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Abstract: In this study, an easy, rapid and eco-friendly method was used successfully to synthesize
the magnetite nanoparticles (MNPs). In order to fine-tune the synthesized MNPs for the collection of
heavy crude oil spills, the particles’ surface was modified with green hydrophobic biocomponents
that were extracted from Anthemis pseudocotula (AP). The surface modified reaction carried with that
of the MNPs in the presence of n-hexane extract (APH) resulted in the formation of APH-MNPs,
while in the presence of chloroform extract (APC), resulted in APC-MNPs formation. The as-formed
MNPs were thoroughly characterized using transmittance electron microscopy, X-ray powder
diffraction, vibrating sample magnetometer and thermogravimetric analysis. The efficiency of
the surface-modified MNPs for the collection of oil spills in the presence of an external magnetic
field was evaluated by taking different ratios of MNPs:crude oil. From the analysis of the results,
we found that the APH-MNPs particles have higher efficiency in the collection of heavy crude oil
than the corresponding APC-MNPs.

Keywords: green synthesis; plant extract; Anthemis pseudocotula; magnetite nanoparticles;
oil spill collectors

1. Introduction

Oil spills are one of the most severe marine environmental disasters, causing water pollution
through the release of several hazardous chemicals into the environment. The removal of oil spills is
expensive and costs billions of dollars [1–3]. There are many techniques that can be used to combat oil
spills, including mechanical, bioremediation and chemical techniques [4]. Among these techniques,
chemical means of separation have become one of the most common methods, where different
polymers and copolymers are used to absorb, disperse or collect the spilled oil [5–7]. In addition
to polymers, some ionic liquids, poly (ionic liquids) and surfactants have also been tested in recent
years [8–11]. The removal of spilled oils by employing chemical collectors has become one of the most
acceptable techniques because of its high efficiency and ability to reuse the chemicals as compared
with other methods such as oil spill sorbents [9,12,13].

Based on new and restricted environmental regulations, the use of chemicals to combat oil spills
might represent another source of marine pollution. These regulations prompted researchers across the
globe to search for alternatives to traditional chemicals [14,15]. In that view, natural products can be
rich alternative sources for several chemicals that have been used in different fields, including medicine,
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industry and nanotechnology. Recently, the biosynthesis of nanomaterials using ecofriendly, nontoxic
and low-cost natural materials, such as plant extracts, fungi and biomolecules, have been extensively
investigated [16–31]. Since natural materials act as reducing, stabilizing or capping agents during
the synthesis of nanoparticles, employing such materials in the final product formation or surface
modification steps can provide remarkable results. Many studies have reported the synthesis
of magnetic nanoparticles (MNPs) using plant extracts; for instance, Kappaphycus alvarezii whole
plant extract, plantain peel extract, a proanthocyanidin seed extract from grapes, Carica papaya
and Perilla frutescens leaf extracts [32–36]. In our previous study, asphaltene that was precipitated
from crude oil was modified and applied as a natural capping agent for the protection of MNPs
from self-aggregation [12]. Anthemis pseudocotula is a member of the genus Anthemis from the
Asteraceae family that grows widely in different regions of Saudi Arabia. This plant is a semi-prostrate,
dense annual herb with bright, dark-green, feathery leaves and white flowers [37]. To the best of our
knowledge, this plant has never been used for the synthesis of nanoparticles. Thus, the hydrophobic
components from the aerial parts of this plant extracted by n-hexane and chloroform were applied for
the biosynthesis of MNPs as capping and stabilizing agents. Furthermore, we evaluated the efficiency
of the as-synthesized MNPs in the collection of oil spills using different MNPs:crude oil ratios.

2. Materials and Methods

2.1. Materials

All reagents that were used to synthesize the MNPs were based on ferrous chloride tetrahydrate
(FeCl2·4H2O ≥ 99%), ferric chloride hexahydrate (FeCl3·6H2O, 97%), ammonium hydroxide (25%),
ethanol, chloroform and n-hexane, which were supplied by Aldrich Chemical Co. (Missouri, USA)
and were used without any further purification. Saudi heavy crude oil that was produced from the
Ras Gara oilfield, Ras Tannora, and seawater that was collected from the western Arabian Gulf at the
Saudi coast were used to simulate an oil spill.

2.2. Preparation of Plant Extracts

The aerial parts of A. pseudocotula were collected from a wild area of Rowdah Khuraim during
March 2015 and were then identified by a taxonomist in the herbarium division of King Saud University.
The collected fresh parts were chopped into small pieces and were air-dried in the shade. The dried
material was extracted sequentially with n-hexane and then chloroform three times for 72 h each at
25 ◦C. The organic extracts were filtered and concentrated under reduced pressure and temperature
conditions. The n-hexane and chloroform extracts were abbreviated as APH (A. pseudocotula hexane
extract) and APC (A. pseudocotula chloroform extract), respectively.

2.3. Synthesis of MNPs

For the synthesis of APH-MNPs and APC-MNPs, Fe3+ and Fe2+ (2:1 Molar ratio, 5.406:1.988 g of
each was dissolved in 100 mL of deionized water) solutions were added and stirred with the APH or
APC solution (2 g dissolved in 100 mL of ethanol). Then, ammonia solution was added dropwise with
continuous stirring at 25 ◦C. The solution pH was adjusted to 10, and the solution was stirred for 1 h
to ensure homogenization and completion of the reaction. The produced APH-MNPs and APC-MNPs
were separated easily using an external magnetic field. The MNPs were then washed several times
with ethanol, followed by deionized water and, finally, were dried at room temperature.

2.4. Characterization

Fourier transform infrared spectroscopic analysis (FTIR; model Nexus 6700 FTIR,
Thermo scientific, MN, USA) were used to investigate the functional groups of extracts and
the synthesized MNPs. X-ray powder diffraction (XRD; BDX-3300 diffractometer, Beijing University
Equipment Manufacturer, China) using Cu Kα radiation of wavelength λ = 1.542 ◦A was used to
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analyze the crystal lattice structure of the MNPs. Dynamic light scattering (DLS; Zetasizer 3000HS;
Malvern Instruments, Malvern, UK) with a 633 nm He-Ne laser was applied to determine the particle
size, dispersity index and zeta potential of the synthesized MNPs, using ethanol as a solvent. Thermal
stability (TGA) of the synthesized MNPs was tested using a Shimadzu, DSC-60 instrument (USA)
while heating the MNPs in the range 25–800 ◦C under N2 atmosphere at a heating rate of 10 ◦C/min. A
drop shape analyzer (model DSA-100, Krüss GmbH, Hamburg, Germany) was used to determine the
contact angle. For the measurements, a small amount of MNPs was dispersed in ethanol, was spread
on the surface of a glass slide, and was evaporated in an oven at 50 ◦C to form a thin layer of MNPs on
the surface of the slide. The contact angle between seawater and this layer was measured at room
temperature. A transmission electron microscope (TEM; JEOL JEM-2100F JEOL, Tokyo, Japan) was
used to confirm the surface morphology of the synthesized MNPs. A vibrating sample magnetometer
(VSM; LDJ9600 in a field of 20,000 Oe, LDJ Electronics, MI, USA) was used to measure the magnetic
parameters of the synthesized MNPs.

2.5. Application of APH-MNPs and APC-MNPs as Oil Spill Collectors

In a 500-mL beaker, 1 mL of Saudi heavy crude oil was poured over 250 mL of seawater. Different
ratios of MNPs to crude oil, ranging from 1:1 to 1:50, were added and mixed slowly with the crude
oil over the seawater for 1 min by using a glass rod. After 5 min, a permanent Nd-Fe-B magnet
(4300 Gauss) was used to collect the dispersed crude oil spill. The remaining oil was extracted from
the seawater by using chloroform. The efficiency of the MNPs in the collection of the oil spill was
calculated using the following equation:

CE (%) = V0/V1 × 100 (1)

where V0 and V1 are the volume of the removed and original oil, respectively. The used MNPs
were recycled after collecting them with an external magnetic field and washing them several times
with chloroform.

3. Results

The present work aimed to use the defatted hydrophobic extract APC and APH of A. pseudocotula
to apply as capping agents and to increase the hydrophobicity of MNPs with excellent dispersion
in crude oil spills more than dispersion in sea water. Moreover, using plant extracts in the synthesis
of MNPs increases their economic feasibility as environmentally friendly materials in the aquatic
environment. Therefore, the application of the plant extracts to synthesize the nanomaterials was
considered as a promising green method due to their biocompatibility, low toxicity and eco-friendly
nature because the plants are found in abundance in nature. It was also attempted to characterize the
chemical, crystalline structures, morphology, thermal stability, morphology and magnetic properties
of the modified MNPs to investigate the effect of the plant extract on the dispersion and stability of
MNPs in both aqueous and non-aqueous environments.

3.1. Chemical Structure of MNPs

The active functional groups in both (APC and APH) extracts and the type of the produced iron
oxide to synthesize MNPs (APH-MNPs and APC-MNPs) were investigated by FT-IR (Fourier-transform
infrared) analysis, and the results are shown in Figure 1a–d.
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Figure 1. FT-IR (Fourier transform infrared) spectra of (a) APH (n-hexane extract), (b) APC 
(chloroform extract), (c) APH-MNPS (magnetite nanoparticles) and (d) APC-MNPs. 

Figure 1. FT-IR (Fourier transform infrared) spectra of (a) APH (n-hexane extract), (b) APC (chloroform
extract), (c) APH-MNPS (magnetite nanoparticles) and (d) APC-MNPs.

Figure 2a,b shows the crystalline structure of APH-MNPs and APH-MNCs, respectively using
X-ray powder diffraction patterns.
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The surface morphologies of the synthesized APH-MNPs and APC-MNPs that were investigated
by TEM are shown in Figure 3a,b.
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Figure 3. HR-TEM (High-resolution transmission electron microscopy) micrographs of (a) APH-MNPs
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The DLS measurements that were applied for the determination of particle diameter, dispersity
and zeta potential of the synthesized APH-MNPs and APC-MNPs in ethanol are shown in Figures 4a,b
and 5a,b and Table 1.
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The concentration and thermal stability of MNPs that were incorporated with the biomolecules
extracts in the APC and APH were determined using TGA thermograms (Figure 6).
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Table 1. Dynamic light scattering results of APH-MNPs and APC-MNPs at 25 ◦C.

Sample Particle Size (nm) Polydispersity Index Zeta Potential (mV)

APH-MNPs 565.1 0.338 −6.53
APC-MNPs 308.8 0.229 −37.14

In a general sense, the increasing of MNP’s dispersity in crude oil directly increases their efficiency
towards the oil spill collection. Such dispersion of MNPs in crude oil is completely influenced by the
hydrophobicity of capping agents, and in order to evaluate the hydrophobicity of the synthesized
MNPs, the contact angle measurements were performed and are shown in Figure 7a,b.
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The magnetic properties of the synthesized MNPs, represented by the saturation magnetization
(Ms,), magnetic remanence (Mr) and coercivity (Hc), were determined at room temperature by VSM
magnetic hysteresis loops. The results are shown in Figure 8 and in Table 2.
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Table 2. Magnetic parameters of APH-MNPs and APC-MNPs at 25 ◦C.

Sample Ms (emu/g) Mr (emu/g) Hc (Oe)

APH-MNPs 51.42 0.153 6.4
APC-MNPs 57.83 0.098 5.1
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3.2. Efficiency of APH-MNPs and APC-MNPs in the Collection of Oil Spills

The efficiencies of APH-MNPs and APC-MNPs in the collection of an oil spill of Arabian heavy
crude oil was evaluated at different MNPs to crude oil ratios (1:1 to 1:50) and are listed in Table 3.

Table 3. Oil spill collection results.

Ratio Sample 1:1 1:10 1:25 1:50

APH-MNPs 92 90 88 83
APC-MNPs 81 78 74 70

The reusability of the synthesized MNPs in the collection of oil spills was tested five times.
After the collection of oil using an external magnetic field, the MNPs were washed with chloroform,
followed by washing with ethanol and being air-dried, and were then used directly for the next run
without further purification. The results for the recovered MNPs (1:10 MNPs to oil ratio) are presented
in Figure 9.
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4. Discussion

This work is aimed to investigate the efficiency of the green synthesized MNPs for the collection of
crude oil in spills. The synthesis of MNPs was achieved using n-hexane and chloroform extracts of the
aerial parts of A. pseudocotula as capping and stabilizing agents to increase the hydrophobic properties
of MNPs. The wide availability of this plant, fast extraction process, low cost, green character and
diversity of compounds in these extracts ensure their compatibility as capping agents for the MNPs.
The n-hexane and chloroform extracts usually contain different active compounds, such as fatty acids,
sesquiterpenoids, diterpenoids, phenolic compounds, coumarins and terpenoids [38–40]. The presence
of these compounds in the capping agent increased their ability to form colloidal particles in the crude
oil by utilizing several interactions, such as the aromatic π–π* stacking force, hydrogen bonding, Van
der Waals force and electrostatic attractions. Accordingly, the use of these hydrophobic components
as capping agents led to an increase in their dispersion in crude oil rather than seawater and further
promoted their ability to collect oil from the surface of the seawater. The co-precipitation method is
one of the most common methods that is used in the synthesis of MNPs [12]. Then, the MNPs can be
formed via an oxidation and reduction method by using certain reducing agents, such as potassium
iodide and sodium sulfite, followed by the addition of ammonium or sodium hydroxide after the
removal of the precipitated iodine, as reported in our previous work [12]. In the present study, a
mixture of ferric and ferrous ions (2:1 Molar ratio) were hydrolyzed easily in the presence of APH
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or APC, using ammonium hydroxide to form hydrophobic MNPs at room temperature. The overall
reaction may be carried out according to the following equations:

A. pseudocutula+Fe3+
(eq) + Fe2+

(eq) + H2O
Stirring−−−−→ (A. pseudocutula/Fe3+ − Fe2+) (2)

(A. pseudocutula/Fe3+ − Fe2+) + 8OH−(aq)
Stirring−−−−→ (A. pseudocutula/Fe3O4)s ↓↓ + 4H2O(aq) (3)

Magnetite can interact by complexation with heteroatoms such as oxygen and nitrogen that
are present in the APC and APH extracts. The capping process might have taken place through a
physical interaction, such as hydrogen bonding, Van der Waals, electrostatic attractions and/or polarity
induction forces between the formed nanoparticles and various functional groups of phytomolecules
that are present in APH and APC extracts [41]. The functional groups of the extracts (APH and APC)
and the capped MNPs (APH-MNPs and APC-MNPs) were determined by FTIR spectra (Figure 1a–d),
and the C–H stretching and bending vibrations of the aliphatic groups (CH3– and –CH2–) in the
APH (Figure 1a) were observed at 2933 cm−1, 2856 cm−1, 1460 cm−1 and 1453 cm−1. Similarly,
the appearance of bands at 3413 cm−1 and 1733 cm−1 indicated the presence of stretching vibrations of
the polar functional groups –NH, –OH and –C=O, respectively. The same bands were appeared in the
APH-MNPs spectrum (Figure 1c) indicating functionalization of these functional groups with MNPs.
The appearance of a new band (Figure 1c) at 572 cm−1 (Fe–O stretching) confirms the formation of
MNPs (magnetite) only without any other iron oxides. In the same way, the APC spectrum (Figure 1b)
showed bands at 3413 cm−1, 2926 cm−1, 1748 cm−1 and 1402 cm−1 that referred to stretching and
bending vibrations of –OH, –CH2 and –C=O. In addition, the appearance of other bands in the APC
at 3139 cm−1, 1654 cm-1 and 2361 cm−1 was attributed to aliphatic =C–H, C=C and amide bonding,
respectively. These active functional groups in the APC spectrum appeared also in the APC-MNPs
spectrum (Figure 1d) with an appearance characteristic band of MNPs at 572 cm−1. An increase
in the intensity of this band with capped MNPs in both samples (APH-MNPs and APC-MNPs)
indicates an increase in the concentration of the MNPs. Moreover, a shift in the bands positions and
decrease in the intensity of the functional groups in APH-MNPs and APC-MNPs (Figure 1b,c) also
provides evidence for the successful bonding of MNPs with APH and APC functional groups. XRD
diffractograms (Figure 2a,b) are used to investigate the iron oxide types beside the crystalline structure
of MNPs [12]. The data (Figure 2a,b) showed several characteristic peaks at 2θ values of 30.13◦ (220),
35.48◦ (311), 43.15◦ (400), 53.95◦ (422), 57.03◦ (511), 62.62◦ (440) and 74.52◦ (622). These peaks were
compared with the standard peaks in the Joint Committee on Powder Diffraction Standards (JCPDS)
file (PDF No. 65-3107), and it was confirmed that the crystal structure of the MNPs was not affected
by the modification of their surfaces with APC and APH components. The XRD patterns of MNPs
(Figure 2a,b) elucidate the absence of diffraction peaks, i.e., amorphous nature, except for the observed
broad band at 2θ values (20◦–30◦). The broad diffraction peaks (Figure 2a,b) appearing at 22.1◦ can
be attributed to the presence of APH and APC phytomolecules, providing indirect evidence for the
successful coating of the MNPs with APH and APC phytomolecules. Generally, the amorphous nature
of the particles is non-toxic to living organisms and hence, amorphous herbal nanoparticles enhance
the biocompatibility for different environmental applications [42]. XRD diffractograms were also used
to estimate the average particle size of APH-MNPs and APC-MNPs by the Deybye-Scherrer equation.
This equation depends on the relationship between particle size and broadening of the XRD peak and
can be represented by the following equation:

PS = Kλ (βCOSθ) (4)

where PS is the particle size, K is a dimensionless shape factor called Scherrer constant (0.9), λ is the
wavelength of X-ray (0.15406 nm), β is the width of the XRD peak at half the maximum intensity
and θ is the Bragg diffraction angle. Using this equation, the average particle size of APH-MNPs
and APC-MNPs were found to be 11–19 nm. The TEM micrographs of APH-MNPs and APC-MNPs
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(Figure 3a,b) elucidate the appearance of the MNPs in the cluster form which attributed to the magnetic
behavior where the surface charges and magnetic forced them to be aggregated [9]. From DLS data
(Figure 4a,b), the average diameter and polydispersity index (PDI) were found to be 565.1 nm and 0.338,
respectively, for the APH-MNPs and 308.8 nm and 0.229, respectively, for the APC-MNPs in ethanol.
However, considerable differences in the particle diameter as measured by TEM and DLS reflected
the inclusion of agglomerated regions in DLS measurement that depends on the behavior of particles
in the solution. Moreover, the average particle size that was obtained from the Scherrer equation
supported the TEM results. Notably, the APH-MNPs were more agglomerated than the corresponding
APC-MNPs, which might be caused by the Van der Waals attraction forces between the hydrophobic
surfaces between these particles [43]. The small values of PDI confirms the formation of monodispersed
MNPs that reflects the efficiency of APH and APC components as capping and stabilizing agents.
The zeta potential of the APC-MNPs (Figure 6a,b) seemed to have a more negative value (−37.14 mV)
than that of the AHP-MNPs (−6.53 mV), which further indicated the higher dispersity and stability
of the APC-MNPs in ethanol as compared with the APH-MNPs. The concentration of the formed
nanoparticles is determined from TGA thermograms (Figure 6). The magnetite contents of APH-MNPs
and APC-MNPs were 72.5% and 81.5%, respectively, as determined at 800 ◦C. This indicated that
there was a higher amount of capping agent on the APH-MNPs composite than the corresponding
APC-MNPs composite. The data also elucidated that the degradation process seemed to have occurred
at two different temperature regions, i.e., 100–400 ◦C and 670–780 ◦C. In the first region (100–400
◦C), the APH-MNPs and APC-MNPs lost around 14% and 15% of their initial weights, respectively,
and the losses could be ascribed to the decomposition of APH and APC groups. However, the weight
losses in the second region were 10% and 3.5% for the APH-MNPs and APC-MNPs, respectively.
The high thermal stability of APC-MNPs at the degradation temperature ranged from 400 ◦C to 700 ◦C,
which might reflect stronger interactions between the relatively polar components of APC as compared
with those of APH.

It was observed during the experimental studies that the synthesized MNPs exhibited no easy
dispersion in seawater, while high dispersion was observed in toluene, xylene, chloroform and other
low polarity solvents. The hydrophobicity of the prepared MNPs can be investigated from the contact
angles measurements as represented in Figure 7. The data elucidated that the contact angles of
APH-MNP and APC-MNP composites are 142◦ and 118◦, respectively, which reflected the higher
hydrophobic content of APH extract as compared against the APC extract. This means the formation
of superhydrophobic capping of MNPs in the presence of APH extracts [42]. The magnetization
curves for APH-MNPs and APC-MNPs composites (Figure 8) also indicate the superparamagnetic
behavior. In addition, from the analysis, we observed an increased value for Ms and decreased values
for Mr and Hc as compared to other MNPs that were capped by different biocomponents [44,45].
The increase in the Ms value of APC-MNPs reflected the lower amount of capping agent as compared
with APH-MNPs, which was confirmed by the TGA analysis (Figure 6).

The contact angles measurements and magnetic properties of the synthesized MNPs show that
increasing their hydrophobicity and supermagnetic nature make them suitable candidates in the
collection of oil spills. Therefore, the efficiencies of different ratios of APH-MNPs and APC-MNPs as
oil spill collectors for different MNPs: heavy crude oil ratios, from 1:1 up to 1:50 were evaluated.
It is observed from the analysis that the best ratio of APH-MNPs:crude oil that succeeded in
removing 90% of the crude oil was 1:10. In addition, the APH-MNPs were demonstrated to be
highly efficient for the removal of crude oil in comparison to the corresponding APC-MNPs composite
(only 78%). The observed high efficiency of APH-MNPs as compared to APC-MNPs reflected the
greater hydrophobicity of the capping agent, which helped to increase its dispersion in crude oil,
as confirmed by the contact angle measurements (Figure 7). Consequently, the efficiency of MNPs
towards the collection of oil spills can be significantly improved by increasing the hydrophobicity of
the capping agents. Moreover, the oil spill collection efficiency did not improve significantly by simply
increasing the ratio of MNPs:crude oil to 1:1 because the MNPs could aggregate easily and, thus,
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formed aggregated clusters that disturbed the magnetic attractions between the MNPs and the external
magnetic field. As observed in Figure 9, the efficiency of the recovered particles in the collection of
the oil spill seemed to have decreased slightly with an increased number of cycles, indicating that the
polarity changed as the material was reused.

5. Conclusions

In summary, hydrophobic MNPs could be synthesized in a novel, inexpensive, non-toxic
and eco-friendly approach where the hydrophobic biocomponents extracted from A. pseudocotula
were employed as capping agents. The surface functionality of these biocomponents with MNPs
(APH-MNPs and APC-MNPs) and the persistence of the nanoparticles at all stages were confirmed
by FT-IR analysis. The contact angle measurements provided proof for the effective dispersion of
the synthesized MNPs in crude oil rather than in the water medium. The microstructures of the
particles were supported by the TEM and DLS analyses where the particles were observed to be
spherical in shape with an average diameter of 565 nm (APH-MNPs) and 308 nm (APC-MNPs).
The superparamagnetic behavior was observed by the magnetic studies where the highest
magnetization value was observed for the APC-MNPs as against the APH-MNPs. Such a decrease
could be linked to the hydrophobic behavior. Furthermore, the APH-MNPs were demonstrated
to be efficient for the collection of crude oil as compared against the APC-MNPs due to its higher
dispersion ability in crude oil. Finally, the MNPs could be reused at least five times with no or slight
loss of efficiency. Hence, by considering the simplicity of our synthesis method in addition to the
wide availability of plant extract as a source for hydrophobic capping agents, the formed MNP-based
composites can serve as potential platforms for the separation of oils from spills during seashore
drilling operations.

6. Patents

Mahmood M.S. Abdullah, Ayman M. Atta, Hamad A. Al-Lohedan, Hamad Z. Alkhathlan,
Merajuddin Khan, Abdulrahman O. Ezzat, Biosynthesized magnetic metal nanoparticles for oil spill
remediation, Patent number: 9901903 USA(2018).
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