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Background. Carefully calibrated large-scale computational models of epidemic spread represent a powerful tool to support the
decision-making process during epidemic emergencies. Epidemic models are being increasingly used for generating forecasts of the
spatial-temporal progression of epidemics at different spatial scales and for assessing the likely impact of different intervention strat-
egies. However, the management and analysis of simulation ensembles stemming from large-scale computational models pose chal-
lenges, particularly when dealing with multiple interdependent parameters, spanning multiple layers and geospatial frames, affected
by complex dynamic processes operating at different resolutions.

Methods. We describe and illustrate with examples a novel epidemic simulation data management system, epiDMS, that was
developed to address the challenges that arise from the need to generate, search, visualize, and analyze, in a scalable manner,
large volumes of epidemic simulation ensembles and observations during the progression of an epidemic.

Results and conclusions. epiDMS is a publicly available system that facilitates management and analysis of large epidemic sim-
ulation ensembles. epiDMS aims to fill an important hole in decision-making during healthcare emergencies by enabling critical
services with significant economic and health impact.
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The potential for pandemics to rapidly generate morbidity and
mortality and influence economies around the world has high-
lighted the need to develop quantitative frameworks for sup-
porting public health decision-making in near real time. For
instance, the 2003 SARS coronavirus emergency, which origi-
nated in China and spread to 29 countries, generated important
nosocomial outbreaks in several regions by August 2003 [1, 2].
More recently, the 2009 influenza A(H1N1) pandemic, origi-
nating in Mexico, rapidly spread around the globe via the airline
network and reached 20 countries, with the highest volume of
passengers arriving from Mexico within a few weeks of epidem-
ic onset [3]. Importantly, the economic cost associated with a
pandemic similar to the 2009 influenza A(H1N1) pandemic
has been estimated to range from $360 billion to $4 trillion
[4] for the first year of virus circulation.

Large-scale computational transmission models of infectious
disease spread are increasingly becoming part of the toolkit to
generate inferences about the spread and control of infectious
diseases. Examples of real-time analyses of epidemics supported
by large-scale transmission models include estimating the trans-
missibility of an epidemic disease, such as influenza [5–7]; fore-
casting the spatiotemporal evolution of pandemics at different

spatial scales [8, 9]; assessing the effect of travel controls during
the early epidemic phase [10–12]; predicting the effect of school
closures in mitigating disease spread [13–15]; and assessing the
impact of reactive vaccination strategies [16]. These analyses,
however, require access to, integration of, and analysis of mod-
els and large volumes of data, including data sets from diverse
sources, to parameterize demographic characteristics, contact
networks, age-specific contact rates, mobility networks, and
healthcare and control interventions.

In this article, we argue that, if effectively leveraged, existing
simulation analyses and real-time observations generated during
an outbreak can be collectively used for better understanding the
transmission dynamics and refining existing models. At the
same time, these model simulations are useful for performing
exploratory, if-then types of hypothetical analyses of epidemic
scenarios to address critical questions, including whether we
can identify and classify key events (eg, epidemic peak timing
and likely epidemic duration) during an infectious disease out-
break from large simulation ensembles, compare and summarize
a large number of epidemic simulations and observations under
different epidemiological scenarios, and discover latent relation-
ships and dependencies among disease dynamics and social
parameters.

EPIDEMIC SIMULATIONS

Global epidemic spread can be characterized via simulation
through networks of multiple (local and global) scales: individ-
uals within a subpopulation may be infected through local con-
tacts during a localized outbreak. These infected individuals
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then may seed the infection in other regions, starting a new out-
break. Thus, large-scale epidemic simulation systems (eg,
GLEaM [9] and STEM [17]) are required to leverage models
and data at different spatial scales. These include social contact
networks, local and global individual mobility patterns, loca-
tion-specific control interventions, and epidemiological charac-
teristics of the infectious disease in question.

The population model for a global epidemic simulation sys-
tem can be based, for example, on the Gridded Population of
the World project by the Socioeconomic Data and Applications
Center [18], which has a resolution of 15 × 15 minutes of arc.

Mobility models can include long-range air travel mobility
data, such as those from the International Air Transport Asso-
ciation and the Official Airline Guide, and/or short-range
commuting patterns between adjacent subpopulations. High-
resolution demographic and age-specific contact data have be-
come available for a number of areas, including the United
States [19] and Southeast Asia [16], while age-specific contact
rates have been derived from population surveys for a number
of European countries [20]. Large-scale computational trans-
mission models, parameterized with high-volume air traffic
data and country-level seasonality factors, are being increas-
ingly used to assess the global transmission patterns of emerg-
ing infectious diseases and the effectiveness of control measures
[21–23].

Epidemic models allow the user to specify epidemiological
parameters that are specific to the infectious disease (such as
transmissibility and seasonality), initial outbreak conditions
(eg, the seeding characteristics of the epidemic and the immu-
nity profile of the subpopulation), and the timing, type, and in-
tensity of intervention measures. While the disease model can
be specific to the type of infectious disease, the parameters of
a typical model (eg, the modified susceptible-latent-infectious-
recovered model described in ref. [9]) include (1) the infection
rate of contracting illness when an individual interacts with an
infectious person, (2) infection rate scaling factors for asymp-
tomatic infectors and treated infectors, (3) the average length
of the latency period (in which the individual is infected but
not infecting), (4) the probability of symptomatic versus asymp-
tomatic infections, (5) the change in travelling behavior after the
onset of symptoms, (6) the average length of recovery, (7) the
percentage of infectious individuals who undergo pharmaceuti-
cal treatment, and (8) the impact (eg, on the length of the infec-
tious period) of the treatment.

The output of a simulation is a multivariate time series,
which tracks for each spatial location (such as the US states)
the simulation values of each output parameter, such as the
number of infected individuals.

CHALLENGES

While large-scale epidemic simulation systems such as GLEaM
[9] or STEM [17] represent very powerful and highly modular

and flexible epidemic spread simulation systems, their power for
real-time decision-making could be enhanced by addressing
two challenges. First, a sufficiently useful disease spreading sim-
ulation system requires complex models, including social con-
tact networks, local and global mobility patterns of individuals,
and epidemiological parameters for the infectious disease (eg,
the infectious period). Epidemic simulations track tens or hun-
dreds of interdependent parameters, spanning multiple layers
and geospatial frames, affected by complex dynamic processes
operating at different resolutions. Moreover, an ensemble of sto-
chastic epidemic realizations may include hundreds or thou-
sands of simulations, each with different parameters settings
corresponding to slightly different but plausible scenarios [24,
25]. As a consequence, running and interpreting simulation re-
sults (along with the real-world observations) to generate timely
actionable results pose challenges.

A second a major challenge in using data- and model-driven
computer simulations for predicting geotemporal evolution of
epidemics for managing health emergencies, such as the
2014–2015 Ebola epidemic in West Africa, is that the data,
models, and underlying model parameters dynamically evolve
over time. This necessitates continuous analyses and interpreta-
tions of the incoming data and adaptation of the networks and
models. Therefore, simulation ensembles may need to be con-
tinuously revised and refined as the situation on the ground
changes. Revisions involve incorporating the real-world obser-
vations, as well as updated probability surfaces, into existing
simulations to alter their outcomes, whereas refinements in-
volve identifying new simulations to run based on the changing
situation on the ground to provide trustable recommendations.
As the situation on the ground and intervention mechanisms
evolve, the sampling strategies for the input parameter spaces
have to be varied (by eliminating irrelevant scenarios and con-
sidering new scenarios or varying the likelihood of old scenar-
ios) in such a way that more-accurate simulation results are
obtained where it is more relevant.

To have a significant impact on disease control and to devise
validated epidemic response strategies within a realistic time
frame, public health authorities need to adequately and system-
atically interpret observations, understand the processes driving
epidemic outbreaks, and assess the robustness of conclusions
driven from simulations. Because of the volume and complexity
of the data, the varying spatial and temporal scales at which the
key transmission processes operate and relevant observations
are made, public health experts could benefit from novel deci-
sion support systems. Therefore, tools that help execute large-
scale simulation ensembles under a large number of diverse
hypotheses/scenarios and those that facilitate analysis, explora-
tion, interpretation, and visualization of large simulation
ensembles (aligned with the real-world observations) to gener-
ate timely actionable results are critically needed for under-
standing the evolution patterns of the outbreaks (including
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estimating transmissibility, forecasting the spatiotemporal
spread at different spatial scales, and assessing the cost and im-
pact of interventions, including travel controls, at various stages
of the epidemic) and supporting real-time decision-making and
hypothesis testing through large-scale simulations.

epiDMS OVERVIEWAND USE SCENARIO

Data and models relevant to data-intensive simulations are vo-
luminous, multivariate, have multiple resolutions, multilayered,
geotemporal, interconnected and interdependent, and often in-
complete/imprecise. Moreover, data and models dynamically
evolve over time, owing to control actions taken by individuals
and public health interventions, requiring continuous adapta-
tion and repeat modeling.

epiDMS, a novel epidemic simulation data management sys-
tem software framework [26], aims to address the key challenges
underlying large epidemic spread simulations, which, today,
hinder real-time and continuous analysis and decision-making
during ongoing outbreaks. Unlike other dynamic modeling
platforms, such as Berkeley Madonna [27], the services provided
by epiDMS include (a) storage and indexing of large-ensemble
simulation data sets and the corresponding models and (b)
search and analysis of ensemble simulation data sets to enable
ensemble-based decision support [28–30].

The target user group for epiDMS includes a range of public
health researchers and decision-makers. While creation of mod-
els for ensemble simulations and query formulation require
moderate infectious disease modeling experience, epiDMS
also provides parameterized queries and other interactive user
interfaces to enable decision-makers with minimal experience
to explore large-ensemble simulations.

System Overview
epiDMS [26] consists of three major components for managing
the data and models for data-driven real-time epidemic simula-
tions (Figure 1). First, the epidemic ensemble execution engine
(epiRun) takes as input an epidemic model, mobility/connectiv-
ity models, interventions, and outbreak conditions (such as
ground zero) and creates an epidemic ensemble by sampling
the disease parameter space and executing simulations, using

an external simulation engine. Note that epiRun is not specific
to any disease model or simulation engine and that it can wrap,
as a black-box software component, any epidemic simulation
engine as long as it provides command line invocation. The ep-
idemic model (formulated in the format specific to the simula-
tion engine), the selected input parameter values, and the
simulation results (ie, the time series for each output variable)
then become inputs for the epidemic data and model store
(epiStore).

Second, epiStore stores and indexes the relevant data and
metadata sets. The data and models relevant for modeling
large-scale epidemics include the following: one or more net-
work layers for epidemic simulation, from local and global mo-
bility patterns to social contact networks; disease models, which
describe the epidemiological parameters relevant to a simula-
tion and the parameter dependencies necessary in the compu-
tation of the disease spread; time series, from different
simulations, each corresponding to different sets of assump-
tions (disease parameters or models) or context (eg, spatiotem-
poral context, outbreak conditions, or interventions); and
disease observations, which include real-world observations
that arise in near real time relating to a particular epidemic, in-
cluding the spread and severity of the disease and observations
about other relevant parameters, such as the average length of
recovery or percentage of infectious individuals that undergo
pharmaceutical treatment. epiStore captures simulation meta-
data (ie, simulation model, parameter values, and connectivity
graphs) and simulation outputs (ie, time series) and provides
data analysis (eg, clustering, classification, and event extraction)
to support decision-making. Once again, epiStore is not specific
to any disease model or simulation ensembles generated by a
specific simulation engine—it can read and store models and
simulation results produced by any epidemic simulation engine
as long as data wrappers that convert data and metadata into
internal epiStore representation are available.

Third, the epidemic ensemble query, visualization, and ex-
ploration module (epiViz) provides a web-based query and re-
sult visualization interface to support user interaction and
exploratory decision-making through simulation ensembles
(Figure 2). Query specification language is also model indepen-
dent, in the sense that the system does not make any assump-
tions regarding what the input and output parameters of the
simulations are—once imported into epiStore, parameters of
any model can be queried, visualized, and explored.

epiDMS Use Scenario
Consider a governmental agency charged with developing a pre-
paredness plan for the next influenza pandemic. To account for
uncertainty in the epidemiology of the disease, characteristics of
surveillance systems, and actual field conditions (eg, healthcare
capacity) including the availability and effectiveness of the in-
terventions, public health experts execute a large number ofFigure 1. epiDMS overview.
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simulations by using the epiRun simulation ensemble creation
engine to generate simulation instances. The configuration file
for epiRun specifies applicable disease models, parameter value
ranges and sampling granularities, connectivity and mobility
graph assumptions, simulation duration, and assumptions re-
garding when and what interventions are to be applied. Given
these, epiRun schedules the execution of these simulations. The
simulation metadata and results are then read and stored in
epiStore. Intuitively, each simulation result corresponds to a

so-called possible world, and thus it is annotated and indexed
with the metadata describing the corresponding scenario.
Later, during hypothetical public health planning or pandemic
response, the simulation results stored in epiStore can be ac-
cessed through scenario-based or observational search.

Scenario-Based Querying and Exploration

A basic functionality of epiDMS is to retrieve epidemic simula-
tions, stored in epiStore, based on a user-specified scenario

Figure 2. A sample epiDMS screenshot, which includes scenario-based querying and exploration. The figure shows a query posed to epiDMS, the set of results (visualized in
the form of a navigable hierarchy of heat maps), and 2 simulations selected for detailed comparison. Please see the accompanying Supplementary Materials and the video
available at https://www.youtube.com/watch?v=9w-4nDhXv3k for more details.
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description. For example, the user can formulate a query that
asks the system to identify all preexecuted simulations, based
on susceptible-exposed-infectious-removed and susceptible-
infectious-removed epidemic models, where the input trans-
mission rate parameter is set between 0.3 and 0.6 per day,
the recovery rate parameter is set to 0.5 per day, and a vacci-
nation-type trigger was used in the simulation. The query also
specifies a particular mobility graph, describing expected
movements of the populations during the epidemic, as an un-
derlying assumption. In addition, the query asks the system to
return daily (1-D) averages of infected, incidence, and deaths
simulation output parameters for Arizona, California, and
New Mexico for an epidemic simulation that lasts 8 months.
Details of this query, as well as a detailed description of the
query and visual exploration interface provided by epiDMS,
are available in the Supplementary Materials.

Once the query is executed and the relevant simulations are
identified, epiDMS then organizes the results in the form of a
navigable hierarchy, based on the temporal dynamics of the dis-
ease: scenarios that result in similar patterns are grouped under
the same branch, while simulations that show key differences in
disease development are placed under different branches of the
navigation hierarchy. The user can then navigate on this hierar-
chy using drill-down and roll-up operations and filter sets of
simulations for further analysis.

Observational Alignment Based Querying and Exploration

In addition to scenario-based filtering, search, and exploration,
epiDMS also enables searching particular temporal patterns on
the epidemic ensembles. During an epidemic, this feature allows
the expert to identify a relevant subset of stored simulations that
match actual disease patterns or specific targets for intervention
measures. This facilitates public health decision-makers to iden-
tify the relevant parameters that characterize transmission pat-
terns in near real time, forecast epidemic spread as the epidemic
evolves, and assess the potential impact of intervention scenar-
ios. This platform also allows the user to perform simulation re-
finements by narrowing the parameter space of possible worlds
on the basis of the current state of the epidemic. Hence, the user
can use epiDMS to run additional simulations within the con-
strained parameter space to obtain more-detailed simulations,
possibly with additional intervention assumptions, that are rel-
evant to the current state of the epidemic.

CONCLUSIONS

In this article, we have described and illustrated with an example
epiDMS [26], a novel epidemic simulation data management
system that supports the generation, search, visualization, and
analysis, in a scalable manner, of large volumes of epidemic sim-
ulation ensembles for decision-making. The system aims to assist
experts and decision-makers in exploring large epidemic simula-
tion ensemble data sets through efficient metadata- and similar-
ity-based querying, data analysis, and visual exploration.

Supplementary Data
Supplementary materials are available at http://jid.oxfordjournals.org.
Consisting of data provided by the author to benefit the reader, the posted
materials are not copyedited and are the sole responsibility of the author, so
questions or comments should be addressed to the author.

Notes
Acknowledgments. We thank the members of the EmitLab at Arizona

State University for their contributions to epiDMS.
Financial support. This work was supported by the National Science

Foundation (grants 1318788 and 1518939).
Potential conflicts of interest. All authors: No reported conflicts. All

authors have submitted the ICMJE Form for Disclosure of Potential Con-
flicts of Interest. Conflicts that the editors consider relevant to the content
of the manuscript have been disclosed.

References
1. Chowell G, Fenimore PW, Castillo-Garsow MA, Castillo-Chavez C. SARS out-

breaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation
as a control mechanism. J Theor Biol 2003; 224:1–8.

2. Siu A, Wong YCR. Economic impact of SARS: the case of Hong Kong. Cambridge,
MA: MIT Press, 2004; 3:62–83.

3. Khan K, Arino J, HuW, et al. Spread of a novel influenza A (H1N1) virus via glob-
al airline transportation. N Engl J Med 2009; 361:212–4.

4. McKibbin WJ. The swine flu outbreak and its global economic impact. Brookings,
2009. http://www.brookings.edu/research/interviews/2009/05/04-swine-flu-
mckibbin. Accessed 10 May 2016.

5. Abubakar I, Gautret P, Brunette GW, et al. Global perspectives for prevention of in-
fectious diseases associated with mass gatherings. Lancet Infect Dis 2012; 12:66–74.

6. Anderson RM, May RM. Infectious diseases of humans. Oxford: Oxford Univer-
sity Press, 1991.

7. Nishiura H, Castillo-Chavez C, Safan M, Chowell G. Transmission potential of the
new influenza A(H1N1) virus and its age-specificity in Japan. Euro Surveill 2009;
14:pii:19227.

8. Merler S, Ajelli M, Pugliese A, Ferguson NM. Determinants of the spatiotemporal
dynamics of the 2009 H1N1 pandemic in Europe: implications for real-time mod-
elling. PLoS Comput Biol 2011; 7:e1002205.

9. Van den Broeck W, Gioannini C, Gonçalves B, Quaggiotto M, Colizza V, Vespignani
A. The GLEaMviz computational tool, a publicly available software to explore realistic
epidemic spreading scenarios at the global scale. BMC Infect Dis 2011; 11:37.

10. Colizza V, Barrat A, Barthelemy M, Valleron AJ, Vespignani A. Modeling the
worldwide spread of pandemic influenza: baseline case and containment interven-
tions. PLoS Med 2007; 4:e13.

11. Hollingsworth TD, Ferguson NM, Anderson RM. Will travel restrictions control
the international spread of pandemic influenza? Nat Med 2006; 12:497–9.

12. Scalia Tomba G,Wallinga J. A simple explanation for the low impact of border control
as a countermeasure to the spread of an infectious disease. Math Biosci 2008; 214:70–2.

13. Cauchemez S, Ferguson NM, Wachtel C, et al. Closure of schools during an influ-
enza pandemic. Lancet Infect Dis 2009; 9:473–81.

14. Centers for Disease Control and Prevention (CDC). Interim pre-pandemic plan-
ning guidance: community strategy for pandemic influenza mitigation in the Unit-
ed States—early, targeted, layered use of nonpharmaceutical interventions.
Atlanta, GA: CDC, 2007.

15. Wu JT, Cowling BJ, Lau EH, et al. School closure and mitigation of pandemic
(H1N1) 2009, Hong Kong. Emerg Infect Dis 2010; 16:538–41.

16. Longini IM Jr, Nizam A, Xu S, et al. Containing pandemic influenza at the source.
Science 2005; 309:1083–7.

17. STEM. The spatiotemporal epidemiological modeler project. http://www.eclipse.
org/stem. Accessed 10 May 2016.

18. Socioeconomic Data and Applications Center. http://sedac.ciesin.columbia.edu.
Accessed 10 May 2016.

19. Germann TC, Kadau K, Longini IM Jr, Macken CA. Mitigation strategies for pan-
demic influenza in the United States. Proc Natl Acad Sci USA 2006; 103:5935–40.

20. Mossong J, Hens N, Jit M, et al. Social contacts and mixing patterns relevant to the
spread of infectious diseases. PLoS Med 2008; 5:e74.

21. Flahault A, Vergu E, Boelle PY. Potential for a global dynamic of Influenza A
(H1N1). BMC Infect Dis 2009; 9:129.

22. Kenah E, Chao DL, Matrajt L, Halloran ME, Longini IM Jr. The global transmis-
sion and control of influenza. PLoS One 2011; 6:e19515.

23. Merler S, Ajelli M. The role of population heterogeneity and human mobility in
the spread of pandemic influenza. Proc Biol Sci 2010; 277:557–65.

24. Barrett CL, Eubank SG, Smith JP. If smallpox strikes Portland. Sci Am 2005;
292:42–9.

epiDMS: An Epidemic Simulation Data Management System • JID 2016:214 (Suppl 4) • S431

http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiw305/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiw305/-/DC1
http://jid.oxfordjournals.org
http://jid.oxfordjournals.org
http://www.brookings.edu/research/interviews/2009/05/04-swine-flu-mckibbin
http://www.brookings.edu/research/interviews/2009/05/04-swine-flu-mckibbin
http://www.brookings.edu/research/interviews/2009/05/04-swine-flu-mckibbin
http://www.eclipse.org/stem
http://www.eclipse.org/stem
http://www.eclipse.org/stem
http://sedac.ciesin.columbia.edu
http://sedac.ciesin.columbia.edu


25. Chao DL, HalloranME, Obenchain VJ, Longini IM Jr. FluTE, a publicly available sto-
chastic influenza epidemic simulation model. PLoS Comput Biol 2010; 6:e1000656.

26. Epidemic Simulation Data Management System (epiDMS). https://hive.asu.edu:
8443/MVTSDB/?p=epidemic. Accessed 10 May 2016.

27. Berkeley Madonna: modeling and analysis of dynamic systems. http://www.
berkeleymadonna.com/. Accessed 10 July 2016.

28. Liu S, Garg Y, Candan KS, Sapino ML, Chowell G. NOTES2: Networks-Of-
Traces for Epidemic Spread Simulations. In: 29th AAAI Conference on Artificial

Intelligence, AAAI 2015 - Austin, United States. AI Access Foundation,
2015:79–83.

29. Schifanella C, Candan KS, Sapino ML. Multiresolution tensor decomposi-
tions with mode hierarchies. Article 10. ACM Trans Knowl Discov Data
2014; 8.

30. Wang X, Candan KS, Sapino ML. Leveraging metadata for identifying local, robust
multi-variate temporal (RMT) features. In: IEEE 30th International Conference on
Data Engineering. Chicago, IL: IEEE, 2014:388–99.

S432 • JID 2016:214 (Suppl 4) • Liu et al

https://hive.asu.edu:8443/MVTSDB/?p=epidemic
https://hive.asu.edu:8443/MVTSDB/?p=epidemic
https://hive.asu.edu:8443/MVTSDB/?p=epidemic
http://www.berkeleymadonna.com/
http://www.berkeleymadonna.com/
http://www.berkeleymadonna.com/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


