (1.75E-07)
Type I diabetes mellitus (3.19-07)Asthma (1.45E-07)Rheumatoid 
Arthritis (6.46E-06)Cell Cycle (5.68E-06)Autoimmune thyroid 
disease (4.02E-05)IgA Intestinal Immune Network Production 
(1.31E-05)Tuberculosis (4.31E-05)Hematopoietic cell lineage 
(2.02E-04)Pertussis (2.12E-04)Systemic Lupus Erythematosus 
(2.60E-04)HTLV-I infection (2.88E-03)Spinal Cord Injury (1.19E-
03)Inflammatory Bowel Disease (IBD) (2.16E-03)Toxoplasmosis 
(5.02E-03)Natural killer cell mediated cytotoxicity (6.95E-03)
Insulin Processing (2.43E-03)Leukocyte transendothelial migration 
(1.27E-02)

CuffDiff

*ECM-Receptor InteractionImmunoregulatory Interactions between a Lymphoid and a non-Lymphoid 
cell*Cell adhesion molecules (CAMs)Collagen formation, Hemostasis Assembly of Collagen Fibrils Natural 
killer Cell Mediated Cytotoxicity*Rap1 signaling pathway

Limma

*ECM-Receptor InteractionHemostasis, Complement and Coagulation Cascades, Collagen formation, 
Cyclin B2 Mediated Events, Cytokine-Cytokine Receptor Interaction, Collagen Biosynthesis

GeneSpring

Cell Cycle, Mitotic Prometaphase, Mitotic Metaphase and Anaphase, Separation of Sister Chromatids, 
Mitotic Anaphase, Resolution of Sister Chromatid Cohesion

PCA

Rheumatoid Arthritis, Phosphorylation CD3 and TCR, Hematopoietic Cell Lineage, TCR Signaling, ZAP-
70 Translocation, Cytokine-cytokine receptor interaction*PD-1 signaling

Table 1.  Pathway terms ranked by methods (left) and LRM. *is for cancer specific terms.
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Discussion
Knowledge advances in cancer genome and transcriptome studies depend, among other factors, on the integra-
tion between experimental and computational resources and skills. Such type of integration operates through 
data-customized bioinformatics pipelines. Despite a substantial variety of proposed methods, careful literature 
review suggests that a restricted number of them are routinely involved in major applications, thus making them 
standard approaches. Such process generates a sort of biased automatism through which the confidence assigned 
to results impacts cancer studies, but is not supported by comparative evaluations between methods or tests meas-
uring sensitivity of results. Literature has devoted attention to different normalization techniques, for instance, 
without demonstrating solid criteria for preference between methods. The field keeps evolving, naturally enough, 
but with uncertainty about our detection accuracy. Additionally, and in cancer studies especially, some of the 
existing tools may be too conservative, and new supersets of data could be needed to cross-validate analyses and 
findings. This consideration is applicable to other studies57. Our contribution turns to the search for possible 
ways of selecting evidence that may yield a solid knowledge base specifically for melanoma, but not limited to 
this cancer.

Additionally, we focus on protein coding genes and ncRNAs, and in particular pseudogene-parental gene 
associations that were retrieved from the SKCM data. The relevance is clear: despite pseudogenes are only dys-
functional copies of protein-coding genes, pseudogene transcription has a pervasive presence in the human 
genome58. The correlation patterns between intronic pseudogene expressions and unrelated host gene expression 
values were not revealed, and no correlative patterns with their parental genes appeared from the 10 melanoma 
samples that were included in the study58. Correlation between pseudogenes and parental genes was instead 
found for about 65% of pairs to be positive, depending also on the number of predicted miRNA targeting sites23. 
Considering another scale, it has been demonstrated a combined regulative action of pseudogenes over a miRNA 
target, the tumor suppressor gene PTEN expression, through the mechanism known as ceRNA (competing 
endogenous RNA)59,60. Overall, from both biological and computational viewpoints, the sequence similarity 
between pseudogenes and parental genes contributes to the complexity of both sequencing and gene expression 
profiling, and even validation. This global complexity calls for additional research61. We have indicated associa-
tion patterns showing a certain consistency. However, limitations are naturally present and they mainly concern 
the fact that detecting pseudogene transcripts is a complicated matter with a few critical factors to keep in mind:

Biotypes DESeq NOISeq CuffDiff Limma GeneSpring LRM PCA

3′ Overlapping ncRNA 4 0 1 5 1 0 1

Antisense 412 14 197 646 150 65 157

lincRNA 349 17 243 574 96 50 41

miRNA 14 0 25 5 11 2 11

misc_RNA 6 0 51 12 16 1 1

Parental Genes 355 62 431 549 631 115 49

Processed Transcript 213 8 169 302 55 26 36

Protein Coding 2,811 438 2,390 2,962 2,248 648 418

Pseudogene 468 32 250 618 151 85 72

Sense Intronic 25 0 9 107 14 9 1

Sense Overlapping 16 0 5 26 2 0 0

snRNA 2 0 2 4 2 2 2

snoRNA 6 0 1 23 12 7 4

Total 4,681 571 3,774 5,833 3,389 896 752

Table 2.  Classification by Model Biotypes.

Gene Family DESeq NOISeq CuffDiff Limma GeneSpring PCA LRM

Tumor Suppressors 4 0 8 9 6 1 1

Oncogenes 52 5 57 65 56 12 14

Translocated Cancer 
Genes 48 5 54 59 51 10 14

Protein Kinases 70 7 79 101 82 15 18

Cell Differentiation 
Markers 112 27 94 105 45 23 22

Homeodomain Proteins 48 2 18 36 7 4 3

Transcription Factors 179 11 127 176 163 23 16

Cytokines and Growth 
Factors 127 25 83 83 26 23 13

Total 640 82 520 634 436 111 101

Table 3.  Gene Families Associated with Protein Coding Genes. Notes: number of detections in each cell refers 
to differentially expressed values. ENSEMBL classification (Table 2); other annotations (Table 3).
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•	 Technological limitations: they affect the real detection power and may act as confounders for predictive 
algorithms, especially when the similarity of pseudogenes with parental genes is high;

•	 Computational problems with regard to alignment, i.e. reads that align to multiple genomic locations. RNA-
Seq presents read mapping uncertainty causing loss of both information and coverage;

•	 Assembly limitations: a limited resolution and the fact that transcript variants from the same gene may have 
exons in common, can cause ambiguity difficult to resolve;

•	 Sequencing depth: it is well-known that low or broadly expressed genes are not strongly supported by RNA-
Seq as only abundant transcripts are fully assembled;

•	 Other problems come from sequencing non-uniformity, presence of novel isoforms (alternatively spliced 
transcripts), quantification of expression levels, and harmonization of data normalized according to various 
criteria, for instance form experiments with different sequencing depth.

Following the ideal path of transforming observations (data) into model outcomes (predictions) to reconcile 
system’s dynamics, a limitation is that moving from observations to inference, and then to validation, is not usu-
ally a linear path. In our view, the strategy of moving from a low- to a high-confidence set of DE bioentities devel-
ops along two routes: a) Empirical approximation through PCA, i.e. projecting the data to perform de-noising 
and extracting the prevailing signal in terms of variability; b) the path of LRM, which exploits the prediction 
power of each method according to its significant contribution to a response profile. Therefore, we may aim 
at approximating with acceptable accuracy the recoverable system’s dynamics62. Ensemble modeling improves 
results by targeting a multitude of significant evidences, which here are the detections obtained from RNA-Seq 
data, and it achieves superior accuracy than any individual method. Benefits have been shown here in terms of 
bioannotations (GO categories, pathways, gene families), and validations.

Naturally enough, LRM encounters known limiting factors, such as the possible violation of linearity, an 
excess of variability across the covariates, and the risk of overfitting. Methodological solutions for such problems 
that go beyond naïve linear model approaches are well-known (ridge regression, regularized solutions, LASSO, 
LARS, etc63.). However, we have proven that the stability of the system can be promptly checked, and corrections 

Figure 6.  Validated evidences: from consensus (A) and LRM (B) (details in Supplementary Fig. 9.1 and 
Supplementary Text 9.2).
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can be made to improve the overall performance. Our regression framework simply stacks together all detections 
in a matrix with rows assigned to the distinct measurements (outcomes) and columns hosting the ‘explanatory 
variables’ (predictors). The contribution of each method is therefore mediated by the linear combination which 
determines the optimal prediction for each DE entry listed as the ‘dependent variable”. This way, an ensemble pre-
dictor built-in in a regression framework can be provided by averaging effects across the rows such that all model 
variables are re-modulated by significant coefficient estimates aimed at tuning the prediction power.

Cancer systems present uncertainties in model structures and parameter values. One would like to measure 
not only the goodness of fit, but also the complexity of a model. Reducing the complexity would help identifying 
core dynamics, thus increasing the chances of best fit.

The analysis of ensembles of models which vary in parameter values is a powerful strategy for reducing ambi-
guity in systems biology and medicine. The model ensemble may encompass different structures to capture the 
systems dynamics. Whether these dynamics are stylized or simplified is relevant, as cancers are very partially 
known complex systems. Therefore, models may be sloppy64. Sloppiness is not simply concerning a lack of data 
such that trivial parametrizations lead to non-identifiability of the parameters (undetermined systems), but might 
involve more subtle aspects, such as redundancy or compensatory effects between sets of parameters65. It is also 
likely that both important and not important parameters may be often hard to separate.

To conclude, we recall a very useful methodological principle that we have pursued through the suggested 
ensemble approach: along the path of ‘weakening inference algorithms’66, and in order to solve complex problems 
such as dimensionality reduction and identification of coresets, being these gene sets for example, an effective 
strategy requires the concentration of the total information into salient data features. Although sub-optimal (loss 
of DEGs and DE-ncRNAs, residual multicollinearity, spurious correlations from confounding effects etc.), this 
idea works under simple model assumptions, such as those here enabled by regressions. The great value of the 
performed analyses is to increase the ‘data strength’ and through this step obtain a high-confidence compendium 
of selected bio-entities.

Methods
RNA-Seq Samples.  103 primary tumor Cutaneous Melanoma (SKCM) samples were downloaded from the 
Cancer Genome Atlas (TCGA) CGHub repository (https://tcga-data.nci.nih.gov/tcga). 2 control samples were 
also downloaded from the Gene Expression Omnibus (GEO) repository67, from a study of with data accessible at 
NCBI GEO database with accession GSE3716968. The total number of 105 samples were downloaded in FASTQ 
format69.

Sample Processing.  All sample reads were mapped to the Ensembl70 human genome reference (Genome 
Reference Consortium build 37, Ensembl v.72) using the TopHat 2 spliced aligner71. The human genome refer-
ence sequence was prepared for mapping by collating and indexing the 25 standard chromosomes (22 autosomes, 
X and Y Chromosome, and the Mitochondrial chromosome) from Ensembl. The ‘bowtie2-build’ indexer pro-
gram from Bowtie272 was used as the indexing step and the TopHat2 spliced mapper was used to independently 
map each of the sample reads from TCGA and GEO. Tophat2 requested a GTF annotation file (http://mblab.
wustl.edu/GTF22.html) from Ensembl. After mapping, Samtools73 was used to process the output files from the 
105 samples, thus converted to a format (.BAM) suitable for downstream quality assurance and analysis steps.

Quality Control.  Each sample was inspected to detect possible anomalies. Issues emerged with the percent-
age of mapped reads in two of the TCGA tumor samples, therefore excluded. The residual 101 TCGA tumor 
samples, and the two controls (from GEO), were thus analyzed.

Mapping Qualities.  Mapped reads for each sample were sorted and binned based on their mapping quality 
(MAPQ) values. SamTools was used to filter reads based on MAPQ values. TopHat2 bins read alignments based 
on 5 MAPQ classes: values of 0, 1, 2, and 3 are assigned for read alignments with multiple hits of 10, 4-9, 3, and 2 
locations, respectively; a value of 255 is for unique alignments. Only unique read alignments for each sample were 
extracted from the output files, and used for downstream analysis.

Expression Quantification.  Unique read mappings from the 103 samples were used to create expression 
units for each gene in the Ensembl v.72 database, this for each sample. Each gene in Ensembl was quantified using 
FPKM and Read Count units74. We applied two constraints: genes showing an FPKM greater than 1 and show-
ing >10 reads in at least 10% of samples were included for downstream analysis, in both conditions. Different 
combinations and permutations of FPKM and number of reads at variable percentages were tested (details in 
Supplementary Table 2.1-2 and Supplementary Fig. 4.1-2).

•	 FPKM. FPKM units were calculated using CuffDiff. The CummeRbund75 R package to process and extract 
the FPKM data. A table of FPKM values was created for downstream analysis, containing genes as rows and 
samples as columns.

•	 Read Counts. Read count units were calculated using the HTSeq software76 for both exonic reads (reads 
mapping to exons only) and intronic reads (reads mapping to both exons and introns). A table of read count 
values was created for downstream analysis, containing genes as rows and samples as columns (Supplemen-
tary Tables 5.4.1-2 report intron results too).

https://tcga-data.nci.nih.gov/tcga
http://mblab.wustl.edu/GTF22.html
http://mblab.wustl.edu/GTF22.html
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Pseudogene-Parental Genes.  The criteria for assessing transcribed evidence are mainly two: 1) Reads 
mapped to the pseudogene sequence and not to the parental gene; 2) Reads mapped to both the pseudogene 
and to the parental gene, but with lower sequence similarity (<90%). Target parental genes were identified by 
aligning the pseudogene sequences using BLAST against a database of the protein coding CDNA sequences 
from Ensembl (v. 72). The best hit matches for a pseudogene sequence were selected based on e-value scores, and 
the best overall hit for a pseudogene was selected as its parental gene. BLAST results with e-value scores can be 
found in Supplementary Table 1.1. In total, 13,151 candidate associations were found from the BLAST results. 
After removing duplicates, 4,035 unique protein coding parental genes were identified (Supplementary Table 1.2). 
Parental gene and child pseudogene associations can be found from consensus (Supplementary Tables 8.5.3.1-2 
and Supplementary Fig. 5.3.3-4).

Differential expression.  FPKM and read count values were used for testing relative differential expression 
between the TCGA primary tumor samples and the GEO controls. Five (5) Methods were employed with dif-
ferent (FPKM or read counts) units as input. FPKM-based chosen methods were: limma from Bioconductor77, 
GeneSpring (http://www.genomics.agilent.com/), and CuffDiff. The chosen read count methods were DESeq and 
NOISeq (both in Bioconductor). Each method was run using the standard protocol and parameters available in 
their documentation, and output p-values were corrected for multiple comparisons using false discovery rate 
(FDR).

Methods for Profiling.  Each of the differential expression methods pooled the two conditions tumor and 
control together (Supplementary Tables 5.1.1-5).

•	 DESeq. The R package (v. 1.18.0) performs analysis of read counts from HTSeq by estimating variance-mean 
dependencies, normalizing by an estimate of the effective library size, and testing for differential expression 
using a negative binomial distribution.

•	 NOISeq. The NOISeq package (v. 2.8.0) is a non-parametric method for analyzing read count data from 
HTSeq. There are no assumptions about data distributions, and normalization of count data is by using a 
trimmed mean of M-values (TMM)60.

•	 CuffDiff. The CuffDiff software (v. 2.2.1) models the variability of a gene’s RNA-Seq measurements by consid-
ering RNA-Seq fragment mappings and the gene’s splicing structure. CuffDiff normalizes the library size by 
using a quartile normalization, and estimates the replicate dispersion with a Poisson model.

•	 GeneSpring. The GeneSpring software (v. 13.0) (Agilent Technologies) analyzed FPKM values obtained from 
CummeRbund. A standard workflow for expression data was used, and no further normalization was applied. 
Tests for differential expression were calculated using a Moderated T-Test.

•	 limma. The limma package (v. 3.22.6) analyzed the FPKM data from CummeRbund. The “classic” workflow 
was performed, i.e., no ‘voom’ transformation was applied. Tests for differential expression were calculated 
using a Moderated T-Test.

Pathway Analysis.  DEGs from each algorithm were analyzed for pathway enrichment using the ClueGO78 
plug-in for Cytoscape79 (http://apps.cytoscape.org/apps/cluego) The ClueGO db for Gene Ontology (GO)80, 
Kyoto Encyclopedia of Genes and Genomes (KEGG)81, WikiPathways82, and Reactome83 were used for pathway 
enrichment analysis with default values, with the GO analysis being run independently from the other databases. 
Several molecule pathways are associated with melanoma, and some with clinical relevance (see a comprehensive 
list in84. Statistical analysis included enrichment performed with Benjamini-Hochberg p-value correction. Details 
on various enrichments are reported in Supplementary Tables 8.4.2-4.

Principal Component Analysis (PCA).  The function ‘prcomp()’ from the R “stats” package was used to 
perform PCA on both the counts and the FPKMs, thus covering profiles from all the methods. PCA coefficients 
from the first PC were used to perform box-plot thresholding (data points outside the maximum and minimum 
whisker boundaries were kept as outliers).

Linear Regression Model (LRM).  A merged matrix of log2(FC) from the differential expression results 
of all methods was created and used as input to LRM. The matrix consisted of genes (rows) and algorithms (col-
umns), with each cell containing gene or ncRNA values. Values that were not identified by a method were flagged 
as missing in the matrix. The standard form “y ~ model” is applied, by the R function “lm()” designed to fit the 
LRM according to:

+ + +~CuffDiff DESeq NOISeq Limma GeneSpring

The above simply denotes that the outcome is assigned by one method, say CuffDiff, establishing the model 
response variable associated to explanatory variables forming linear combination of values obtained with DESeq, 
NOISeq, Limma, and GeneSpring (i.e. the other methods). The placement of such methods as response vs explan-
atory variable is subject to rotation, according to the idea of Alternating Regression Modeling. Predictions by the 
model were obtained using the R function “predict.lm()”, then filtering by a suitable multiplier of the interquartile 
range (IQR). Preference went to predicted values outside 3*IQR range.

http://www.genomics.agilent.com/
http://apps.cytoscape.org/apps/cluego
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Further notes on models.  PCA-driven selections.  In principle, PCA primarily finds the data directions 
explaining most of its variation. A dataset D, normalized into D’, has covariance matrix computed as COV(D’), 
and its eigenvectors (sorted from the largest to the smallest eigenvalues) represent the PCs. The principal com-
ponent coefficients, also known as loadings, are to be found. Given, say, the n-by-p data matrix D, rows of D 
correspond to observations and columns correspond to variables. The coefficient matrix is p-by-p. Each column 
contains coefficients for one PC, columns in descending order of component variance. Equivalently, the PCs 
return information contained in the projected data through the correspondingly estimated coefficients, with 
the highest relevance assigned to the direction of maximal variance (or principal direction). In our setting, the 
tumor baseline signal is contrasted with the control data, and the noise is reduced by shrinkage operated from 
the boxplots. Therefore, each method is subjected to extraction of the first component (PC1), and a set of boxplot 
outliers is obtained in each case.

LRM-driven selections.  With regression, thresholding is applied via the interquartile range or IQR, a measure 
derived from boxplots. Optimality would imply some assumptions, a main one being predictors’ independence. 
This assumption does not usually hold, and sub-optimal conditions apply. As our setting presents intersections 
among the identifications obtained from five methods (e.g. overlapping sets), the emerging gene or ncRNA signa-
tures must be confronted with the inevitable collinearity between regressors, i.e. the method-dependent profiles. 
Such redundancy may be reduced by enforcing shrinkage to the predicted values, through a robust selection rule, 
i.e. IQR × 1.5 (2 or 3). The selections represent linear combinations of multiple profiles.

Model selection.  There might be a subset of predictors relatively more important than the rest. One strategy is to 
insert penalties in the model, useful to control the number of predictors involved. As an alternative, we proposed 
an ARM model type, one working by rotating the dependent and independent variables. Once an initial response 
is identified with one of the variables, the residual variables play the role of regressors/predictors for the response. 
It is a sort of cross- or hold-out validation principle applied to assess the goodness of fit of each method. Repeating 
the regression generates vectors of fitted values that need to be averaged at the end, thus yielding the final consen-
sus DE vector. Note two aspects: (a) The dimension of each response varies depending on the profile to predict. 
The matrix of regressors will adapt to the response’s dimension by only matching selected response values; (b) 
Estimates of the regression coefficients guide the selection of variables (i.e. if the coefficients are significant, then 
the variables will be considered to contribute to the fitted values, otherwise they will be excluded).

Note that LIMMA inclusion revealed not significant regressors. Thus, LIMMA fitted values do not benefit 
from regression modeling, under the given hypotheses. This means that by delivering a much wider but different 
profile than other methods, LIMMA covers the gene space in regions unexplored by the other methods. However, 
this subspace is uncertain in terms of number of false positives. We cautiously keep LIMMA out of the final aver-
age for the fitted values. The LIMMA anomaly was also emphasized with the use of PCA, and in that case too the 
bias introduced was potentially too high to keep LIMMA’s evidences stacked with the other ones. In terms of final 
consensus DE profile, we obtained comparative results with crude average of outcome DEGs, total averages from 
regression, and fitted averages obtained from ARM with and without LIMMA. The most balanced distribution is 
always obtained in the last scenario.

Data Availability & Software.  All software and datasets can be obtained at the Center for Computational Science’s 
GitHub repository, available at the following URL: https://github.com/ccs-bio/melanoma-transcriptomics. At this 
repository, expression tables (FPKM and read count values) and scripts (Python, Bash, R, etc.) for both RNA-Seq 
sample alignment and filtering to extract unique read mappings are reported. R scripts for differential expression 
can also be found for DESeq, NOISeq, and limma. A bash shell script is also included with the CuffDiff com-
mand call, along with the R script for processing the data with CummeRbund. The experimental grouping for 
GeneSpring is also available., as well as scripts for visualizations. All source code will be released under the GPL 
v.3 license.

Ensembl Annotations.  The analysis was based on the Ensembl annotations version 72. Ensembl releases ver-
sions each year (Suppl Fig. S6_2_4), and the current version is 86. Version 72 (Supplementary Table 6.2.1) of 
the annotations contained a total of 62,893 genes, while version 86 (Supplementary Table 6.2.2) contains 58,051. 
Comparing both sets of annotations we found that 51,858 (82.45%) genes are contained in both, while 11,035 
(17.55%) of the version 72 genes are not present in the current version, v.86. A comparison between genes present 
in the latest version of the annotations relative to version 72 is included in Supplementary Table 6.2.3)

Validations.  Cell lines.  Cells were grown at 37 °C in a humidified atmosphere with 5% CO2. All the media 
used for cell culturing are reported in85, and were supplemented with 1% Penicillin/Streptomycin (Euroclone; 
Milano, Italy). The mutational status of BRAF and NRAS is reported in85 too.

Sequence retrieval & alignment.  The cDNA sequences of the genes of interest were obtained from Ensemble, 
inserting the code available in the tables. In order to align sequences and detect their homology CLC Sequence 
Viewer 7 was used.

Primers.  Primer design was performed using Primer3 (http://primer3.ut.ee/), while UCSC in silico PCR 
(https://genome.ucsc.edu/cgi-bin/hgPc)rwas used to confirm the specificity of primers (absence of off-targets). 
All primers were purchased from Primm srl (Milano, Italy). Sequences are reported in Table 1-4 and 
Supplementary Text 9.3.

https://github.com/ccs-bio/melanoma-transcriptomics
http://primer3.ut.ee/
https://genome.ucsc.edu/cgi-bin/hgPc
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RNA extraction and retrotranscription.  RNA was extracted using QIAzol (Qiagen; Venlo, Netherlands), follow-
ing the manufacturer’s instructions. 1 μg of total RNA was treated with DNAse I, amplification grade (Invitrogen; 
Carlsbad, California) following the manufacturer’s protocol. 0.5 μg of RNA treated with DNAse I was retrotran-
scribed on a S1000 Thermal Cycler (Bio-Rad; Hercules, California) using iScript cDNA Synthesis Kit (Bio-Rad; 
Hercules, California). The successful retrotranscription and the absence of contaminating genomic DNA were 
routinely checked through a control PCR in which exon-spanning primers for ATPA1 gene are used. cDNA was 
diluted (1:4) and used for qRT-PCR.

qRT-PCR.  1 μL of cDNA and appropriate primers (Table 1) were used for qRT-PCR reactions, using 
SsoAdvanced Universal Supermix (Bio-Rad; Hercules, California) on a CFX96 Real-Time System (Bio-Rad; 
Hercules, California). The reaction conditions were the following: 98 °C 30 sec, (98 °C 3 sec, 60,4 °C 20 sec, 72 °C 
10 sec)x39cycles. In order to confirm the specificity of the reaction, a melting curve was performed after each PCR 
(from 65 °C to 95 °C with an increase of temperature of 0.5 °C/sec). The annealing temperature was optimized 
by performing a gradient with each primer pair (from from 55 °C to 64 °C). All reactions were performed in 
duplicate; the raw values were calculated using three housekeeping genes as reference (GAPDH, SDHA, PBGD) 
according to the ΔΔCq method used by the CFX Manager Software (BioRad).
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