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Abstract

Background: The emergence of carbapenemase-producing (CP) Citrobacter freundii poses a significant threat to
public health, especially in high-risk populations. In this study, whole genome sequencing was used to characterize
the carbapenem resistance mechanism of three C. freundii clinical isolates recovered from fecal samples of patients
with acute leukemia (AL) from Spain.

Materials and methods: Twelve fecal samples, collected between 2013 and 2015 from 9 patients with AL, were
screened for the presence of CP strains by selecting them on MacConkey agar supplemented with ertapenem (0.5
mg/L). Bacteria were identified by MALDI-TOF mass spectrometry and were phenotypically characterized. Whole
genome sequencing of C. freundii isolates was performed using the MinION and MiSeq Illumina sequencers.
Bioinformatic analysis was performed in order to identify the molecular support of carbapenem resistance and to
study the genetic environment of carbapenem resistance encoding genes.

Results: Three carbapenem-resistant C. freundii strains (imipenem MIC≥32 mg/L) corresponding to three different
AL patients were isolated. Positive modified Carba NP test results suggested carbapenemase production. The
genomes of each C. freundii tested were assembled into a single chromosomal contig and plasmids contig. In all
the strains, the carbapenem resistance was due to the coproduction of OXA-48 and VIM-1 enzymes encoded by
genes located on chromosome and on an IncHI2 plasmid, respectively. According to the MLST and the SNPs
analysis, all strains belonged to the same clone ST169.

Conclusion: We report in our study, the intestinal carrying of C. freundii clone ST169 coproducing OXA-48 and VIM-
1 identified in leukemic patients.
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Introduction
In patients with acute leukemia (AL), long duration and
repetitive chemotherapy as well as antimicrobial therapy is
believed to contribute to occurrence of infections due to
multi-drug resistant (MDR) bacteria in this high-risk
group [1, 2]. In patients with leukemia, because of therapy

of their diseases, bacterial infection with MDR Gram-
negative bacteria is a real problem that could be associated
with a high rate of mortality and morbidity [2–4].
Citrobacter freundii is a gram-negative bacterium

which is rarely the causative agent of infections but it
has been associated with different infections including
respiratory, urinary, gastrointestinal and bloodstream in-
fections [5, 6]. The emergence of MDR C. freundii, espe-
cially those carbapenemase producing strains, poses a
significant threat to public health worldwide, especially
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in immunocompromised patients such as leukemia pa-
tients, which are mostly dependent on antibiotics [5, 6].
Since the development of new generation sequencing

technologies, the access to the full genetic bacterial rep-
ertoire has become easier and allow a better understand-
ing the emergence of antibiotic resistance genes on a
global scale [7, 8].
In this study, we applied the whole-genome sequen-

cing to characterize the antibiotic resistance mechanisms
of three carbapenem-resistant C. freundii clinical isolates
recovered from fecal samples of patients with acute
leukemia from Spain.

Materials and methods
Study design, bacterial isolates and antimicrobial
susceptibility test
The Study design was described in our previous publica-
tion [9]. A subset of twelve fecal samples, collected be-
tween 2013 and 2015 from 9 patients with AL, were
screened for the presence of carbapenemase producing
(CP) strains by selecting them on MacConkey agar supple-
mented with ertapenem (0.5mg/L) [10]. Cultivated bac-
teria were identified by matrix-assisted laser desorption
ionization–time of flight mass spectrometry (MALDI-TOF
MS) (Microflex, Bruker Daltonics, Bremen, Germany). The
resistance phenotype of the isolates was evaluated by test-
ing their susceptibly against sixteen antibiotics on Mueller
Hinton agar using disk diffusion methodology according to
the European Committee on Antimicrobial Susceptibility
testing (EUCAST) guidelines (http://www.eucast.org). The
minimum inhibitory concentration (MIC) of imipenem
was determined using Etest method (AB Biodisk, Sweden),
the results were interpreted according to the EUCAST
breakpoint. The modified Carba NP test method was used
to determine a possible carbapenemase production [11].

Genetic and genomic characterization
Real-time and standard PCR were performed to screen for
the presence of carbapenem resistance genes, including
blaOXA-48, blaKPC, blaNDM and blaVIM [12]. Whole gen-
ome sequencing of the CP strains was performed using
the MinION (Oxford Nanopore Technologies Inc., UK)
and the MiSeq (Illumina Inc., San Diego, CA, USA) tech-
nologies in order to determine the carbapenemase genes
variants, the genetic environment, and the genetic support
of these genes. The long-read sequencing data generated
by Nanopore and short-read data produced by Illumina
sequencing were assembled using SPAdes genome assem-
bler [13]. ARG-ANNOT database available on the ABRi-
cate pipeline and Prokka software were used to identify
the antibiotic resistances genes and to annotate genomes,
respectively [14, 15]. Genetic environment has been
reconstituted by comparing the sequence of genes

surrounding the carbapenemase gene against the NCBI
database, using blastX parameter.

Clonal relationship
SNPs analysis (available at https://cge.cbs.dtu.dk/services/
CSIPhylogeny/) was conducted to study the genomic dif-
ference between the three strains and to determine the
possible clonal relationship. In order to determine the se-
quence type (ST) of isolated strains, Multi Locus Sequence
Typing (MLST) analysis was performed in silico using the
MLST database (available at https://cge.cbs.dtu.dk/ser-
vices/MLST/).

Conjugation experiments and plasmid analysis
Conjugation was conducted on the three C. freundii iso-
lates using azide-resistant Escherichia coli J53 as a recipi-
ent, as previously described [16]. The transconjugants were
selected on Luria Bertani (LB) agar (Beckton Dickinson,
Le Pont de Claix, France) supplemented with sodium
azide (120 μg/ml) and Ertapenem (2 μg/ml). Plasmids
analysis was performed in silico. Plasmid incompatibil-
ity type was identified using PlasmidFinder database
(available at https://cge.cbs.dtu.dk/services/PlasmidFin-
der/) and Jspecies Web Server was used to calculate the
extent of identity between the plasmids [17].

Nucleotide sequence accession number
The shotgun whole genome sequence of the three C. freun-
dii strains and complete sequence of plasmids have been
deposited in NCBI GenBank (GenBank accession number
CP038653, CP038654, CP038655, CP038656, CP038657,
CP038658, CP038659 and CP038660).

Results
Bacterial strains and microbiological tests
Three C. freundii strains (C. freundii_154, C. freundii_565
and C. freundii_680) were isolated on selective media from
fecal samples of three different leukemic patients (Patient-
1, Patient-2 and Patient-3) aged 49, 40, 51, respectively
(Table 1). All patients received ciprofloxacin prior sam-
pling and only one (Patient-2) received also meropenem
(Table 1). Before samples collection, Patient-1 and Patient-
2 received an allogenic transplantation, whereas Patient-3
received a high-intensity chemotherapy. The three strains
were resistant to most antibiotics tested (Table 2), includ-
ing carbapenems with imipenem MIC ≥32 μg/ml. All the
strains remained susceptible to doxycycline, colistin, fosfo-
mycin and nitrofurantoin. Positive modified Carba NP test
results suggested carbapenemase production.

Genetic, genomic and molecular epidemiology analysis
The genome size of CP C. freundii strains obtained after
assembly ranged from 5′443’022 and 5′471’065 bp (includ-
ing chromosome and plasmids for each strains) (Table 2).
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According to PCR results and genome analysis, carbapenem
resistance in these strains was due to the co-production of
OXA-48 and VIM-1 carbapenemase enzymes. Resistome
analysis showed the presence of genes encoding for resist-
ance to β-lactams, aminoglycosides, quinolones, sulfon-
amides, trimethoprim and chloramphenicol antibiotics
families (Table 2). The gene encoding OXA-48 enzyme was
located on the chromosome in the three strains tested and
surrounded by the almost similar structures that compose
the Tn1999.2 transposon (ΔTn1999/IS1R-blaOXA-48-LysR-
orf-ISL3-like) (Fig. 1.a). Unlike the blaOXA-48 gene, blaVIM-1

gene was located in a IncHI-2 plasmid in all the strains. This
gene was located in a class 1 integron that contains a new
cassette array (intI1–blaVIM-1-aac6-Ib-cr-aadA1-qqcEΔ1/

sul1-ΔtniB3-tniA) (Fig. 1b). According to the MLST analysis,
all strains belonged to the same sequence type, ST169. The
SNPs analysis found between 10 and 19 SNPs on average
between the three isolates suggesting that these ST169
strains belonged to the same clone.

Plasmid conjugation
Conjugation experiments failed for the three strains
tested, whereas, in silico plasmids analysis showed the
presence of different protein implicated in conjugal
transfer and pilus formation but the absences of the
plasmid transfer origin (oriT). The comparison of the
average nucleotide identity between the three plasmids
harboring blaVIM-1 gene showed that plasmid p154_1

Table 1 Clinical information about leukemic patients harboring cabapenemase-producing C. freundii

Patients Age
(years)

Hematological malignancy
type

Sample
No.

Sampling
date

Antimicrobial therapy Other conditions before
sampling

CP
bacteria

Patient_
1

49 Acute leukemia 154 13/02/2014 Ciprofloxacin Transplant CF_154

Patient_
2

40 Acute leukemia 565 24/09/2014 Ciprofloxacin,
Meropenem

Transplant CF_565

Patient_
3

51 Acute leukemia 680 26/11/2014 Ciprofloxacin Chemotherapy CF_680

CF C. freundii, CP carbapenemase producing

Table 2 Analysis of the three C. freundii strains isolated from fecal samples of leukemic patients

Strain Genome
size (bp)

GC% ST MIC IPM
(mg/L)

Sensitive
phenotype

Resistance
phenotype

Genome
composition/
size (bp)

ARGs Plasmid
type

Accession
number

CF_
154

5,444,819 51,5 169 ≥32 DOX, CST,
FOF, NIT

AMX, AMC, TZP,
CEF, FEP, CRO, ERT,
IPM, CIP, AMK,
GEN, SXT.

CF154_
Chromosome/
5,143,118

blaCMY-81, blaOXA-48, blaTEM-150,
aac3-IId, aph3-Ia, strA, strB,
qnrB38, sulII.

/ CP038653

Plasmid_1
(p154_1)/
296,117

blaCTX-M-9, blaSHV-12, blaVIM-1,
aac6-Ib-cr, aadA1-pm, aadA2,
aadB, qnr-A1, catA1, sulI, dfr16.

IncHI2 CP038654

Plasmid_2
(p154_2)/
5584

/ ColRNAI_
1

CP038655

CF_
565

5,471,065 51,5 169 ≥32 DOX, CST,
FOF, NIT

AMX, AMC, TZP,
CEF, FEP, CRO,
ERT, IPM, CIP,
AMK, GEN, SXT.

CF565_
Chromosome/
5,207,876

blaCMY-81, blaOXA-48, blaTEM-150,
aac3-IId, aph3-Ia, strA, strB,
qnrB38, sulII.

/ CP038656

Plasmid_1
(p565_1)/
263,189

blaCTX-M-9, blaSHV-12, blaVIM-1,
aac6-Ib-cr, aadA1-pm, aadA2,
qnr-A1, catA1, sulI, dfr16.

IncHI2 CP038657

CF_
680

5,557,664 51,4 169 ≥32 DOX, CST,
FOF, NIT

AMX, AMC, TZP,
CEF, FEP, CRO, ERT,
IPM, CIP, AMK,
GEN, SXT.

CF680_
Chromosome/
5,167,642

blaCMY-81, blaOXA-48, blaTEM-150,
aac3-IId, aph3-Ia, strA, strB,
qnrB38, sulII.

/ CP038658

Plasmid_1
(p680_1)/
385,971

blaCTX-M-9, blaOXA-9, blaSHV-12,
blaTEM-150, blaVIM-1, aac6-Ib-cr,
aadA1-pm, aadA2, aadB, qnr-A1,
catA1, sulI, dfr16.

IncHI2 CP038659

Plasmid_2
(p680_2)/
4051

/ ColRNAI_
1

CP038660

AMX Amoxicillin, AMC Amoxicillin/clavulanic acid, TZP Piperacillin + Tazobactam, CEF Cephalothin, FEP Cefepime, CRO Ceftriaxone, ERT Ertapenem, IPM Imipenem,
CIP Ciprofloxacin, AMK Amikacin, GEN Gentamicin, DOX Doxycycline, CST; Colistin, FOF Fosfomycin, NIT Nitrofurantoin, SXT Sulfamethoxazole/trimethoprim, MIC
Minimum Inhibitory Concentration, ARGs Antibiotic resistance genes, ST Sequence Type
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shared 99.99% of similarity with the plasmid p565_1,
whereas p680_1 shared 99.94% of similarity with the two
other plasmids.

Discussion
Carbapenemase production in C. freundii is poorly doc-
umented, only a few studies reported the expression of
such enzymes in this species [6, 18–20]. The coproduction
of carbapenemase enzymes was already described in some
Enterobacteriaceae species such as Klebsiella pneumoniae
(KPC-2 + VIM-2 or NDM-1 +VIM-1) [19, 21, 22] and En-
terobacter cloacae (NDM-1 + VIM-1) [19] as well as in C.
freundii (KPC-2 +NDM-1, NDM-1 + VIM-1) [19, 20]. In
our study, this situation was observed in three carba-
penem resistant C. freundii strains detected in fecal sam-
ples of three AL patients where, interestingly, two of them
didn’t received carbapenem as antimicrobial therapy. This
suggest that the carbapenem resistance in this context
may not be due to a selection pressure with this antibiotic

family but it could have been selected by the use of other
antibiotic families or by the presence of a carbapenem-
resistant clone in the hematological ward, which would
explain this current situation.
In Spain, OXA-48 and VIM-1 enzymes are the most

prevalent carbapenemase enzymes reported especially in
E. coli, E. cloacae and K. pneumoniae [18]. The coproduc-
tion of these two carbapenemase enzymes by C. freundii
species was reported in only three studies over the world,
and only one reported this detection in hematological ma-
lignancies patients [18, 19, 23]. During an unrestricted
and non-mandatory national Spanish Antibiotic Resist-
ance Surveillance Programme, undertaken between 2013
and 2015, it has been noted a progressive increase in the
rate of Citrobacter spp. Carbapenemase-producers, in-
cluding C. freundii species, in Spanish hospital from 1.3%
in 2013 to 1.5% in 2015 [18].
The gene encoding OXA-48 enzyme was mainly re-

lated to the Tn1999 transposon and to its variants [24].

Fig. 1 a Schematic representation of the genetic environment of the blaOXA-48 gene located on chromosome and its comparison with the
Tn1999 transposon (JN626286) and its variant Tn1999.2 (JN714122) and Tn1999.3 (HE617182). b Schematic representation of genes surrounded the
blaVIM-1 gene and the comparison of this genetic environment with that one identified in the Tn402-type C
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Our study showed that the blaOXA-48 gene was located on
the chromosome in all strains tested and that its genetic
environment was almost identical to that described in
Tn1999.2 variant (Table 2, Fig. 1a) [24]. Indeed, the only
difference resides downstream of the blaOXA-48 gene,
where this gene was flanked by an ISL3-like in our three
C. freundii instead of IS1999 described in Tn1999.2 vari-
ant (Fig. 1a).
blaVIM-1 gene was widely detected in different class 1

integrons such as In110 or In113 [25]. In the study con-
ducted by Arana et al in Spain, blaVIM-1 identified in
their C. freundii strains was located on class 1 integrons
which include other antibiotics resistant genes such as
aacA4, dfrB1, aadA1, and catB2genes [18]. Our study
also reports the localization of the blaVIM-1 gene in a
class 1 integrons, which contains a new gene cassette,
composed of the blaVIM-1, aac6-Ib-cr (conferring resist-
ance to both aminoglycosides and quinolones), aadA1
(conferring resistance to aminoglycosides) as well as the
classic sulI gene (Fig. 1b). The structure of the integrons
class 1 type identified in our strains looks like the defect-
ive Tn402 transposon (type C) carrying the tni module,
ΔtniB and tniA, reported in the literature (Fig. 1b) [26].
In our study, the plasmid carrying the blaVIM-1 gene

identified cannot conjugate, thus excluding the possibility
of plasmid dissemination between patients. Moreover,
MLST and SNPs analysis showed that the three C. freun-
dii strains belonged to the same ST169 clone, which leads
us to hypothesize a possible clonal spread of carbapenem-
resistant strains in the hematology department.
In this present study, the three C. freundii coprodu-

cing OXA-48 and VIM-1 carbapenemase enzymes
were isolated in a context of digestive carrying and not
infectious. It has been shown that in hematological
patients, colonization of the digestive tract by
carbapenem-resistant bacteria constitutes a risk in the
development of infections with these bacteria [27–29].
Despite the fact that our isolates exhibited a high re-
sistance profile, some antibiotics remained active on
these bacteria such as doxycycline, colistin, fosfomycin
or nitrofurantoin.

Conclusion
This study reports the clonal spread of C. freundii
ST169 exhibiting a rare phenotype of co-production of
two carbapenemases, namely OXA-48 and VIM-1 en-
zymes, detected in the digestive tract of patients with
acute leukemia. In our opinion, a systematic screening of
digestive carriage of antibiotics resistant bacteria would
be a great solution to prevent the occurrence of
infections due to such bacteria and to control the spread
of antibiotic resistance genes, especially within high risk
populations.
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