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Abstract: Techniques based on ultrasound in nondestructive testing and medical imaging analyze
the response of the source frequencies (linear theory) or the second-order frequencies such as
higher harmonics, difference and sum frequencies (nonlinear theory). The low attenuation and
high directivity of the difference-frequency component generated nonlinearly by parametric arrays
are useful. Higher harmonics created directly from a single-frequency source and the sum-frequency
component generated nonlinearly by parametric arrays are attractive because of their high spatial
resolution and accuracy. The nonlinear response of bubbly liquids can be strong even at relatively
low acoustic pressure amplitudes. Thus, these nonlinear frequencies can be generated easily in these
media. Since the experimental study of such nonlinear waves in stable bubbly liquids is a very
difficult task, in this work we use a numerical model developed previously to describe the nonlinear
propagation of ultrasound interacting with nonlinearly oscillating bubbles in a liquid. This numerical
model solves a differential system coupling a Rayleigh–Plesset equation and the wave equation.
This paper performs an analysis of the generation of the sum-frequency component by nonlinear
mixing of two signals of lower frequencies. It shows that the amplitude of this component can be
maximized by taking into account the nonlinear resonance of the system. This effect is due to the
softening of the medium when pressure amplitudes rise.

Keywords: bubbly liquids; nonlinear acoustics; numerical models; nonlinear frequency mixing;
sum-frequency component; nonlinear resonance

1. Introduction

Ultrasound-based techniques have been widely used in material science to characterize the
medium or to localize cracks (nondestructive evaluation) [1–4] and in medical imaging to diagnose
pathologies [5,6]. These techniques rely on the detection of transmitted or reflected ultrasonic
waves. They use the signals emitted from the source (primary frequencies) during the entire
process [6], which falls under the linear theory valid for infinitesimal pressure amplitudes, or consider
combinations of the source signals such as harmonics, difference frequencies, sum frequencies,
subharmonics [7–11], which falls under the nonlinear theory (at least second-order terms) valid
for finite pressure amplitudes. The benefits of the signal produced at the difference frequency by
parametric arrays stand in its low attenuation and high directivity. This gives rise to a high penetration
of the information transmitted through the medium [12,13]. In addition to the difference-frequency
field, the nonlinear combination of two signals of different frequencies emitted at finite amplitudes
also produce the sum-frequency component. The wavelength of this sum-frequency signal is shorter
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than the ones of the source and difference frequencies. This particularity is very attractive when a high
resolution or accuracy of the results is required, as for example in medical imaging or nondestructive
testing [10,11].

Liquids containing gas bubbles are very interesting media since a tiny amount of void fraction
modifies the acoustic properties of the medium drastically, introducing dispersion, attenuation, and
nonlinearity. The sound speed, attenuation coefficient, and parameter of nonlinearity are dependent
on the ratio of their frequency, f , to the resonance frequency of the bubble, f0. They can change by
orders of magnitude from one signal frequency to another [14,15]. Figure 1 illustrates the dispersive
character of a bubbly medium by representing the sound speed cz (a), attenuation coefficient αz (b),
and compressibility coefficient κz (c) vs. f / f0 obtained from the development given in Refs. [14,15].
The liquid with bubbles shown here is the one used in the simulations performed in Section 3. It must
be noted that this frequency dependence is similar for any other medium made of liquid and gas
bubbles. The variations of these parameters with the frequency are very large. Their influence on
the propagation of ultrasound is huge. Thus, at some frequency ranges, the very high nonlinearity
of the medium due to the presence of bubbles is responsible for the generation of higher harmonics,
difference and sum frequencies even at moderate finite-pressure amplitudes [15–17]. Bubbles are
widely used as contrast agents in medical imaging [18].

Figure 1. Curves of dispersion in a bubbly liquid for sound speed cz (a), attenuation coefficient αz (b),
and compressibility coefficient κz (c).

The control of the numerous parameters which come into play in the set-up of experimental
systems to study the behavior of finite-amplitude ultrasound propagating in liquids with a stable
population of gas bubbles is a very difficult task. The development of numerical models able to
approximate the nonlinear response of such systems is thus necessary to analyze the generation of
harmonics, difference and sum frequencies during the propagation of finite-amplitude acoustic waves
in bubbly liquids [19–23].

The decrease of sound speed when acoustic amplitudes are raised has been previously observed
in several nonlinear and dispersive media by evidencing the nonlinear shift of the resonance frequency
of the system [24–26]. The drop of sound speed is associated to the softening of the medium when
pressure amplitudes are raised. In particular, it was studied to maximize the fundamental and
difference-frequency components in a bubbly liquid [27]. However, up to our knowledge, this behavior
has not been analysed for the sum-frequency component. In this paper, we study whether this
frequency shift effect is observable by analysing the sum-frequency component obtained by nonlinear
mixing of two signals of lower frequencies. We also investigate the possibility of taking advantage of
this frequency shift to maximize the sum-frequency component amplitude, which could be useful to
improve the resolution or accuracy of the response of the system. This improvement may be of interest
in applications of nonlinear acoustics and nondestructive testing [28–31].
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In Section 2 we describe the physical problem studied here and the mathematical system we
consider to model the nonlinear interaction of ultrasound and bubbles. Section 3 reports the numerical
simulations performed and the results of this study. In Section 3.1 we compare the efficacy of the
nonlinear generation of higher frequency components from one or two primary frequencies at the
source. The study of the nonlinear generation of the sum-frequency component by mixing two source
frequencies is then analysed using a linear resonance assumption in Section 3.2. The analysis of the
change of sound speed and cavity resonance for the sum-frequency component vs. acoustic pressure
amplitudes is performed in Section 3.3. The nonlinear generation of the sum-frequency component is
thus studied by mixing two source frequencies and considering a nonlinear resonance assumption
in Section 3.4. Finally, the results of this work are discussed in Section 4, in which the enhancement
of the sum-frequency signal obtained from nonlinear frequency mixing by considering the nonlinear
resonance effect is shown.

2. Materials and Methods

We considered an ultrasonic field traveling through a mixture of water and a high density of tiny
air bubbles evenly distributed in a one-dimensional cavity of length L.

The nonlinear interaction between the acoustic field p(x, t) and the bubble oscillations, expressed
in volume variation, v(x, t) = V(x, t)− v0g, can be described by the system of differential equations
formed by the wave Equation (1) and a Rayleigh–Plesset Equation (2) [14,16,17], where x is the
one-dimensional space coordinate, t is the time, Tt is the last instant of the study, V is the current
volume of bubble, and v0g = 4

3 πR3
0g is the initial bubble volume, with initial radius R0g:

∂2 p
∂x2 −

1
c2

0l

∂2 p
∂t2 = −ρ0l Ng
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, 0 ≤ x ≤ L, 0 < t < Tt. (2)

In Equation (1) c0l and ρ0l are the sound speed and the density at the equilibrium state of
the liquid, and Ng is the density of bubbles in the liquid. In Equation (2) δ = 4νl/ω0gR2

0g is the
viscous damping coefficient of the bubbly fluid, in which νl is the cinematic viscosity of the liquid,
ω0g =

√
3γg p0g/ρ0l R2

0g is the resonance frequency of the bubbles, in which γg is the specific heats ratio

of the gas, p0g = ρ0gc2
0g/γg is its atmospheric pressure, and ρ0g and c0g are the density and sound speed

at the equilibrium state of the gas. The parameter η = 4πR0g/ρ0l is a constant. a = (γg + 1)ω2
0g/2v0g

and b = 1/6v0g are the nonlinear coefficients corresponding to the adiabatic gas law and to the
dynamic of bubbles. This differential system models the nonlinear interaction of ultrasound and bubble
oscillations, which causes attenuation and dispersion in the bubbly liquid. Note that both dependent
variables, p and v, are unknown in the system. Therefore, they are both nonlinear, the distortion
of one of them affects the other one and vice versa. The model also accounts for approximations
which idealize the physical problem. Among others, all the bubbles are spherical and of the same
size, f0 corresponds to their lowest mode, adiabatic gas law is assumed in the bubble, bubbles do not
radiate sound themselves, the buoyancy, viscous drag, and Bjerknes forces are not considered [15].

The auxiliary conditions are the followings. At the onset of the study we considered

p(x 6= 0, 0) = 0, v(x, 0) = 0,
∂p
∂t

(x 6= 0, 0) = 0,
∂v
∂t

(x, 0) = 0, 0 ≤ x ≤ L. (3)

The cavity was excited by a time-dependent pressure source s(t) placed at x = 0:

p(x = 0, t) = s(t), 0 ≤ t ≤ Tt, (4)
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and we assumed a free-walled boundary condition at x = L:

p(L, t) = 0, 0 ≤ t ≤ Tt. (5)

This differential system, Equations (1)–(5), is solved using the numerical model developed in
Ref. [21]. It is based on the finite-volume method in the space dimension and on the finite-difference
method in the time dimension. 64 finite volumes have been used in the cavity and 400 time points are
employed per period of the sum frequency fs in Section 3. In each of them a discretized version of
Equations (1) and (2) is solved [21].

Whereas in this study the same numerical model as in Ref. [21] was used, our objective here was
to analyze a different phenomenon. In Ref. [21] the generation of harmonics from a single-frequency
source and the generation of the difference frequency fd from a dual-frequency source were studied.
Ref. [27] was dedicated to the generation and optimization of the difference-frequency component
fd from two primary signals of higher frequencies, whereas in this work the optimization was about
fs obtained from two primary signals of lower frequencies. Whereas fd is less attenuated and can
propagate over a larger distance, fs gives information with better precision. This latter point justifies
the interest of this work. Refs. [11,23] studied the generation of fs from two primary signals only
(which can be useful due to its high spatial resolution and accuracy), but here we also analyzed its
maximization. The results of this work showed that we could obtain much higher amplitudes of fs by
slightly reducing one of the primary frequencies (see Section 3).

3. Results

The data used for the simulations in this section are c0l = 1500 m/s, ρ0l = 1000 kg/m3,
νl = 1.43× 10−6 m2/s for the liquid (water) and c0g = 340 m/s, ρ0g = 1.29 kg/m3, γg = 1.4 for
the gas (air). We use bubbles of radius R0g = 2.5 µm and the bubble density is Ng = 5× 1011 m−3.
In all the experiments presented here the standing wave is formed in the resonator long before the
last time t = Tt is reached. The length of the cavity used in this section is defined by setting the
half-wavelength resonance at 200 kHz, far below the bubble resonance, and considering the sound
speed cz evaluated from Refs. [14] (see also [15]) cz200 kHz = 1222.8 m/s, i.e., L = λ200 kHz/2 =

cz200 kHz/(2(200 kHz)) = 0.0031 m.

3.1. Sum-Frequency Generation by Nonlinear Frequency Mixing vs. Harmonic Generation

The propagation of a high-frequency ultrasonic signal created from others of lower frequencies is
certainly interesting in many frameworks, since it can be useful for obtaining a better spatial resolution
in imaging or non destructive testing from transducers of lower frequencies. Based on nonlinear
acoustics, two techniques are possible to achieve this task: i) using a monochromatic source to create
higher harmonics, with s(t) = p0sin(ωt), where ω = 2π f (Case#1), ii) using a dual-frequency source
to generate the sum-frequency fs by nonlinear frequency mixing, with s(t) = p0(sin(ω1t) + sin(ω2t)),
where ω1 = 2π f1 and ω2 = 2π f2 (Case#2). In this section we compare the nonlinear generation of the
same frequency 2 f = fs = f1 + f2 = 200 kHz using both techniques in the nonlinear bubbly medium
by setting the source at the same amplitude p0 = 9 kPa in both cases. The source frequencies are
i) f = 100 kHz for Case#1 and ii) f1 = 90 kHz and f2 = 110 kHz for Case#2. cz f s = c2 f = 1222.8 m/s.
Figure 2 shows the amplitude of the frequency distribution of the acoustic pressure components in
the cavity obtained after applying a fast Fourier transform. Blue and red colors correspond to Case#1
and Case#2, respectively. For Case#1, the fundamental (dashed line) and the second harmonic (solid
line) are displayed. The maximum amplitude obtained for the second harmonic was p2 f m = 10.01 kPa.
For Case#2, the primary frequencies (dashed lines) and the sum frequency (solid line) are displayed.
The maximum amplitude obtained for the sum frequency was p f sm = 14.016 kPa. The generation of the
signal at 200 kHz was more efficient by nonlinear frequency mixing (Case#2). This result justifies the
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following study in the next sections, which aims to enhance this signal by searching for its magnificence
through nonlinear resonance.

Figure 2. Pressure amplitude distribution of frequency components in the cavity; Case#1: blue
(one source frequency), Case#2: red (two source frequencies); Source frequencies: dashed lines
(fundamental and primary frequencies), nonlinear frequencies: solid lines (2nd harmonic and
sum frequency).

3.2. Sum-Frequency Generation by Nonlinear Frequency Mixing under Linear Resonance Assumption

In this section, and in the followings, we consider the source s(t) = p0(sin(ω1Lt) + sin(ω2Lt))
with the primary frequencies f1L = 90 kHz and f2L = 110 kHz. As said in Section 3.1,
the sum frequency obtained from Case#2, fsL = 200 kHz, travels in this medium at the sound
speed c f sL = cz200 kHz = 1222.8 m/s, and we set the cavity length to be (linearly) resonant at
L = c f sL/2 fsL = 0.0031 m, i.e., for which the resonance was determined in the linear regime. In this
configuration we studied the generation of the sum-frequency in the resonator as a function of
the source amplitude p0, but keeping the same sound speed, i.e., the same cavity length, for any
of these amplitudes (sound speed at linear regime) [14,15]. Figure 3 shows the response of
the system by displaying the maximum pressure amplitude of the sum-frequency found in the
cavity psLm vs. p0. The result expressed in Pa fits to the following third-order polynomial,
psLm = −3.4× 10−8 p3

0 + 5× 10−4 p2
0 − 0.24p0 + 25. It must be noticed that the behavior given by this

polynomial was valid in the range of p0 employed here. The generation of the component fsL vs.
p0 was clearly nonlinear. Its amplitude increased rapidly in the middle range of p0 and then quite
moderately for higher amplitudes, due to the negative third-order coefficient in the polynomial,
−3.4× 10−8 p3

0, which means that the amplitudes obtained were not excessively high for elevated p0

values. The relative increase of amplitude generation of the component fsL in relation to p0 was around
155.7% when p0 = 9 kPa.

3.3. Nonlinear Resonance of the Cavity

It is well known that an increase of the pressure amplitude of an acoustic wave propagating
in a bubbly liquid produces a softening of the medium, i.e., a decrease of the sound speed, which
induces a shift of the resonance of the cavity (nonlinear frequency shift of the cavity resonance,
nonlinear resonance) [24–27]. In this section we studied whether this effect could be detected and
evaluated through the analysis of the sum frequency created by nonlinear mixing of two signals
of lower frequencies (Case#2). We thus analyzed the resonance of the sum-frequency component
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of the signal pressure in the cavity by changing the amplitude at the source. For each amplitude,
we applied a frequency sweep of fs around the linear resonance fsL = 200 kHz (Section 3.2) by
moving f1L by increment δ f1 = 10 Hz, whereas f2L = 110 kHz remained constant during the whole
procedure, to evaluate the highest pressure amplitude of the sum-frequency component reached in
the cavity, psm, at each frequency. These psm values are represented in Figure 4 for all the source
amplitudes used in the study. The maximal value obtained over the entire frequency range at each
amplitude was then localized, which defined the frequency for which the response of the system was
maximum at this amplitude. The results show that when the amplitude increased, the frequency
which maximized the response shifted towards lower frequencies, which means that the sound
speed decreased, i.e., the medium softened. For example, with the source amplitude p0 = 9 kPa the
frequency that gave the highest response, i.e., the “nonlinear-regime” resonance, was fsm = 197.94 kHz,
corresponding to the sound speed c f sNL = 2L fsm = 1210.2 m/s, which was ∆ fs = 2.06 kHz lower
than the “linear-regime”resonance, 200 kHz, obtained with low amplitudes. Although the change of
sound-speed value was not very high, the variation of amplitude of the sum-frequency component
was huge since it improved by 183.15%, from 14.016 kPa (155.7% of the source amplitude) to 25.67 kPa
(285.3% of the source amplitude).

Figure 3. Case#2. Maximum amplitude of the sum-frequency pressure component in the cavity psLm

vs. source amplitude p0 under linear resonance assumption (dots), and fitting curve (solid line).

Figure 4. Case#2. Maximum amplitude of the sum-frequency pressure component in the cavity psm vs.
frequency fs (around fsL) for different source amplitudes p0.
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The shift ∆ fs undergone by the resonance frequency of the cavity was dependent on the maximum
pressure amplitude reached in the cavity, corresponding to the sum-frequency component, psNLm,
which depended on the source amplitude p0, as it can be seen in Figure 5. It fit to the third-order
polynomial ∆ fs = 5.1× 10−9 p3

0 − 3× 10−5 p2
0 + 0.09p0 − 63, where pressure amplitudes are expressed

in Pa and frequencies in Hz. The nonlinear behavior of this shift indicates that it rose very fast with
p0 since the third-order term was positive, 5.1× 10−9 p3

0. This fact proves that the softening of the
medium increased quite rapidly, i.e., the sound speed decreased fast, as p0 was raised.

Figure 5. Case#2. Frequency shift of the sum-frequency pressure component ∆ fs vs. maximum
sum-frequency pressure amplitude in the cavity psNLm (dots), and fitting curve (solid line).

Figure 6 shows the frequency shift ∆ f as a function of the increase of average bubble volume
∆v, and its linear fit ∆ fs = 2.3× 1021∆v + 31, where frequencies are expressed in Hz and bubble
volumes in m−3. The shift of resonance frequency, and the corresponding change of sound speed in the
medium, is due to the increment of the mean bubble volume. At nonlinear regime the volume variation
of the bubbles lost the symmetry around its initial volume (at rest) and underwent a displacement
towards positive volume values, i.e., the bubble oscillated around a higher equilibrium volume, and the
averaged volume of the bubbles rose, which induced a decrease of the sound speed.

Figure 6. Case#2. Frequency shift of the sum-frequency pressure component ∆ fs vs. average bubble
volume increase ∆v (dots), and fitting curve (solid line).
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3.4. Sum-Frequency Generation by Nonlinear Frequency Mixing under Nonlinear Resonance Assumption

The sum frequency obtained from Case#2, fsL = 200 kHz, by taking into account the
nonlinear resonance observed in Section 3.3 was now studied. This means that we considered
the “nonlinear-regime” sound speed, cNL, at this sum frequency deduced from the value of the
nonlinear resonance in the cavity of constant length found in Section 3.3: c f sNL = 2L fsm = 1210.2 m/s.
We studied the generation of this sum-frequency in the cavity as a function of the source
amplitude p0. Figure 7 shows the maximum amplitude of the sum-frequency pressure component
in the cavity, psNLm, vs. p0 (see Figure 4). The result fits to the second-order polynomial
psNLm = 3.2× 10−4 p2

0 + 0.03p0 − 1.1× 10−2, where pressures are expressed in Pa. The clear nonlinear
generation of the component fsNL vs. p0 indicates that its amplitude rose rapidly for all ranges of
p0, since the second-order coefficient in the polynomial was positive, 3.2× 10−4 p2

0, which proves the
efficiency of the generation for high p0 values. The relative increases of amplitude generation of the
component fsL in relation to p0 were very high. For example, the increase was around 285.3% when
p0 = 9 kPa.

Figure 7. Case#2. Maximum amplitude of the sum-frequency pressure component in the cavity psNLm

vs. source amplitude p0 under nonlinear resonance assumption (dots), and fitting curve (solid line).

4. Discussion

The results obtained in Section 3 in a dispersive and nonlinear medium made of liquid and gas
bubbles suggest that the generation of a higher frequency-component signal from a lower-frequency
source is more efficient by nonlinear mixing of two signals from a dual-frequency source than by
nonlinear cascade forming harmonics from a single-frequency source (Figure 2). It must be noted that
the sum frequency from two signals with near frequency values obtained by nonlinear mixing is close
to the frequency of the second harmonic formed from a single frequency. It has also been shown that the
response of the sum-frequency amplitude with p0 without taking the nonlinear resonance into account
follows a cubic law for which the coefficient of the third-degree term is negative (Figure 3), whereas
it follows a quadratic law with positive second-degree coefficient when the nonlinear resonance is
considered (Figure 7). This characteristic allows the sum frequency to attain higher values when p0

rises in the nonlinear resonance context. This nonlinear resonance has been characterized in Figure 4 for
several p0 and by changing the sum-frequency value to localize the frequency at which the response of
the system is maximum, which defines the value of the nonlinear resonance of the cavity. The decrease
of this value for higher p0, i.e., the existence of a shift of this resonance ∆ fs that increases fast with p0
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following a cubic law with positive cubic coefficient (Figure 5), evidences a reduction of the sound
speed, and thus, a softening of the medium, which is due to the higher mean value of bubble volume
at high amplitudes, as seen by observing the proportional dependence between ∆ fs and the average
increase of bubble volume through the linear law in Figure 6.

A clear evidence of the benefits we obtain by considering the nonlinear resonance in the cavity for
nonlinear mixing of two signals is through the comparison, shown in Figure 8, of the generation of
the sum-frequency component obtained by accounting for the change of sound speed of the medium
(solid lines, nonlinear resonance assumption) or not (dashed lines, linear resonance assumption).
The same pressure-source amplitude p0 = 9 kPa is used in both configurations. When we take the
nonlinear resonance effect into account the amplitude of the sum-frequency component experiments
a huge increase. Its maximum value improves by 183.15%, rising from 14.016 kPa (155.7% of p0) to
25.67 kPa (285.3% of p0). The softening of the bubbly liquid when amplitudes are raised is thus an
important feature of the process. It is then useful to account for this effect in applications for which the
sum-frequency component needs to be enhanced.

Figure 8. Case#2. Pressure amplitude distribution of frequency components in the cavity with
p0 = 9 kPa; under linear resonance assumption, f1L = 90 kHz, f2L = 110 kHz, fsL = 200 kHz (blue,
green, and red dashed lines, respectively); under nonlinear resonance assumption, f1NL = 87.94 kHz,
f2NL = 110 kHz, fsNL = 197.94 kHz (blue, green, and red solid lines, respectively).

In this work the enhancement of the generation of the sum-frequency component in bubbly
liquids has been shown in a cavity by means of numerical simulations and by taking advantage of
the softening of the medium at high acoustic pressure amplitudes, which has been observed through
the nonlinear shift of the resonance of the cavity. In spite of the numerous restrictions used to derive
the differential system solved here, inherent to every approximation model of a physical problem,
the results obtained suggest that the use of a maximized signal at the sum-frequency component from
mixing nonlinearly two signals of lower frequencies could be useful in several practical situations
for which a higher frequency signal is required to obtain a better precision, accuracy, or resolution in
frameworks like sensing, nondestructive testing, or medical imaging.

More studies should be performed in the future about the maximization of the sum-frequency
signal by developing models from less restrictive differential equations, by including effects such
as Bjerknes forces and others, or by setting stable experimental conditions for the propagation of
ultrasound in bubbly liquids. On the other hand, the continuation of this work should also focus on



Sensors 2020, 20, 113 10 of 11

the usefulness of its results to improves technical applications. Also, experimental studies should be
performed to corroborate the theoretical results obtained here.
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